田香珠, 林盈盈 綜述, 葛宇星 審校
(同濟大學附屬第十人民醫(yī)院神經(jīng)內(nèi)科,上海 200072)
?
·綜 述·
田香珠1, 林盈盈1綜述, 葛宇星2審校
(同濟大學附屬第十人民醫(yī)院神經(jīng)內(nèi)科,上海 200072)
ClC-2是一種電壓門控氯通道,在穩(wěn)定細胞膜電位、調(diào)節(jié)細胞興奮性方面有重要意義。但其在癲發(fā)病機制中所起的作用仍不清楚。本研究就ClC-2的各項研究進展,包括ClC-2的結(jié)構(gòu)與功能、ClC-2在癲動物模型中的改變以及在癲患者中ClC-2基因表達異常與癲發(fā)病的相關(guān)性進行綜述。
ClC-2; 癲; 突觸后抑制
由ClCN2基因編碼的ClC-2蛋白,是由907個氨基酸組成,分子量為99000,與ClC-0,ClC-1通道蛋白有50%的同源性[3]。目前,人體ClC-2高分辨率的三維結(jié)構(gòu)仍不明確,但是,可以從其他有關(guān)ClC型氯通道研究中得到啟示。Weinreich等[4]提出,ClC-2是類似二聚體的結(jié)構(gòu),Mindell等[5]用冷凍電鏡術(shù)對大腸桿菌進行分析得到CIC型氯通道是同源二聚體結(jié)構(gòu)。Dutzler等[6]從沙門鼠傷寒沙門氏菌和大腸桿菌提出2個原核ClC氯通道的X-射線結(jié)構(gòu),證明其是雙孔二聚體的通道。
ClC-2包括快、慢兩個通道,它們有著不同的門控特性與電壓依賴性。ClC-2還具有負反饋調(diào)節(jié)因子: SPAK(SPS1相關(guān)脯氨酸-丙氨酸激酶)和OSR1(氧化應激反應蛋白激酶1),它們可以抑制Cl-通道,阻止Cl-離子外流,調(diào)節(jié)細胞體積變化[7]。此外,ClC-2羧基末端還有兩個胱硫醚-β-合成酶(CBS1和CBS2)區(qū)域,三磷酸腺苷(ATP)和其他核苷酸都與之綁定。CBS區(qū)域主要由β-α-β-β-α的二級結(jié)構(gòu)模式構(gòu)成,折疊成一個球狀的三級結(jié)構(gòu),其中包括三個反向平行的β折疊和兩個α螺旋。ClC-2羧基末端的主要作用為調(diào)節(jié)門控通道[3]。
ClC-2電壓門控通道在靜息狀態(tài)下是關(guān)閉的,只有在超極化的時候(-40~140mV)被激活,例如,抑制GABAergic后,[Cl-]i增加?;罨?,恢復正電位時產(chǎn)生一個非常緩慢的電流,門控通道呈現(xiàn)接近于零的最低開放。ClC-2的開放需要通過超極化來去除外部Cl-結(jié)合位點內(nèi)的羧酸基團。ClC-2包括快、慢兩個通道,快通道主要受細胞外氯離子濃度的影響,慢通道則受各種生理條件影響,如膜電位、氯離子、pH、溫度及ATP等,同時,慢通道的開啟也能夠促進快通道的開放。ClC-2作為一個強大的內(nèi)向整流電導,宏觀層面上,氯電流顯示緩慢激活過程,即使脈沖>50s也不會衰變。當外部的pH值降至6.5時,氯電流增強,抑制進一步酸化。類似的功能已經(jīng)在非洲爪蟾卵母細胞和哺乳動物細胞中觀察到。ClC-2羧基末端可以減緩通道激活時間,切除或修改羧基末端可加速門控通道激活、失活時間,證明了其穩(wěn)定神經(jīng)元興奮性作用。
ClC-2在神經(jīng)元和神經(jīng)膠質(zhì)細胞中均有表達。在神經(jīng)元中,ClC-2通過介導氯離子內(nèi)流和影響神經(jīng)元的興奮性輸入電阻來直接控制興奮性,ClC-2提供的流出通道維持GABAA受體的突觸抑制。而Ratté等[8]提出,不同于原先減少Cl-內(nèi)流、增加Cl-跨膜梯度來促進GABAAR介導的突觸抑制,在生理條件下,ClC-2通道通過泄漏Cl-,直接降低神經(jīng)元的興奮性。近期有學者發(fā)現(xiàn),在秀麗隱桿線蟲內(nèi),ClC-2的同源基因clh-3,可以通過調(diào)節(jié)其特定的神經(jīng)元活動興奮性,從而控制產(chǎn)卵行為。clh-3功能上調(diào),抑制興奮,抑制產(chǎn)卵;功能下調(diào),促進興奮,促進產(chǎn)卵。有趣的是,clh-3通道并不受GABAA受體介導,而是通過細胞內(nèi)低氯環(huán)境直接抑制其興奮性。這種機制有利于神經(jīng)元氯離子內(nèi)流守恒[9]。在神經(jīng)膠質(zhì)細胞,ClC-2的缺失可以造成GlialCAM和MLC1的損失,從而導致腦白質(zhì)變性。這可能是GlialCAM作為ClC-2通道的輔助亞基,調(diào)節(jié)其靶向細胞與細胞間的路口,并修改其功能特性。有報道: cereblon和GlialCAM是ClC-2的兩個不同亞基,其改變可以影響ClC-2的門控配置[10-11],而美沙酮可以抑制ClC-2[12]。
[1] Khirug S, Yamada J, Afzalov R, et al. GABA-ergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1[J]. J Neurosci, 2008,28(18): 4635-4639.
[2] Wan L, Liu X, Wu Z, et al. Activation of extrasynaptic GABAA receptors inhibits cyclothiazide-induced epileptiform activity in hippocampal CA1 neurons[J]. Neurosci Bull, 2014,30(5): 866-876.
[3] Bi MM, Hong S, Zhou HY, et al. Chloride channelopathies of ClC-2[J]. Int J Mol Sci, 2014,15(1): 218-249.
[4] Weinreich F, Jentsch T J. Pores formed by single subunits in mixed dimers of different CLC chloride channels[J]. J Biol Chem, 2001,276(4): 2347-2353.
[5] Mindell JA, Maduke M, Miller C, et al. Projection structure of a ClC-type chloride channel at 6.5 A resolution[J]. Nature, 2001,409(6817): 219-223.
[6] Dutzler R, Campbell EB, Cadene M, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity[J]. Nature, 2002,415(6869): 287-294.
[7] Warsi J, Hosseinzadeh Z, Elvira B, et al. Regulation of ClC-2 activity by SPAK and OSR1[J]. Kidney Blood Press Res, 2014,39(4): 378-387.
[8] Ratte S, Prescott SA. ClC-2 channels regulate neuronal excitability, not intracellular chloride levels[J]. J Neurosci, 2011,31(44): 15838-15843.
[9] Branicky R, Miyazaki H, Strange K, et al. The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability[J]. J Neurosci, 2014,34(3): 764-775.
[10] Barrallo-Gimeno A, and Estevez R. GlialCAM, a glial cell adhesion molecule implicated in neurological disease[J]. Adv Neurobiol, 2014,8: 47-59.
[11] Hoegg-Beiler MB, Sirisi S, Orozco IJ, et al. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction[J]. Nat Commun, 2014,5: 3475.
[12] Cuppoletti J, Chakrabarti J, Tewari KP, et al. Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents[J]. Am J Physiol Cell Physiol, 2014,307(5): C479-C492.
[14] Ge YX, Liu Y, Tang HY, et al. ClC-2 contributes to tonic inhibition mediated by alpha5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy[J]. Neuroscience, 2011,186: 120-127.
[15] Rinke I, Artmann J, Stein V. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion[J]. J Neurosci, 2010,30(13): 4776-4786.
[16] Sander T, Schulz H, Saar K, et al. Genome search for susceptibility loci of common idiopathic generalised epilepsies[J]. Hum Mol Genet, 2000,9(10): 1465-1472.
[17] D’Agostino D, Bertelli M, Gallo S, et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy[J]. Neurology, 2004,63(8): 1500-1502.
[18] Depienne C, Bugiani M, Dupuits C, et al. Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study[J]. Lancet Neurol, 2013,12(7): 659-668.
[19] Haug K, Warnstedt M, Alekov AK, et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies[J]. Nat Genet, 2003,33(4): 527-532.
[20] Saint-Martin C, Gauvain G, Teodorescu G, et al. Two novel CLCN2 mutations accelerating chloride channel deactivation are associated with idiopathic generalized epilepsy[J]. Hum Mutat, 2009,30(3): 397-405.
[21] Blanz J, Schweizer M, Auberson M, et al. Leukoencephalopathy upon disruption of the chloride channel ClC-2[J]. J Neurosci, 2007,27(24): 6581- 6589.
[22] Klassen T, Davis C, Goldman A, et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy[J]. Cell, 2011,145(7): 1036-1048.
[23] Foldy C, Lee SH, Morgan RJ, et al. Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2[J]. Nat Neurosci, 2010,13(9): 1047-1049.
[24] Cortez MA, Li C, Whitehead SN, et al.Disruption of ClC-2 expression is associated with progressive neurodegeneration in aging mice[J]. Neuroscience, 2010,167(1): 154-162.
Research progress of ClC-2 in pathogenesis of epilepsy
TIANXiang-zhu1,LINYing-ying1,GEYu-xing2
(Dept. of Neurology, Tenth People’s Hospital, Shanghai 200072, China)
ClC-2 is a member of the supergene family of voltage-gated chloride channels. It is proved to be inwardly rectifying, and plays an important role in setting the intracellular chloride concentration in neurons expressing inhibitory GABAA receptors. The role of ClC-2 in epilepsy is still not clear. Here, we review the structures and functions of ClC-2 and changes of ClC-2 in experimental epileptic models. This article try to analyze the correlation between ClC-2 and epilepsy.
ClC-2; epilepsy; postsynaptic inhibition
10.16118/j.1008-0392.2016.02.027
2015-04-22
國家自然科學基金青年項目(81301104)
田香珠(1988—),女,碩士研究生.E-mail: dxtxzdxtxz@163.com
葛宇星.E-mail: yuxingge2009@gmail.com
R 741
A
1008-0392(2016)02-0118-04