袁惠君,劉 軻,王春梅,謝輝燦,李虎軍,賈鴻震
(1.蘭州理工大學(xué)生命科學(xué)與工程學(xué)院,甘肅 蘭州730050; 2.中國農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所,甘肅 蘭州 730050)
?
兩個(gè)寧夏枸杞品種的耐滲透脅迫和耐鹽特征比較
袁惠君1,劉 軻1,王春梅2,謝輝燦1,李虎軍1,賈鴻震1
(1.蘭州理工大學(xué)生命科學(xué)與工程學(xué)院,甘肅 蘭州730050; 2.中國農(nóng)業(yè)科學(xué)院蘭州畜牧與獸藥研究所,甘肅 蘭州 730050)
摘要:以寧夏枸杞(Lycium barbarum)中的兩個(gè)品種扁果枸杞和寧杞0702為材料,對(duì)比二者在滲透脅迫、鹽處理以及滲透脅迫和鹽處理互作條件下的生長(zhǎng)特征、葉組織含水量以及各器官Na+、K+積累量分析。結(jié)果表明,與對(duì)照相比,-0.5 MPa滲透脅迫下,扁果枸杞和寧杞0702的生長(zhǎng)均受到抑制,其鮮重分別降低了34%和38%,根長(zhǎng)分別降低了32%和17%;與對(duì)照相比,50 mmol·L-1NaCl使扁果枸杞幼苗的鮮重顯著增加了38%(P<0.05),干重、株高和根長(zhǎng)均不受影響,但寧杞0702幼苗鮮重、干重、株高和根長(zhǎng)分別顯著降低了27%、34%、44%和14%(P<0.05);滲透脅迫+鹽處理下,扁果枸杞幼苗與對(duì)照組差異不顯著(P>0.05),而寧杞0702幼苗的鮮重、干重、株高和根長(zhǎng)分別顯著降低了37%、28%、44%和13%。與對(duì)照相比,滲透脅迫下,扁果枸杞葉組織含水量維持穩(wěn)定,而寧杞0702顯著降低了12%(P<0.05);在鹽處理下,扁果枸杞和寧杞0702葉組織含水量分別顯著增加了25%和18%(P<0.05),在滲透脅迫+鹽處理下二者均維持穩(wěn)定。在扁果枸杞中,鮮重和葉組織含水量與葉、莖中Na+濃度呈極顯著正相關(guān)(P<0.01),而在寧杞0702中,鮮重僅與葉中的K+濃度極顯著正相關(guān)(P<0.01),與莖中的Na+則呈顯著負(fù)相關(guān)(P<0.05),葉組織含水量則與各器官中的Na+、K+濃度均不相關(guān)。與對(duì)照相比,扁果枸杞在滲透脅迫和鹽處理下ST值分別顯著增加了84%和43%(P<0.05),而寧杞0702則分別顯著降低了63%和47%(P<0.05)。上述結(jié)果表明,扁果枸杞能通過體內(nèi)積累適量的Na+,調(diào)控體內(nèi)Na+、K+平衡,改善體內(nèi)的水分狀況,維持其正常的生長(zhǎng),具有鹽生植物的特點(diǎn);寧杞0702 則不具備這些特征。
關(guān)鍵詞:寧夏枸杞;扁果枸杞;寧杞0702;耐滲透脅迫;耐鹽
干旱和土壤鹽漬化是人類面臨的世界性難題,也是導(dǎo)致作物減產(chǎn)、天然植被退化和生態(tài)環(huán)境惡化的兩種主要的非生物因素[1-2]。全世界干旱、半干旱荒漠地約占陸地面積(1.49億km2)的1/3[3],約10%(9.50×108hm2)的地表面積和50%的灌溉地(2.3×108hm2)受到鹽漬化危害[4]。我國是世界上旱災(zāi)和土壤鹽堿化最嚴(yán)重的國家之一,干旱半干旱地區(qū)占國土面積的50.8%[5-6],鹽堿土面積約為3.5×107hm2[7],是制約我國農(nóng)業(yè)生產(chǎn)和生態(tài)環(huán)境建設(shè)的主要因素。
寧夏枸杞(Lyciumbarbarum)是一種我國西北地區(qū)廣泛栽培的經(jīng)濟(jì)灌木,具有極強(qiáng)的耐旱、耐鹽堿和耐貧瘠性,是防風(fēng)固沙和開發(fā)鹽堿地的先鋒植物,也可作為優(yōu)良飼草[8-10]。寧夏枸杞在年降水量300 mm左右的半干旱地區(qū)大量分布[11];在持續(xù)干旱導(dǎo)致土壤含水量降至3.56%時(shí)進(jìn)行復(fù)水,寧夏枸杞葉仍具有活力[12];寧杞1號(hào)在土壤含鹽量為0.3%~0.6%條件下能夠正常生長(zhǎng),其耐鹽極限值為9 g·kg-1,相當(dāng)于對(duì)照土壤含鹽量(1.2 g·kg-1)的7.5倍[13]。同時(shí),寧夏枸杞根、葉、果實(shí)均可入藥,尤其是其干燥果實(shí)——枸杞子,作為名貴中藥和滋補(bǔ)品已有兩千多年的歷史,在東南亞地區(qū)享有盛譽(yù),其生產(chǎn)銷售具有獨(dú)占性優(yōu)勢(shì),成為當(dāng)?shù)刂匾慕?jīng)濟(jì)支柱[14]。因此,作為西北半干旱地區(qū)重要的藥用栽培經(jīng)濟(jì)林種,寧夏人工栽培枸杞已有近600年歷史,利用雜交育種、系統(tǒng)育種、輻射育種等方法培育出了多個(gè)寧夏枸杞優(yōu)良品種[15-16]。但是,由于品種來源、選育方向等不同,各品種的抗逆特性存在顯著差異。系統(tǒng)地研究寧夏枸杞品種間耐滲透脅迫和耐鹽的特性,是開發(fā)利用旱地、鹽堿地并提高干旱和鹽堿化地區(qū)寧夏枸杞產(chǎn)量和品質(zhì)的重要手段。
本研究以扁果枸杞和寧杞0702為材料,對(duì)比二者在滲透脅迫、鹽處理、滲透脅迫與鹽互作條件下,其生長(zhǎng)特征、葉相對(duì)含水量、各器官Na+、K+積累值,旨在闡明二者耐滲透脅迫、耐鹽能力的差異及在逆境下生理變化的規(guī)律,為寧夏枸杞耐鹽抗旱品種選育及評(píng)價(jià)提供依據(jù)。
1材料與方法
1.1材料培養(yǎng)
寧夏枸杞品種“扁果枸杞”和“寧杞0702”種子于2013年采自白銀市景泰縣玉杰農(nóng)貿(mào)有限公司枸杞引種示范基地。挑選籽粒飽滿的種子用2%次氯酸鈉消毒8~10 min后,蒸餾水沖洗8~10次,然后將消毒好的種子均勻鋪在有濕潤(rùn)濾紙的平皿里,置于4 ℃冰箱24 h后,于26 ℃下避光培養(yǎng)4~5 d。待種子萌發(fā),胚根長(zhǎng)至0.5 cm長(zhǎng)時(shí),種于裝有蛭石的穴盤中,澆灌1/2 Hoagland營(yíng)養(yǎng)液。1/2 Hoagland營(yíng)養(yǎng)液包括1 mmol·L-1KNO3,0.25 mmol·L-1NH4H2PO4,0.125 mmol·L-1MgSO4·7H2O,0.125 mmol·L-1Ca(NO3)2·4H2O,0.25 mmol·L-1Fe-citrate,46 mmol·L-1H3BO3,9 μmol·L-1MnCl2·4H2O,0.8 μmol·L-1ZnSO4·7H2O,0.3 μmol·L-1CuSO4·5H2O,0.35 μmol·L-1(NH4)6Mo7O24·4H2O[17]。每3 d換一次營(yíng)養(yǎng)液,溫室的晝夜溫度為(24±2) ℃/(18±2) ℃,光照時(shí)間16 h·d-1,光照強(qiáng)度約600 μmol·m-2·s-1,相對(duì)濕度約為50%。4周后,挑選健壯整齊幼苗用于試驗(yàn)。
1.2試驗(yàn)處理
將4周齡寧夏枸杞幼苗進(jìn)行如下處理:1)用正常的1/2 Hoagland營(yíng)養(yǎng)液澆灌(對(duì)照組,Control);2)用山梨醇(D-sorbitol)配成總滲透勢(shì)為-0.5 MPa的1/2 Hoagland溶液澆灌(滲透脅迫組,-0.5 MPa);3)用含有50 mmol·L-1NaCl的1/2 Hoagland營(yíng)養(yǎng)液澆灌(鹽處理組,50 mmol·L-1NaCl);4)用山梨醇將含有50 mmol·L-1NaCl的1/2 Hoagland營(yíng)養(yǎng)液配成的總滲透勢(shì)為-0.5 MPa的1/2 Hoagland溶液澆灌(滲透脅迫+鹽處理組,-0.5 MPa+50 mmol·L-1NaCl)。每天更換一次處理液,3 d后取樣測(cè)量有關(guān)指標(biāo)。每處理6~8個(gè)重復(fù),每個(gè)重復(fù)包括2~3株幼苗。
1.3各種指標(biāo)的測(cè)量方法
鮮重、干重和葉組織含水量的測(cè)定方法為:幼苗用蒸餾水快速?zèng)_洗表面灰塵,吸水紙吸干表面水分,迅速將其分成根、莖、葉,測(cè)量鮮重(Fresh Weight,F(xiàn)W)和株高,并把根放入預(yù)冷至0 ℃的20 mmol·L-1CaCl2中潤(rùn)洗8 min(每4 min為1次,共兩次),以交換細(xì)胞壁間中的離子,然后用蒸餾水沖洗3次,吸干表面水分,測(cè)量根長(zhǎng);鮮材料放入105 ℃的烘箱中殺青10 min后,80 ℃烘干至恒重,稱干重(Dry Weight,DW)[18]。所得烘干材料用于測(cè)定各器官中Na+、K+離子含量。
葉組織含水量=(FW-DW)/DW.
式中,FW為鮮重,DW為干重[19]。
Na+、K+濃度的測(cè)定參考文獻(xiàn)[18]的方法,將烘干至恒重的根、莖、葉樣品搗碎,放入20 mL試管中,加100 mmol·L-1的冰乙酸10 mL后,密封試管,置于96 ℃沸水中水浴2 h,冷卻,過濾,稀釋適當(dāng)倍數(shù)后,在火焰光度計(jì)(2655-00,Cole-Parmer Instrument Co.,USA)上測(cè)定離子含量。
根系K+、Na+選擇性運(yùn)輸系數(shù)(ST)=(地上部的K+/ Na+)/(根中的K+/ Na+)[20-24]。ST值表示根系選擇性運(yùn)輸K+、Na+能力的大小。ST值越大,表示根系控制Na+、促進(jìn)K+向植株地上部運(yùn)輸?shù)哪芰υ綇?qiáng)[25-26]。
1.4數(shù)據(jù)計(jì)算和統(tǒng)計(jì)分析
用Excel制圖,SPSS 13.0軟件進(jìn)行統(tǒng)計(jì)分析,采用單因素方差分析、相關(guān)性分析和A×B析因分析比較不同處理間各項(xiàng)指標(biāo)的差異。
2結(jié)果與分析
2.1滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702生長(zhǎng)的影響
-0.5 MPa滲透脅迫下,與各自對(duì)照相比,扁果枸杞幼苗的鮮重、干重和根長(zhǎng)分別顯著降低了34%、33%和32%(P<0.05),而寧杞0702的鮮重、株高和根長(zhǎng)亦分別顯著下降了38%、60%和17%,說明滲透脅迫對(duì)兩種寧夏枸杞的生長(zhǎng)均有顯著抑制作用(圖1)。
但在50 mmol·L-1NaCl處理下,扁果枸杞幼苗的鮮重顯著增加38%(P<0.05),且在有50 mmol·L-1NaCl存在的情況下,滲透脅迫對(duì)幼苗的生長(zhǎng)無抑制作用,滲透脅迫+鹽處理使其鮮重、干重、株高和根長(zhǎng)與對(duì)照組相比差異不顯著(P>0.05)。然而,上述處理卻對(duì)寧杞0702幼苗生長(zhǎng)表現(xiàn)出抑制作用,鹽處理使其鮮重、干重、株高、根長(zhǎng)分別顯著降低了27%、34%、44%和14%(P<0.05);滲透脅迫+鹽處理組的鮮重、干重、株高、根長(zhǎng)分別顯著降低了37%、28%、44%和13%(P<0.05,圖1)。
-0.5 MPa滲透脅迫和50 mmol·L-1NaCl對(duì)扁果枸杞鮮重和干重的主體效應(yīng)分別達(dá)到極顯著(P<0.01)和顯著(P<0.05)水平,鹽處理的影響均大于滲透脅迫,但滲透脅迫和鹽處理互作不影響扁果枸杞鮮重和干重(表1),說明50 mmol·L-1NaCl是促進(jìn)扁果枸杞鮮重增加和維持干重穩(wěn)定最主要的因素。在寧杞0702中,-0.5 MPa滲透脅迫對(duì)其鮮重和50 mmol·L-1NaCl對(duì)其干重的主體效應(yīng)也分別達(dá)到極顯著(P<0.01)和顯著(P<0.05)水平,且滲透脅迫和鹽處理對(duì)鮮重的降低均有交互作用,但對(duì)干重沒有交互作用(表1),表明-0.5 MPa滲透脅迫和50 mmol·L-1NaCl分別是導(dǎo)致寧杞0702鮮重和干重降低的主要因素;且滲透脅迫和鹽處理互作影響寧杞0702的鮮重,但不影響干重。3種處理均不影響扁果枸杞的株高,但均是寧杞0702株高降低的影響因素,滲透脅迫、滲透脅迫和鹽處理互作對(duì)寧杞0702株高的影響大于鹽處理。在扁果枸杞中,鹽處理、滲透脅迫和鹽處理互作是影響根長(zhǎng)的主要因素,50mmol·L-1NaCl能消除由-0.5 MPa滲透脅迫引起的根長(zhǎng)降低作用。在寧杞0702中,滲透脅迫和鹽處理的互作是影響根長(zhǎng)的主要因素。
2.2滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702葉組織含水量的影響
圖1 滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702生長(zhǎng)的影響
注:不同小寫字母表示同一品種不同處理間差異顯著(P<0.05)。下同。
Note: Different lower case letters for the same cultivar indicate significant difference among different treatments at 0.05 level. The same below.
表1 滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702生長(zhǎng)的析因分析
注:“*”表示顯著(P<0.05),“**”表示極顯著(P<0.01)。下同。
Note: “*” and “**” indicate significant effect at 0.05 and 0.01 level, respectively. The same below.
與對(duì)照相比,滲透脅迫下扁果枸杞葉組織含水量維持穩(wěn)定,而寧杞0702顯著降低了12% (P<0.05,圖2)。但是,在鹽處理下,扁果枸杞和寧杞0702葉組織含水量分別顯著增加了25%和18%(P<0.05),在滲透脅迫+鹽處理下均維持穩(wěn)定。
圖2 滲透脅迫和鹽處理對(duì)扁果枸杞和
50 mmol·L-1NaCl是促進(jìn)扁果枸杞葉組織含水量增加的主要因素。-0.5 MPa滲透脅迫和50 mmol·L-1NaCl均影響寧杞0702葉組織含水量,且滲透脅迫的影響大于鹽處理(表2)。扁果枸杞葉組織含水量與鮮重呈顯著正相關(guān)(表3)。
2.3滲透脅迫和鹽處理下扁果枸杞和寧杞0702器官中Na+、K+積累的差異
與對(duì)照相比,扁果枸杞和寧杞0702葉Na+濃度在滲透脅迫下分別顯著增加14%和21%(P<0.05),在鹽處理下分別顯著增加62%和94%,在滲透脅迫+鹽處理下分別顯著增加62%和52%(圖3);扁果枸杞莖Na+濃度在滲透脅迫下顯著降低63%,在鹽處理和滲透脅迫+鹽處理下分別顯著增加202%和199%;寧杞0702莖Na+濃度在滲透脅迫、鹽處理和滲透脅迫+鹽處理下分別顯著增加152%、421%和545%(圖3);扁果枸杞根Na+濃度在鹽處理下顯著增加71%,寧杞0702根Na+濃度在鹽處理和滲透脅迫+鹽處理下分別顯著增加53%和39%(圖3)。扁果枸杞滲透脅迫+鹽處理下其葉Na+濃度的增幅是滲透脅迫增幅的4.3倍,而寧杞0702僅為2.4倍;扁果枸杞滲透脅迫+鹽處理下莖Na+濃度與對(duì)照相比增加了199%,滲透脅迫比對(duì)照降低了63%,而寧杞0702在滲透脅迫+鹽處理下比對(duì)照增加了545%,滲透脅迫降低了152%??梢姡跐B透脅迫+鹽處理下,扁果枸杞將根部吸收的Na+運(yùn)至地上部并主要積累在葉中,而寧杞0702則將根部吸收的Na+運(yùn)至地上部并主要積累在莖中。
與對(duì)照相比,扁果枸杞葉K+濃度在鹽處理下顯著增加8%(P<0.05),而寧杞0702則在滲透脅迫、鹽處理和滲透脅迫+鹽處理下分別顯著降低46%、37%和11%(圖3);扁果枸杞莖K+濃度在滲透脅迫、鹽處理和滲透脅迫+鹽處理下分別顯著增加10%、18%和26%,寧杞0702則在滲透脅迫和鹽處理下分別顯著降低20%和18%,在滲透脅迫+鹽處理下顯著增加11%(圖3);扁果枸杞根K+濃度在滲透脅迫、鹽處理和滲透脅迫+鹽處理下分別顯著降低39%、28%和42%,寧杞0702則在鹽處理和滲透脅迫+鹽處理下分別顯著降低21%和36%(圖3)??梢?,扁果枸杞在滲透脅迫、鹽處理和滲透脅迫+鹽處理下維持地上部K+濃度穩(wěn)定,而寧杞0702則出現(xiàn)葉K+濃度顯著降低的現(xiàn)象。
表2 滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702葉組織含水量的主效應(yīng)分析
圖3 滲透脅迫和鹽處理對(duì)扁果枸杞和寧杞0702器官中Na+、K+含量的影響
對(duì)滲透脅迫和鹽處理下2個(gè)寧夏枸杞品種鮮重、葉含組織水量和器官中Na+、K+濃度間進(jìn)行相關(guān)性分析表明,在扁果枸杞中,鮮重與葉、莖、根中的Na+濃度均極顯著正相關(guān)(P<0.01),葉組織含水量不僅與葉、莖中的Na+濃度極顯著正相關(guān),還與莖中的K+濃度顯著正相關(guān)(P<0.05)(表3);而在寧杞0702中,鮮重僅與葉中的K+濃度極顯著相關(guān),與莖中的Na+則呈顯著負(fù)相關(guān),而葉組織含水量則與各器官中的Na+、K+濃度均不相關(guān)(表3)。
2.4扁果枸杞和寧杞0702根系K+、Na+選擇性運(yùn)輸能力的差異
與對(duì)照相比,扁果枸杞在滲透脅迫和鹽處理下ST值分別顯著(P<0.05)增加84%和43%,而寧杞0702則分別顯著降低63%和47%,說明扁果枸杞能通過提高K+/Na+選擇性運(yùn)輸能力來適應(yīng)鹽或滲透脅迫(圖4)。
3討論與結(jié)論
3.1適量的NaCl能改善扁果枸杞的水分狀況,緩解滲透脅迫對(duì)植株的傷害
滲透脅迫和鹽脅迫均引起植物體內(nèi)水分虧缺和細(xì)胞內(nèi)離子平衡失調(diào),導(dǎo)致細(xì)胞膜功能受損和代謝衰減,最終引起生長(zhǎng)抑制甚至死亡[27-28]。本研究中,滲透脅迫下,扁果枸杞和寧杞0702均出現(xiàn)顯著的生長(zhǎng)抑制(圖1),同時(shí)還引起寧杞0702葉組織含水量顯著降低(圖2),但50 mmol·L-1NaCl使扁果枸杞葉組織含水量增加的同時(shí)促進(jìn)其鮮重和干重增加(圖1,2),表明扁果枸杞可以通過自身調(diào)節(jié)葉的水分狀況,進(jìn)而緩解滲透脅迫對(duì)植株的傷害作用,促進(jìn)植株生長(zhǎng)。然而,寧杞0702的生長(zhǎng)卻顯著受鹽處理的抑制(圖1)。
圖4 滲透脅迫和鹽處理對(duì)扁果枸杞和
3.2扁果枸杞具有鹽生植物的特點(diǎn)
生活在鹽堿環(huán)境中的鹽生植物在漫長(zhǎng)的進(jìn)化過程中形成了有效的滲透調(diào)節(jié)機(jī)制,能通過在體內(nèi)積累適量的Na+,降低葉肉細(xì)胞水勢(shì),提高細(xì)胞吸水能力,抵御鹽脅迫,維持正常的生長(zhǎng)[4,24-25,29-32]。本研究中,50mmol·L-1NaCl不僅促進(jìn)扁果枸杞的生長(zhǎng)和葉組織含水量的增加,還能消除-0.5 MPa滲透脅迫引起的生長(zhǎng)抑制,這些都伴隨著葉和莖Na+濃度的顯著增加(圖3);而在寧杞0702中,50 mmol·L-1NaCl不僅不能消除滲透脅迫引起的生長(zhǎng)抑制,還引起了顯著的生長(zhǎng)抑制,雖然同時(shí)也伴隨著葉Na+濃度的顯著增加,但莖Na+濃度的增幅遠(yuǎn)遠(yuǎn)大于葉的(圖3)。上述結(jié)果表明,在扁果枸杞中,當(dāng)-0.5 MPa滲透脅迫下加入50 mmol·L-1NaCl時(shí),Na+能從根部有效運(yùn)輸至葉中,提高細(xì)胞的吸水能力,改善植物體內(nèi)水分狀況,維持正常生長(zhǎng);而在寧杞0702中,雖然植株也能由根部吸收一些Na+進(jìn)入體內(nèi),但這些Na+主要積累在莖中,滲透調(diào)節(jié)作用較弱,而Na+進(jìn)入引起的毒害和水分虧缺促使植物出現(xiàn)生長(zhǎng)抑制。
在多數(shù)甜土植物中,由于Na+和K+具有相似的離子半徑和離子水合能,Na+能取代K+的結(jié)合位點(diǎn),干擾K+的吸收,造成植物K+虧缺,進(jìn)而抑制植物生長(zhǎng)[22,33-35]。本研究中,與對(duì)照相比,在滲透脅迫、鹽處理和滲透脅迫與鹽處理互作的條件下,盡管扁果枸杞葉中Na+濃度增加,但葉K+濃度卻維持穩(wěn)定,甚至在鹽處理下顯著增加(圖3),在滲透脅迫和鹽處理下ST 值均顯著增加(圖4),而寧杞0702在同樣條件下葉K+濃度卻都顯著下降(圖3),在滲透脅迫和鹽處理下ST 值均顯著降低(圖4),表明扁果枸杞在滲透脅迫或鹽脅迫下具有強(qiáng)大的調(diào)控體內(nèi)Na+、K+平衡的能力,進(jìn)而維持植物正常的生長(zhǎng),寧杞0702根部向地上部選擇性運(yùn)輸K+、Na+的能力較弱,因此,在滲透脅迫和鹽處理下調(diào)控體內(nèi)Na+、K+平衡的能力也較差,K+的吸收收到干擾。
綜上所述,扁果枸杞具有鹽生植物的特點(diǎn),而寧杞0702與其不同。
參考文獻(xiàn)(References)
[1]Chaves M M,Flexas J,Pinheiro C.Photosynthesis under drought and salt stress:Regulation mechanisms from whole plant to cell.Annals of Botany,2009,103(4):551-560.
[2]Peleg Z,Apse M P,Blumwald E.Engineering salinity and water-stress tolerance in crop plants:Getting gloser to the field.Advances in Botanical Research,2011,57:405-443.
[3]防災(zāi)網(wǎng).全球范圍內(nèi)土地荒漠化現(xiàn)狀.(2014-06-18)[2015-08-18].http://www.cibeicn.com/a/201406/20140618161448.html.
[4]Shabala S.Learning from halophytes:Physiological basis and strategies to improve abiotic stress tolerance in crops.Annals of Botany,2013,112:1209-1221.
[5]鄭國光.科學(xué)應(yīng)對(duì)全球氣候變暖,提高糧食安全保障能力.求是,2009(23):47-49.
[6]張建鋒.鹽堿地的生態(tài)修復(fù)研究.水土保持研究,2008,15(4):74-78.
Zhang J F.Discussion on ecological rehabilitation of salt-affected soils.Research of Soil and Water Conservation,2008,15(4):74-78.(in Chinese)
[7]王秀麗,張鳳榮,王躍朋,奉婷,廉曉娟,王艷.農(nóng)田水利工程治理天津市土壤鹽漬化的效果.農(nóng)業(yè)工程學(xué)報(bào),2013,29(20):82-88.
Wang X L,Zhang F R,Wang Y P,Feng T,Lian X J,Wang Y.Effect of irrigation and drainage engineering control on improvement of soil salinity in Tianjin.Transactions of the Chinese Society of Agricultural Engineering,2013,29(20):82-88.(in Chinese)
[8]劉靜,王連喜,馬力文,李鳳霞,張小煜,蘇占勝,周慧琴,李劍萍.枸杞的生理因子與外環(huán)境氣象因子的日變化規(guī)律研究.干旱地區(qū)農(nóng)業(yè)研究,2003,21(1):77-82.
Liu J,Wang L X,Ma L W,Li F X,Zhang X Y,Su Z S,Zhou H Q,Li J P.An experimental study on daily variations of environment factors and physiological parameters ofLyciumbarbarumL. Agricultural Research in the Arid Areas,2003,21(1):77-82.(in Chinese)
[9]陳艷瑞,尹林克.人工防風(fēng)固沙林演替中群落組成和優(yōu)勢(shì)種群生態(tài)位變化特征.植物生態(tài)學(xué)報(bào),2008,32(5):1126-1133.
Chen Y R,Yin L K.Community composition and niche change characteristics of dominant species in the wind-breaking and sand-fixing forest,Xinjiang,China.Journal of Plant Ecology(Chinese Version),2008,32(5):1126-1133. (in Chinese)
[10]閻宏,任萬哲,劉紅霞.枸杞生產(chǎn)加工廢棄物飼用價(jià)值評(píng)價(jià).飼料工業(yè),2009,30(23):45-47.
Yan H,Ren W Z,Liu H X.The forage value evaluation of wolfberry waste in process.Feed Industry,2009,30(23):45-47.(in Chinese)
[11]申元村,景可.關(guān)于加快黃土高原水保生態(tài)建設(shè)的研究.中國水土保持,2002(12):22-24.
Shen Y C,Jing K.Study on speeding up ecological building of soil and water conservation in the loess plateau.Soil and Water Conservation in China,2002(12):22-24.(in Chinese)
[12]宋麗華,高彬.持續(xù)干旱脅迫對(duì)中寧枸杞水分生理的影響.西北林學(xué)院學(xué)報(bào),2010,5(3):15-19.
Song L H,Gao B.Effect of drought stress on water physiology inLyciumbarbarum.Journal of Northwest Forestry University,2010,5(3):15-19.(in Chinese)
[13]許興,鄭國琦,周濤,惠紅霞.寧夏枸杞耐鹽性與生理生化特征研究.中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2002,10(3):70-73.
Xu X,Zheng G Q,Zhou T,Hui H X.Research on character of physiology and biochemistry and salt-tolerance of wolfberry in Ochr-Sierozems soil of Ningxia.Chinese Journal of Eco-Agriculture,2002,10(3):70-73.(in Chinese)
[14]陳清華,王朝良.寧夏枸杞產(chǎn)業(yè)發(fā)展優(yōu)勢(shì)和提升出口競(jìng)爭(zhēng)力的對(duì)策.農(nóng)業(yè)現(xiàn)代化研究, 2008,29(2):151-154.
Chen Q H,Wang C L.Advantage of Ningxia wolfberry industry and strategy of improving its export competitive power.Research of Agricultural Modernization,2008,29(2):151-154.(in Chinese)
[15]董靜洲,楊俊軍,王瑛.我國枸杞屬物種資源及國內(nèi)外研究進(jìn)展.中國中藥雜志,2008,33(18):2020-2027.
Dong J Z,Yang J J,Wang Y.Resources ofLyciumspecies and related research progress.China Journal of Chinese Meteria Medica,,2008,33(18):2020-2027.(in Chinese)
[16]秦墾,王兵,焦恩寧,李云祥,王俊.寧夏枸杞繁育系統(tǒng)初步研究.廣西植物,2009,29(5):587-591,606.
Qin K,Wang B,Jiao E N,Li Y X,Wang J.Preliminary study on the breeding system ofLyciumbarbarum.Guihaia,2009,29(5):587-591,606.(in Chinese)
[17]袁惠君,馬清,未麗,胡靜,王沛,王鎖民.液泡膜Na+/H+逆向轉(zhuǎn)運(yùn)蛋白基因沉默對(duì)霸王葉氣孔特征的影響.草業(yè)科學(xué),2015,32(6):902-907.
Yuan H J,Ma Q,Wei L,Hu J,Wang P,Wang S M.Effects of tonoplast Na+/H+antiporters gene silence on leaf stomata characteristics ofZygophyllumxanthoxylum.Pratacultural Science,2015,32(6):902-907.(in Chinese)
[18]楊海霞,徐萌,劉寧,郭紹霞.叢枝菌根真菌對(duì)兩種草坪草耐鹽性的影響.草業(yè)科學(xué),2014,31(7):1261-1268.
Yang H X,Xu M,Liu N,Guo S X.Effects of arbuscular mycorrhizal fungi on salinity tolerance of two turfgrass.Pratacultural Science,2014,31(7):1261-1268.(in Chinese)
[19]Wang S M,Zhang J L,Flowers T J.Low-affinity Na+uptake in the halophyteSuaedamaritima.Plant Physiology,2007,45:559-571.
[20]Guo Q,Wang P,Ma Q,Zhang J L,Bao A K,Wang S M.Selective transport capacity for K+over Na+is linked to the expression levels of PtSOS1 in halophytePuccinelliatenuiflora.Functional Plant Biology,2012,39(12):1047-1057.
[21]Wang S M,Zhao G Q,Gao Y S,Tang Z C,Zhang C L.Puccinelliatenuifloraexhibits stronger selectivity for K+over Na+than wheat.Journal of Plant Nutrition,2004,27(10):1841-1857.
[22]Wang C M,Zhang J L,Liu X S,Li Z,Wu G Q,Cai J Y,Flowers T M,Wang S M.Puccinelliatenuifloramaintains a low Na+level under salinity by limiting unidirectional Na+influx resulting in a high selectivity for K+over Na+.Plant,Cell and Environment,2009,32(5):486-496.
[23]Ma Q,Li Y X,Yuan H J,Hu J,Wei L,Bao A K,Zhang J L,Wang S M.ZxSOS1 is essential for long-distance transport and spatial distribution of Na+and K+in the xerophyteZygophyllumxanthoxylum.Plant and Soil,2014,374(1):661-676.
[24]Yuan H J,Ma Q,Wu G Q,Wang P,Hu J,Wang S M.ZxNHX controls Na+and K+homeostasis at the whole-plant level inZygophyllumxanthoxylumthrough feedback regulation of the expression of genes involved in their transport.Annals of Botany,2015,115(3):495-507.
[25]Wang S M,Wan C G,Wang Y R,Chen H,Zhou Z Y,Fu H,Sosebee R E.The characteristics of Na+,K+and free proline distribution in several drought-resistant plants of the Alxa Desert,China.Journal of Arid Environments,2004,56:525-539.
[26]Wang S M,Zheng W J,Ren J Z,Zhang C L.Selectivity of various types of salt-resistant plants for K+over Na+.Journal of Arid Environments,2002,52(4):457-472.
[27]Munns R,Tester M.Mechanisms of salinity tolerance.Annual Review of Plant Biology,2008,59:651-681.
[28]Zhang J L,Flowers T J,Wang S M.Differentiation of low-affinity Na+uptake pathways and kinetics of the effects of K+on Na+uptake in the halophyteSuaedamaritima.Precision Engineering,2013,24(1):70-76.
[29]Flowers T J,Colmer T D.Salinity tolerance in halophytes.New Phytologist,2008,179(4):945-963.
[30]Zhang J L,Flowers T J,Wang S M.Mechanisms of sodium uptake by roots of higher plants.Plant and Soil,2010,326(1):45-60.
[31]Kronzucker H J,Britto D T.Sodium transport in plants:A critical review.New Phytologist,2011,189(1):54-81.
[32]Janz D,Polle A.Harnessing salt for woody biomass production.Tree Physiology,2012,32(1):1-3.
[33]Shabala S,Cuin T A.Potassium transport and plant salt tolerance.Physiologia Plantarum,2008,133(4):651-669.
[34]Horie T,Hauser F,Schroeder J.HKT transporter-mediated salinity resistance mechanisms inArabidopsisand monocot crop plants.Trends in Plant Science,2009,14:660-668.
[35]Zhang J L,Flowers T J,Wang S M.Differentiation of low-affinity Na+uptake pathways and kinetics of the effects of K+on Na+uptake in the halophyteSuaedamaritima.Precision Engineering,2013,4(1):70-76.
The differences between two cultivars ofLyciumbarbarumin osmotic stress tolerance and salt tolerance
Yuan Hui-jun1, Liu Ke1, Wang Chun-mei2, Xie Hui-can1, Li Hu-jun1, Jia Hong-zhen
(1.School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China)
Abstract:Growth, leaf tissue water content, Na+, K+ accumulation in plant tissues were studied under -0.5 MPa osmotic stress, 50 mmol·L-1NaCl and salt-osmotic intercross stress in Bianguo and Ningqi0702, two cultivars of Lycium barbarum. The results showed that both the growth of Bianguo and Ningqi0702 was inhibited under -0.5 MPa osmotic stress. Compared with the control, fresh weigh (FW) and root height of Bianguo and Ningqi0702 decreased by 34%, 38%, 32% and 17%, respectively. The addition of 50 mmol·L-1NaCl significantly increased FW of Bianguo by 38%, and no effect on dry weight (DW), plant height and root height of Bianguo. However, FW, DW, plant height and root height of Ningqi0702 significantly decreased by 27%, 34%, 44% and 14% under 50 mmol·L-1NaCl conditions, respectively. The growth of Bianguo remained unaffected when plants were exposed to salt-osmotic intercross stress, whereas FW, DW, plant height and root height of Ningqi0702 significantly decreased by 37%, 28%, 44% and 13% under salt-osmotic intercross stress, respectively. Compared with the control, leaf tissue water content of Bianguo remained unaffected under osmotic stress, whereas that of Ningqi0702 significantly decreased by 12%. Both the leaf tissue water content of Bianguo and Ningqi0702 increased by 25% and 18% under 50 mmol·L-1NaCl conditions, meanwhile, and remained unaffected under salt-osmotic intercross stress. Moreover, FW and leaf tissue water content were positively correlated with Na+ concentration in leaves and stems of Bianguo. However, for Ningqi0702, FW was positively correlated with K+ concentration in leaves and negative relation with Na+ concentration in stems. Both Na+ and K+ concentration had no correlation with leaf tissue water content in Ningqi0702. Compared with the control, the net selective transport capacity for K+ over Na+ (ST value) of Bianguo increased by 84% and 43% under osmotic stress and 50 mmol·L-1NaCl conditions, respectively, whereas that of Ningqi0702 decreased by 63% and 47%. These findings suggested that, Bianguo is able to accumulate a moderate concentration of Na+ in its leaves and have a strong ability to regulate Na+ and K+ homeostasis to improve water status, thus maintaining plant growth when subjected to drought and salinity. Bianguo possesses some characteristics of halophytes. Ningqi0702 haven’t these characteristics.
Key words:Lycium barbarum; Bianguo; Ningqi0702; osmotic stress tolerance; salt tolerance
Corresponding author:Yuan Hui-junE-mail: gsyhj@163.com
中圖分類號(hào):S567.1+9;Q945.78
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1001-0629(2016)4-0681-10*
通信作者:袁惠君(1974- ),女,甘肅天水人,副教授,碩導(dǎo),博士,研究方向?yàn)橹参锬婢成砼c分子生物學(xué)。E-mail: gsyhj@163.com
基金項(xiàng)目:國家自然科學(xué)基金(31460629);蘭州市科技發(fā)展計(jì)劃項(xiàng)目(2012-2-161);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程項(xiàng)目(CAAS-ASTIP-2014-LIHPS-08)
收稿日期:2015-09-19接受日期:2015-12-08
DOI:10.11829/j.issn.1001-0629.2015-0526
袁惠君,劉軻,王春梅,謝輝燦,李虎軍,賈鴻震.兩個(gè)寧夏枸杞品種的耐滲透脅迫和耐鹽特征比較.草業(yè)科學(xué),2016,33(4):681-690.
Yuan H J,Liu K,Wang C M,Xie H C,Li H J,Jia H Z.The differences between two cultivars ofLyciumbarbarumin osmotic stress tolerance and salt tolerance.Pratacultural Science,2016,33(4):681-690.