• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Strength Evaluating M ethod of the Azimuth Thruster Propeller Blade

    2016-05-15 13:24:17ZHUQuanhuaWEIPengyuYUEYalinHUFanglinLIUDengcheng
    船舶力學(xué) 2016年9期
    關(guān)鍵詞:推進(jìn)器槳葉螺旋槳

    ZHU Quan-hua,WEI Peng-yu,YUE Ya-lin,HU Fang-lin,LIU Deng-cheng

    (China Ship Scientific Research Center,Wuxi 214082,China)

    Structural Strength Evaluating M ethod of the Azimuth Thruster Propeller Blade

    ZHU Quan-hua,WEI Peng-yu,YUE Ya-lin,HU Fang-lin,LIU Deng-cheng

    (China Ship Scientific Research Center,Wuxi 214082,China)

    In order to achieve a precise structural strength evaluation for the azimuth thruster propeller blade,a detailed study is conducted by Computational Fluid Dynamics(CFD)and Finite Element Method(FEM).To solve the problem of unidirectional fluid-structure coupling of the propeller, the method of transferring distributed pressure from fluid field to structure field on the blade surface is mainly discussed.Then a transmission method for fluid pressure on the fluid-structure interface is proposed,and suitable principles of selecting weighting coefficients and element size which impact numerical calculation accuracy are presented.On this basis,strength numerical calculation and safety evaluation of a 5 000 kW azimuth thruster propeller are carried out,and the stress and deformation distribution laws of the propeller are obtained.Finally,the structural strength evaluating method of the azimuth thruster propeller blade is established,which can provide a technical guidance for the design of high-powered azimuth thruster propellers.

    azimuth thruster;propeller blade;hydrodynamic forces;pressure transmission; structural strength evaluation

    0 Introduction

    The azimuth thruster is the core equipment of Dynamic Positioning System for an offshore platform.It can be rotated to any horizontal angle to obtain thrust for the normal operation of the offshore platform.During the long-term service process in marine environment,the azimuth thruster’s propeller mainly withstands the centrifugal force and the complicated hydrodynamic forces.As the substantial increase of engine power,the structural strength of the propeller becomes so prominent that not only the minimum thickness of propeller blades needs to be checked,but also the stress regularity is to be anatomized.Compared to the mature structural strength calculating method,the key to establishing the mechanical model of the propeller is the simulation of external loads,among which the problem of unidirectional fluidstructure coupling is most important.In this paper,the simulation of external loads is achievedby first determining the distribution of fluid pressure on the fluid-structure interface,then exerting the fluid pressure on the propeller surface by a transmission method,and finally exerting the centrifugal force.The key of this process is how to transmit the pressure obtained from the hydrodynamic calculation to the finite element model.

    In this paper,a structural strength calculating method of azimuth thruster propeller is developed based on the CFD method and the finite element method,the calculating process is shown in Fig.1.The pressure transmission is implemented by interpolation based on the principle of spatial proximity.In addition, the impact of weighting coefficients of interpolation and finite element size on the numerical calculation accuracy is deeply studied,and some suitable principles of weighting coefficients and element size are presented.On this basis,the strength evaluation of a 5 000 kW azimuth thruster’s propeller is carried out,from which the stress distribution and the safety factor of the blade are obtained.

    Fig.1 Process of strength calculation

    1 Hydrodynam ic calculation of the azimuth thruster

    1.1 Numerical simulation method

    In this work,strength calculation of the azimuth thruster is divided into two parts:one is the hydrodynamic calculation;the other is the structural finite element analysis.

    The numerical calculating method for hydrodynamic forces is to solve the RANS equation of the three-dimensional incompressible viscous fluid,and the differential equations are discretized by the cell-centered finite volume method.The pressure-velocity coupling is obtained by using the SIMPLE algorithm and pressure interpolating is achieved by using the standard format.In the process of calculation,the momentum,turbulent kinetic energy and turbulent dissipation rate are discretized by the second-order upwind scheme.

    The geometric model of the azimuth thruster for hydrodynamic calculation is shown in Fig.2,which includes a propeller,a duct,a pod and a pillar.The propeller is a right-hand one with four blades,and its diameter is 3.85 m.

    As is shown in Fig.3,the computational domain in Fluent is a circular cylinder with a radius of 6D,where D is the diameter of the propeller.The inlet boundary is located at 10D upstream of the propeller disk plane,and the outlet boundary is located at 10D downstream of the propeller disk plane.

    Fig.3 Diagram of the computational domain

    The inlet boundary and cylindrical surface of the computational domain are defined as the velocity inlet,and are given the inflow velocity and direction.The outlet boundary of the computational domain is defined as the pressure outlet,and is given the static pressure.The surface of the thruster is defined as the no-slip body surface[1].

    The fluid domain is divided by hybrid grids that the unstructured tetrahedral grid is used in the rotating region of the propeller while the structured hexahedral grid in the other regions. The surface of blades is divided by triangular grids,and the element size is about 20 mm.

    1.2 Open water performance prediction

    Here the hydrodynamic performance of the azimuth thruster is expressed by the thrust coefficient and the torque coefficient,which are defined by

    where TPODis the propulsive force acting upon the thrust.QPROis the torque of the propeller.ρ is the density of water.n and D are the revolution speed and diameter of the propeller,respectively.

    In this work,the working condition chosen for evaluation is that the inflow velocity is 2 kns and the revolution speed of the propeller is 180 rmp.

    Fig.4 Thrust and torque coefficients at varying rotating angles

    The azimuth thruster can be rotated to any horizontal angle.Fig.4 depicts the results of the thrust coefficient and torque coefficient at different rotating angles.The rotating angle is defined as the angle between inflow direction and x-axis direction of the model.If the thruster rotates anticlockwise when looking down from the top,the rotating angle is positive.Results show that the thrust coefficient reaches the peak at the angle of-120°,and the minimum value appears at the angle of 10°.The variation of the torque coefficients is similar with the thrust coefficients.

    The hydrodynamic forces acting on the thruster are in the form of fluid pressure.Fig.5 shows the pressure contours of the thruster at the rotating angles of 0°and-120°.Comparing the contours at the two different angles,it is obvious that the surface of propeller blades suffers higher pressure when the rotating angle is-120°.Therefore,it is concluded that the propeller subjects to the maximum hydrodynamic forces when running at the rotating angle of -120°.Strength of the propeller when running in this condition is to be evaluated,and a text named‘pres.dat’,which contains the information of the pressure on the blade surface,is exported.

    Fig.5 Pressure contours at the rotating angles of 0°and-120°

    2 Pressure transm ission method

    2.1 Finite element model

    As the propeller is a symmetrical structure,just a single blade is selected for analysis.The finite element model of the blade is shown in Fig.6.In order to reduce the impact of constrains on the result of stress at the root of the blade,a part of hub is added to the blade model and thefixed constrain is imposed on the bottom of the hub.In addition,the root of the blade is rounded with a fillet radius of 60 mm to alleviate the stress concentration.The material of the blade is nickel-aluminum bronze,the mechanical properties of which are shown in Tab.1.

    Tab.1 Mechanical properties of nickel-alum inum bronze

    The geometric shape of the propeller blade is so complex that its local curvatures and thicknesses change greatly along the radial and tangential directions.In order to better reflect the changing regularity of stress,the element size should be as small as possible.Tetrahedral grid is more adaptable for the blade,and can be automatically generated.Thus,the 10-node tetrahedral grid is used to divide the blade model[2],as is shown in Fig.6.

    2.2 Pressure transmission

    Pressure on the blade surface is obtained from hydrodynamic calculation in FLUENT, and given as discretized values on the mesh nodes.As the surface mesh nodes in FLUENT and mesh nodes on the surface of the structural finite element model are not one-to-one correspondent,the fluid pressure acting on the finite element model is to be calculated by interpolation[3-5].

    Pressure interpolation uses the principle of spatial proximity.As is shown in Fig.7,pressure values of three nearest fluid mesh nodes around the interpolating point are chosen to calculate the pressure value of the interpolating point.

    Assume that P is the pressure value of the interpolating point;p1the is nearest fluid mesh node;p2is the second nearest fluid mesh node;p3is the third nearest fluid mesh node.Then,the pressure value of the interpolating point is given as

    where a,b and c are the interpolation coefficients,and a+b+c=1.

    There are three significant problems to be settled for the fluid pressure transmission[6].First is how to extract the information of mesh nodes under pressure.Second is how to distinguish mesh nodes on the pressure side and the suction side.The last is the interpolation of pressure.

    Fig.6 Finite element model of the propeller blade

    Fig.7 Diagram of pressure transmission method

    In this work,transmission of fluid pressure is completed by the UG software and the selfcompiled interface program.The operation in UG is done by first establishing the geometric model,generating mesh,imparting material properties and imposing constrains;then,exerting evenly distributed pressure which is called‘a(chǎn)ssumed pressure’on the blade surface and the pressure value can be an arbitrary constant,simultaneously exerting centrifugal force;finally, exporting a text named‘blade.inp’that contains the above finite element information.However,the values of the pressure on surface nodes in this text are not the real ones.The intuitive purpose of the interface program is to replace the incorrect pressure values with real ones in the text named‘pres.dat’obtained from hydrodynamic calculation,and to export a new text named‘newblade.inp’which contains the real pressure information.This new text can be directly imported into ANSYS for numerical calculation.

    3 Factors affecting the accuracy of strength calculation

    The accuracy of structural strength calculation of propeller blades depends on two key factors:one is the accuracy of pressure transmission,and the other is grid matching performance between models for structural and hydrodynamic calculation.

    3.1 Effect of weighting coefficients on pressure transmission

    In this paper,pressure transmission is achieved by the interpolating method which is based on the principle of spatial proximity.In order to better control the accuracy of pressure transmission,it is necessary to grasp the effect of weighting coefficients of interpolation.Here four groups of weighting coefficients are chosen for study,which are as follows:

    The model is divided with the element size of 28 mm,and the pressure interpolation is done by the interface program.The pressure distribution on the blade surface calculated by FLUENT is shown in Fig.8(a),and the pressure distribution on the finite element model after interpolation(weighting coefficients:a=1.0,b=0.0,c=0.0)is shown in Fig.8(b).Comparing the pressure contours of(a)and(b),it is found that the two results agree well with each other. Therefore,it is concluded that the transmission method proposed in this paper is to be with a high accuracy.The pressure contours of the other three groups of weighting coefficients also agree well with the one obtained from FLUENT,but deeply comparing the pressure values of some mesh nodes,it is found that the result of the weighting coefficients:a=1.0,b=0.0,c=0.0 has the highest accuracy.Tab.2 presents the maximum pressure values on the pressure side and suction side under different weighting coefficients.

    Fig.8 Comparison of pressure contours

    Tab.2 Maximum pressures under different interpolation coefficients

    According to the comparison of the pressure contours and pressure values,the fourth group of interpolation coefficients:a=1.0,b=0.0,c=0.0 is recommended for the principle of spatial proximity.

    3.2 Effect of the element size on stress calculation

    The working condition for strength calculation is that the inflow velocity is 2 kns,the rotating angle is-120°and the revolution speed of propeller is 180 rmp.According to the finite element method proposed in this paper,the numerical calculation for stress analysis of the blade is done by the ANSYS software.Fig.9 shows the equivalent stress distribution of the blade,of which the element size is 28 mm.As is shown in Fig.9,on the pressure side of the blade,there is a stress concentration region near the leading edge at the radius of 0.8~0.9R,where R is the radius of the propeller.And on the suction side,not only do a stress concentration region exist at the root,but also another stress concentration region exists near the leading edge atthe radius of 0.8~0.9R.

    Fig.9 Stress contours of the blade

    To ensure the precision of calculation,grids in hydrodynamic calculation and FEM analysis should match as well as possible with each other.Generally,in order to decrease the scale and time of calculation,element size in FEM analysis is smaller than that in hydrodynamic calculation.For determining the impact of grid matching performance between models for structural and hydrodynamic analysis on the accuracy of stress calculation,stress analysis under eight different element sizes are done in this work.These element sizes are 60 mm,50 mm,40 mm,36 mm,30 mm,28 mm,24 mm and 20 mm,respectively,which are chosen based on the element size of 20 mm in FLEUNT.Results of stress calculation under different element sizes present the similar regularity of stress gradients and stress concentration regions,as shown in Fig.9.However,the maximum stresses on the concentration regions differ from each other.Tab.3 lists the concentration regions and the maximum stress values under different element sizes.

    Tab.3 Com parison of maximum stresses under different element sizes

    The stress concentration factor is given as

    where σmaxand σnare the maximum stress and the mean stress of the stress concentration region,respectively.

    The mean stress of the root on the suction side is σn=58 MPa,which is calculated by the cantilever beam method[7].According to Eq.(3),the stress concentration factors under the different element sizes are calculated and presented in Fig.10.As can be seen from the figure,the stress concentration factor increases with the decrease of element size,and tends to be a stable value when the element size is less than 30 mm.

    After comparing the stress contours,positions and values of the maximum stress and the stress concentration factors under different element sizes,it is concluded that when the element size in FEM analysis is 1.0~1.5 times of that in hydrodynamic calculation,the grids match well and the stress calculation is to be with a high accuracy.

    Fig.10 Comparison of stress concentration factors

    4 Strength evaluation of azimuth thruster propeller blades

    When checking the structural strength,the maximum equivalent stress of the structure is compared with the allowable stress of the material.The equivalent stress of a blade node is defined as follows:

    where σ1,σ2and σ3are the principal stresses in three directions,respectively. The strength safety factor of propeller blades is expressed as:

    where σbis the ultimate strength of the material and σe,maxis the maximum equivalent stress.

    Strength numerical calculation and safety evaluation of the 5 000 kW azimuth thruster propeller are carried out according to the above studies,in which the weighting coefficients is a=1.0,b=0.0,c=0.0 and the finite element size is 30 mm.The stress and strain contours of the blade are shown in Fig.11.It can be seen that the maximum equivalent stress of the blade is about 100 MPa,and the deformation distribution of the blade is consistent with the characteristics of the cantilever beam.

    Therefore,when running in the selected working condition(Inflow velocity:2 kns,rotating angle:-120°,revolution speed of the propeller:180 rmp),the maximum equivalent stress of the blade is σe,max=100 MPa.According to Eq.(5),the safety factor of the blade is Kb=6.2, which is smaller than that recommended by the rules.This result should be taken seriously in design.

    Fig.11 Stress and deformation contours of the blade

    5 Conclusions

    A pressure transmission method which transfers distributed pressure from fluid field to structure field is put forward to solve the problem of unidirectional fluid-structure coupling of the high-powered azimuth thruster propeller.Then through detailed research about weighting coefficients and element size which impact numerical calculation accuracy,the suitable principles of selecting weighting coefficients and element size are presented.Based on the above research results,the strength numerical calculation and safety evaluation of a 5 000 kW azimuth thruster propeller are carried out,and the stress and deformation distribution laws of the blade are obtained.The results show that the safety factor of blades proves to be small,so the blade structure should be paid more attention in the design process.On the whole,the structural strength evaluating method of the azimuth thruster propeller blade is established,which can provide technical guidance for the design of high-powered azimuth thruster propellers.

    [1]Guo Chunyu,Yang Chenjun,MA Ning.RANS simulation of podded propulsor performances in straight forward motion [J].China Ocean Engineering,2008,22(4):663-674.

    [2]Qian Weidong,Wu Chengcai,Len Wenhao,et al.Research on automatic geometric modeling and meshing for marine propellers[J].Ship Science and Technology,2011,33(3):39-43.

    [3]Li Jianbo,Wang Yongsheng,Sun Cunlou.Stress analysis of highly skewed propeller blades[J].Shipbuilding of China, 2009,50(4):1-6.

    [4]Wang Hong,Zeng Zhiwei,Zeng Zhibo.Strength checking method of controllable pitch propeller blades based on numerical calculation[J].Chinese Journal of Ship Research,2014,9(5):53-59.

    [5]Wang Xuefeng,Li Feng,Zhou Wei,et al.Research on grid interpolation method of fluid-structure coupling[J].Journal of Ship Mechanics,2009(4):571-578.

    [6]Hu Fanglin,Sheng Zhenguo,Liu Xiaolong.Analysis method of fluid-structure interaction for composite blades of wind turbine[J].Acta Energiae Solaris Sinica,2014,10:015.

    [7]Huang Yi,Xu Hui,Jiang Zhifang.Strength analysis of highly-skewed propeller[J].Chinese Journal of Ship Research, 2010,5(5):44-48.

    全回轉(zhuǎn)推進(jìn)器螺旋槳槳葉結(jié)構(gòu)強(qiáng)度評(píng)估方法

    朱全華,韋朋余,岳亞霖,胡芳琳,劉登成

    (中國(guó)船舶科學(xué)研究中心,江蘇無(wú)錫214082)

    為了解決全回轉(zhuǎn)推進(jìn)器螺旋槳的單向流固耦合問(wèn)題,實(shí)現(xiàn)螺旋槳槳葉結(jié)構(gòu)強(qiáng)度精確評(píng)估,文章基于計(jì)算流體力學(xué)和有限元法開(kāi)展了螺旋槳槳葉的結(jié)構(gòu)強(qiáng)度計(jì)算方法研究,重點(diǎn)探討了槳葉表面隨機(jī)分布?jí)毫牧黧w域到固體域的轉(zhuǎn)換技術(shù)。在此基礎(chǔ)上,文中提出了槳葉固液交界面上水動(dòng)力載荷的轉(zhuǎn)換方法,詳細(xì)研究了插值加權(quán)系數(shù)和有限元網(wǎng)格尺寸對(duì)槳葉結(jié)構(gòu)強(qiáng)度計(jì)算精度的影響規(guī)律,給出了適用于槳葉強(qiáng)度評(píng)估的插值加權(quán)系數(shù)和單元網(wǎng)格尺寸選取原則。最后,該文以5 000 kW級(jí)全回轉(zhuǎn)推進(jìn)器螺旋槳為例,開(kāi)展了槳葉結(jié)構(gòu)強(qiáng)度數(shù)值計(jì)算和安全評(píng)估,獲得了槳葉的應(yīng)力和變形分布規(guī)律,整體上建立了全回轉(zhuǎn)推進(jìn)器螺旋槳槳葉結(jié)構(gòu)強(qiáng)度評(píng)估方法,可為大功率全回轉(zhuǎn)推進(jìn)器螺旋槳設(shè)計(jì)提供借鑒和參考。

    全回轉(zhuǎn)推進(jìn)器;螺旋槳槳葉;水動(dòng)力載荷;表面壓力轉(zhuǎn)換;結(jié)構(gòu)強(qiáng)度評(píng)估

    U661.4

    A

    朱全華(1991-),男,中國(guó)船舶科學(xué)研究中心碩士研究生;韋朋余(1982-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;岳亞霖(1964-),男,中國(guó)船舶科學(xué)研究中心研究員;劉登成(1982-),男,中國(guó)船舶科學(xué)研究中心高級(jí)工程師;胡芳琳(1981-),女,中國(guó)船舶科學(xué)研究中心高級(jí)工程師。

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.09.007

    1007-7294(2016)09-1160-11

    Received date:2016-06-01

    Foundation item:Supported by the Major State Basic Research Development Program of China(973 Program, No.2014CB046706)and Jiangsu Key Laboratory of Green Ship Technology

    Biography:ZHU Quan-hua(1991-),male,master student of CSSRC,E-mail:951829290@qq.com; WEI Peng-yu(1982-),male,senior engineer.

    猜你喜歡
    推進(jìn)器槳葉螺旋槳
    探究奇偶旋翼對(duì)雷達(dá)回波的影響
    基于CFD扇翼推進(jìn)器敞水性能預(yù)報(bào)分析
    基于CFD的螺旋槳拉力確定方法
    立式捏合機(jī)槳葉結(jié)構(gòu)與槳葉變形量的CFD仿真*
    發(fā)揮考核“指揮棒”“推進(jìn)器”作用
    讓黨建成為信仰播種機(jī)和工作推進(jìn)器
    直升機(jī)槳葉/吸振器系統(tǒng)的組合共振研究
    3800DWT加油船螺旋槳諧鳴分析及消除方法
    廣東造船(2015年6期)2015-02-27 10:52:46
    螺旋槳轂帽鰭節(jié)能性能的數(shù)值模擬
    立式捏合機(jī)槳葉型面設(shè)計(jì)與優(yōu)化①
    午夜福利在线观看免费完整高清在 | 香蕉av资源在线| 亚洲性夜色夜夜综合| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 91在线观看av| av在线观看视频网站免费| 哪里可以看免费的av片| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 亚洲电影在线观看av| 国产高清激情床上av| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 国产精品,欧美在线| 午夜亚洲福利在线播放| 欧美成人精品欧美一级黄| 精品久久久久久久久久免费视频| 欧美日韩国产亚洲二区| 日韩国内少妇激情av| 国产极品精品免费视频能看的| 99国产极品粉嫩在线观看| 国产精品av视频在线免费观看| 99热只有精品国产| 午夜免费激情av| 最近2019中文字幕mv第一页| 国产精品人妻久久久久久| 国产白丝娇喘喷水9色精品| 亚洲国产精品sss在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一及| 国产成人a∨麻豆精品| 国产精品嫩草影院av在线观看| 男人狂女人下面高潮的视频| av专区在线播放| 三级国产精品欧美在线观看| 国产不卡一卡二| 天堂动漫精品| 国产成人a∨麻豆精品| 蜜桃久久精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 特级一级黄色大片| av天堂中文字幕网| 亚洲av免费在线观看| 久久99热6这里只有精品| 99热精品在线国产| 人人妻人人澡人人爽人人夜夜 | 国产大屁股一区二区在线视频| 国产午夜精品论理片| 亚洲国产精品久久男人天堂| 久久婷婷人人爽人人干人人爱| 日本免费一区二区三区高清不卡| 国产高清视频在线播放一区| 97超碰精品成人国产| 欧美人与善性xxx| 最近最新中文字幕大全电影3| 蜜桃久久精品国产亚洲av| 干丝袜人妻中文字幕| 国产精品嫩草影院av在线观看| 欧美性感艳星| 国产精品人妻久久久影院| 一进一出好大好爽视频| 五月伊人婷婷丁香| 国产女主播在线喷水免费视频网站 | 免费人成在线观看视频色| 又黄又爽又刺激的免费视频.| 国产v大片淫在线免费观看| 非洲黑人性xxxx精品又粗又长| 日本欧美国产在线视频| 嫩草影院入口| 欧美日韩乱码在线| 久久久色成人| 亚洲不卡免费看| 97超碰精品成人国产| 国产极品精品免费视频能看的| 黄片wwwwww| 波多野结衣高清作品| av视频在线观看入口| 亚洲欧美中文字幕日韩二区| 真实男女啪啪啪动态图| 看免费成人av毛片| 日产精品乱码卡一卡2卡三| 国产成人91sexporn| 日韩中字成人| 91麻豆精品激情在线观看国产| 国产成人a∨麻豆精品| aaaaa片日本免费| 老女人水多毛片| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 99在线人妻在线中文字幕| 欧美在线一区亚洲| 久久久久性生活片| 免费人成在线观看视频色| 国产精品久久久久久久电影| 国产蜜桃级精品一区二区三区| 久久久精品欧美日韩精品| 亚洲精品国产av成人精品 | 3wmmmm亚洲av在线观看| 91麻豆精品激情在线观看国产| 美女黄网站色视频| 嫩草影院新地址| 国产真实乱freesex| 亚洲第一电影网av| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 国内少妇人妻偷人精品xxx网站| 欧美日本亚洲视频在线播放| 国产精品,欧美在线| 亚洲精品粉嫩美女一区| 日韩亚洲欧美综合| 欧美最黄视频在线播放免费| 两个人的视频大全免费| 亚洲av成人av| 欧美丝袜亚洲另类| 男女那种视频在线观看| 久久久午夜欧美精品| 18禁黄网站禁片免费观看直播| 女人十人毛片免费观看3o分钟| 99热全是精品| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av在线| 亚洲熟妇中文字幕五十中出| 男插女下体视频免费在线播放| 内地一区二区视频在线| 老熟妇仑乱视频hdxx| 久久精品国产清高在天天线| 国产成人a∨麻豆精品| 午夜激情欧美在线| 搞女人的毛片| 午夜福利18| 99在线人妻在线中文字幕| a级毛色黄片| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 亚州av有码| 最后的刺客免费高清国语| 亚洲美女搞黄在线观看 | 天美传媒精品一区二区| 麻豆av噜噜一区二区三区| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 99热只有精品国产| 亚洲精品国产成人久久av| 亚洲一区高清亚洲精品| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 嫩草影院入口| 国产 一区 欧美 日韩| 人人妻人人澡人人爽人人夜夜 | 亚洲成a人片在线一区二区| 啦啦啦韩国在线观看视频| 中文亚洲av片在线观看爽| eeuss影院久久| or卡值多少钱| 午夜免费激情av| 中文字幕av在线有码专区| 身体一侧抽搐| 国产成人91sexporn| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美| 欧美激情国产日韩精品一区| 久久久午夜欧美精品| 国产一区二区在线av高清观看| 国产精华一区二区三区| 欧美一级a爱片免费观看看| 波野结衣二区三区在线| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 精品久久久噜噜| ponron亚洲| 亚洲精品色激情综合| 国产精品久久久久久av不卡| 欧美高清性xxxxhd video| 大香蕉久久网| АⅤ资源中文在线天堂| 国产精品一区www在线观看| 麻豆乱淫一区二区| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验 | 国产一区二区三区av在线 | 成人av在线播放网站| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 欧美一区二区亚洲| 高清毛片免费看| 亚洲色图av天堂| 天堂√8在线中文| 给我免费播放毛片高清在线观看| 少妇的逼水好多| 黄色日韩在线| 有码 亚洲区| 国产淫片久久久久久久久| 99久久精品一区二区三区| 99视频精品全部免费 在线| 日韩欧美一区二区三区在线观看| av卡一久久| 桃色一区二区三区在线观看| 国内精品美女久久久久久| 九色成人免费人妻av| 99久国产av精品国产电影| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 精品午夜福利在线看| 性色avwww在线观看| 午夜久久久久精精品| 插逼视频在线观看| 国产一区二区激情短视频| 午夜精品在线福利| 免费观看精品视频网站| 精品一区二区三区视频在线观看免费| 国产精品三级大全| 夜夜夜夜夜久久久久| 亚洲成av人片在线播放无| 此物有八面人人有两片| 免费观看人在逋| 国模一区二区三区四区视频| 欧美绝顶高潮抽搐喷水| 一a级毛片在线观看| 午夜亚洲福利在线播放| 99热这里只有精品一区| av.在线天堂| 国产精品国产三级国产av玫瑰| 六月丁香七月| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av二区三区四区| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 老师上课跳d突然被开到最大视频| 女同久久另类99精品国产91| 日韩欧美一区二区三区在线观看| 亚洲国产精品成人久久小说 | 在线国产一区二区在线| 国产三级中文精品| 一个人免费在线观看电影| 国产单亲对白刺激| 欧美最新免费一区二区三区| 一个人免费在线观看电影| 老司机福利观看| 黄色日韩在线| 国产精品人妻久久久影院| 最近手机中文字幕大全| 国产探花在线观看一区二区| 久久精品91蜜桃| 一个人免费在线观看电影| 欧美高清性xxxxhd video| 亚洲国产高清在线一区二区三| 亚洲av成人av| 成人鲁丝片一二三区免费| 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 91在线精品国自产拍蜜月| 看片在线看免费视频| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 久久久久久大精品| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 免费看a级黄色片| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 国产高清视频在线播放一区| 中国国产av一级| a级毛色黄片| 亚洲成人久久性| 九色成人免费人妻av| a级毛色黄片| 国内精品一区二区在线观看| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 久久精品91蜜桃| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| a级毛色黄片| 特级一级黄色大片| 黑人高潮一二区| 一本一本综合久久| 特级一级黄色大片| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 久久精品国产亚洲av香蕉五月| 免费电影在线观看免费观看| 久久精品夜色国产| 欧美潮喷喷水| 天天躁夜夜躁狠狠久久av| 我要搜黄色片| 午夜久久久久精精品| 中文资源天堂在线| 22中文网久久字幕| 性色avwww在线观看| 看黄色毛片网站| 日本与韩国留学比较| 亚洲av熟女| 亚洲天堂国产精品一区在线| 久久热精品热| 国产精品久久久久久av不卡| 18+在线观看网站| 日本黄大片高清| 国产私拍福利视频在线观看| 久久精品夜色国产| 国语自产精品视频在线第100页| 久久中文看片网| 简卡轻食公司| 成年版毛片免费区| 丝袜美腿在线中文| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 久久午夜亚洲精品久久| 国产高清不卡午夜福利| 国产成年人精品一区二区| 国产黄色视频一区二区在线观看 | 成人三级黄色视频| 免费观看的影片在线观看| 亚洲色图av天堂| 成年女人永久免费观看视频| 欧美另类亚洲清纯唯美| 午夜福利高清视频| 国产精品日韩av在线免费观看| 熟女人妻精品中文字幕| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 免费看av在线观看网站| 亚洲中文字幕日韩| 免费看美女性在线毛片视频| 亚洲在线自拍视频| 99热只有精品国产| 欧美极品一区二区三区四区| 一进一出抽搐gif免费好疼| 久久久精品欧美日韩精品| 日本三级黄在线观看| 免费看光身美女| 综合色丁香网| 国内久久婷婷六月综合欲色啪| 悠悠久久av| а√天堂www在线а√下载| 中文在线观看免费www的网站| 久久热精品热| 六月丁香七月| 国产亚洲精品综合一区在线观看| 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看 | 十八禁网站免费在线| 国产美女午夜福利| 欧美日韩综合久久久久久| 淫秽高清视频在线观看| 国产视频内射| 一级a爱片免费观看的视频| 久久久国产成人免费| 亚洲国产精品合色在线| 十八禁网站免费在线| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 精品免费久久久久久久清纯| 国产色婷婷99| 日本色播在线视频| 日韩亚洲欧美综合| 黄色一级大片看看| 亚洲最大成人av| 99热精品在线国产| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| av天堂中文字幕网| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| av国产免费在线观看| 麻豆乱淫一区二区| 我的老师免费观看完整版| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品 | www日本黄色视频网| 午夜精品在线福利| 亚洲色图av天堂| 91久久精品国产一区二区三区| 99久久成人亚洲精品观看| 老熟妇仑乱视频hdxx| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 国产精品国产三级国产av玫瑰| 国产亚洲精品久久久com| 啦啦啦观看免费观看视频高清| 精品午夜福利在线看| 99热这里只有精品一区| 午夜福利在线在线| 国产亚洲精品久久久com| 国产毛片a区久久久久| 色噜噜av男人的天堂激情| 在现免费观看毛片| 国产精品亚洲一级av第二区| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看 | 一级毛片我不卡| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | 深爱激情五月婷婷| 国产精品电影一区二区三区| 嫩草影院精品99| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 国产一级毛片七仙女欲春2| 国产真实乱freesex| 欧美不卡视频在线免费观看| 深爱激情五月婷婷| 久久久久久久久中文| 国产精品久久久久久精品电影| 观看免费一级毛片| 国产不卡一卡二| 国产精品一二三区在线看| 国产极品精品免费视频能看的| 久久6这里有精品| 免费观看精品视频网站| av国产免费在线观看| 亚洲国产精品久久男人天堂| 国产一区二区三区av在线 | 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看 | 色5月婷婷丁香| 日本 av在线| 国产视频内射| 亚洲av中文av极速乱| 一边摸一边抽搐一进一小说| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 性色avwww在线观看| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 插阴视频在线观看视频| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 一a级毛片在线观看| 国产成人a∨麻豆精品| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 国产成人aa在线观看| 国产高清不卡午夜福利| 亚洲性夜色夜夜综合| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 精品午夜福利视频在线观看一区| 欧美区成人在线视频| 久久午夜亚洲精品久久| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 一级毛片电影观看 | 欧美三级亚洲精品| 欧美成人a在线观看| 伦理电影大哥的女人| 久久人人精品亚洲av| 亚洲成人久久爱视频| 中文资源天堂在线| 亚洲av熟女| 久久精品国产亚洲av涩爱 | 成年女人毛片免费观看观看9| avwww免费| 狂野欧美白嫩少妇大欣赏| 少妇熟女aⅴ在线视频| 亚洲精品亚洲一区二区| 欧美日本视频| 精品国产三级普通话版| 国产精品一二三区在线看| 免费无遮挡裸体视频| 国产精品一及| 久久精品国产亚洲网站| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 日本在线视频免费播放| 日本免费一区二区三区高清不卡| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 最新中文字幕久久久久| 春色校园在线视频观看| 精品久久久久久久久久免费视频| 91午夜精品亚洲一区二区三区| 日韩av在线大香蕉| 中文字幕久久专区| 成人三级黄色视频| 久久久久国内视频| 波野结衣二区三区在线| 久久久久久久午夜电影| 免费看av在线观看网站| 国产亚洲精品久久久久久毛片| 97在线视频观看| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 夜夜夜夜夜久久久久| 三级男女做爰猛烈吃奶摸视频| 日本爱情动作片www.在线观看 | 在线观看一区二区三区| 少妇人妻精品综合一区二区 | 夜夜夜夜夜久久久久| 草草在线视频免费看| 成人亚洲精品av一区二区| 美女大奶头视频| 性欧美人与动物交配| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 亚洲真实伦在线观看| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 麻豆国产av国片精品| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品欧美日韩精品| 赤兔流量卡办理| 69人妻影院| 精品少妇黑人巨大在线播放 | 午夜福利18| 级片在线观看| av免费在线看不卡| 午夜福利成人在线免费观看| 国产成人福利小说| 国产欧美日韩精品一区二区| 日韩av在线大香蕉| 天天一区二区日本电影三级| 麻豆国产av国片精品| 国产视频一区二区在线看| 欧美色欧美亚洲另类二区| 国产三级中文精品| 能在线免费观看的黄片| 日韩av不卡免费在线播放| 亚洲美女搞黄在线观看 | 国产精品亚洲美女久久久| 日本一二三区视频观看| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 一夜夜www| av在线蜜桃| 国产精品久久久久久久久免| 波多野结衣高清作品| 人妻制服诱惑在线中文字幕| 国产精品一区www在线观看| 国内揄拍国产精品人妻在线| 中文字幕av在线有码专区| 成人无遮挡网站| 人人妻人人澡欧美一区二区| 99热这里只有是精品50| 国产黄色小视频在线观看| 午夜福利在线观看免费完整高清在 | 久久精品国产鲁丝片午夜精品| 淫秽高清视频在线观看| 国产熟女欧美一区二区| 免费看av在线观看网站| 成年女人看的毛片在线观看| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 在线观看一区二区三区| 中文字幕av在线有码专区| 中国国产av一级| 日韩国内少妇激情av| 国产成人福利小说| 桃色一区二区三区在线观看| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 成人二区视频| 久久久午夜欧美精品| 亚洲最大成人手机在线| 免费av不卡在线播放| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 丰满乱子伦码专区| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 内地一区二区视频在线| 亚洲熟妇中文字幕五十中出| 久久久久久久久久成人| 国产黄色小视频在线观看| 成年版毛片免费区| 欧美激情在线99| 不卡一级毛片| 毛片女人毛片| 亚洲精品日韩在线中文字幕 | 国产 一区精品| 国产成人aa在线观看| 久久久久久久久久成人| 长腿黑丝高跟| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 夜夜夜夜夜久久久久| 欧美日韩精品成人综合77777| 久久久久精品国产欧美久久久| 神马国产精品三级电影在线观看| 午夜激情福利司机影院| 悠悠久久av| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 热99在线观看视频| 免费看av在线观看网站| 麻豆久久精品国产亚洲av| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 国产高清视频在线播放一区| 99久久精品国产国产毛片| 99视频精品全部免费 在线| 国产真实乱freesex| 亚洲第一区二区三区不卡| 久久午夜亚洲精品久久| 男女啪啪激烈高潮av片|