• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      不同生育時期遮陰對大豆葉片光合和葉綠素熒光特性的影響

      2016-07-18 07:44:14楊文鈺蘇本營
      中國農(nóng)業(yè)科學(xué) 2016年11期
      關(guān)鍵詞:大豆玉米

      王 一,張 霞,楊文鈺,孫 歆,蘇本營,崔 亮

      (1四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點實驗室,成都 611130;2四川省大英縣農(nóng)業(yè)技術(shù)信息推廣站,四川遂寧 629000;3重慶市潼南中學(xué)校,重慶 404100)

      ?

      不同生育時期遮陰對大豆葉片光合和葉綠素熒光特性的影響

      王一1,2,張霞1,3,楊文鈺1,孫歆1,蘇本營1,崔亮1

      (1四川農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點實驗室,成都 611130;2四川省大英縣農(nóng)業(yè)技術(shù)信息推廣站,四川遂寧 629000;3重慶市潼南中學(xué)校,重慶 404100)

      摘要:【目的】研究在不同生育時期遮陰處理下,不同大豆品種植株葉片葉面積、比葉重、葉綠素含量、光合參數(shù)、葉綠素熒光參數(shù)和產(chǎn)量構(gòu)成因素的變化規(guī)律,為中國南方丘陵和山區(qū)大面積推廣的玉米大豆間套作種植技術(shù)提供理論依據(jù)?!痉椒ā坎捎猛腹饴?0%的遮陽網(wǎng)對生育期和生育時期總天數(shù)不同的3個參試大豆品種桂夏2號、南豆12和C103進行遮陰,設(shè)置4個處理,分別為不遮陰(CK)、出苗至盛花期遮陰(VER2)、出苗至鼓粒期遮陰(VER5)和盛花期至完熟期遮陰(R2R8),測定葉面積、比葉重、葉綠素含量、光合參數(shù)、熒光參數(shù)和產(chǎn)量構(gòu)成因素?!窘Y(jié)果】VER2處理下大豆品種葉面積、葉綠素(a+b)含量和表觀量子效率分別比對照高15.50%、12.95% 和74.13%,比葉重、光補償點和最大光合速率分別比對照低15.78%、26.16%和26.52%,R2R8處理下大豆品種葉面積、葉綠素(a+b)和表觀量子效率平均分別比對照高0.3%、10.53%和28.07%,比葉重、光補償點和最大光合速率平均分別比對照低10.15%、20.34%和12.13%;盛花期復(fù)光PSⅡ最大量子產(chǎn)量平均比對照低3.01%,非光化學(xué)熒光淬滅系數(shù)平均比對照高26.80%,鼓粒期復(fù)光PSⅡ最大量子產(chǎn)量平均比對照低8.47%,非光化學(xué)熒光淬滅系數(shù)平均比對照高40.79%;VER2、VER5和R2R8處理下,桂夏2號單株粒重分別比對照低40.84%、48.67%和59.16%,百粒重分別比對照低23.69%、39.31%和26.39%,南豆12單株粒重分別比對照低46.67%、54.16%和21.19%,百粒重分別比對照低3.91%、19.93%和26.14%,C103單株粒重分別比對照低69.8%、74.85%和73.89%,百粒重分別比對照低68.8%、69.55%和71.64%?!窘Y(jié)論】出苗至盛花期遮陰對參試大豆品種葉片光合及葉綠素熒光特性的影響大于盛花期至完熟期遮陰,大豆植株遮陰后在盛花期復(fù)光,葉片光合能力有一定程度的恢復(fù),在鼓粒期復(fù)光,則表現(xiàn)為受到強光脅迫,因此,從減小遮陰對大豆葉片光合作用不良影響的角度考慮,在中國南方丘陵和山區(qū)玉米大豆間作優(yōu)于玉米大豆套作,在玉米大豆套作模式下選擇品種、播期及種植技術(shù)時,應(yīng)確保大豆在盛花期前恢復(fù)光照,避免遮陰超過大豆鼓粒期。前期遮陰和后期遮陰對大豆產(chǎn)量的影響大小因大豆品種而異,但遮陰時間越長對大豆產(chǎn)量構(gòu)成影響越大。

      關(guān)鍵詞:大豆;玉米;生育時期;遮陰;光合;熒光特性

      聯(lián)系方式:王一,Tel:15908301340;E-mail:wy625265289@126.com。通信作者楊文鈺,Tel:0835-2882004;E-mail:wenyu.yang@263.net。通信作者孫歆,Tel:13658091923;E-mail:sunxin529@163.com

      0 引言

      【研究意義】大豆間套作栽培能提高復(fù)種指數(shù),增加大豆總產(chǎn)量,有效緩解大豆供需矛盾[1]。但高位作物玉米對低位作物大豆會產(chǎn)生遮陰抑制效果,降低其葉片光合同化能力[2],導(dǎo)致減產(chǎn)。間套作大豆減產(chǎn)幅度與遮陰程度[3]、遮陰時間長短[2]和遮陰生育時期[4]等因素相關(guān),在中國南方丘陵和山區(qū)大面積推廣的玉米大豆間套作種植模式下,套作大豆受遮陰的生育時期自出苗開始,至初花期或盛花期結(jié)束[5-6],間作大豆受到遮陰程度最大的生育時期自初花期或盛花期開始,至完熟期結(jié)束[7-8],且因玉米和大豆品種不同,大豆受遮陰的生育時期不盡相同。因此,研究不同生育時期遮陰對大豆光合特性的影響,可為大豆間套作種植提供理論依據(jù)?!厩叭搜芯窟M展】王竹等[3]研究表明,玉米大豆套作,遮陰導(dǎo)致大豆葉面積指數(shù)增加,比葉重減小,且大豆葉片光合能力隨光照強度減小而減小;宋艷霞等[9]在苗期對大豆遮陰提高了大豆幼苗葉片葉綠素含量、PSⅡ有效量子產(chǎn)量,降低了葉綠素a與葉綠素b比值;李植等[10]研究結(jié)果表明大豆玉米間作模式下,大豆葉片葉綠素含量、表觀量子效率和 CO2補償點上升,光補償點和光飽和點下降。【本研究切入點】已有研究多集中于單一生育時期遮陰[9-11],但間套作大豆受遮陰生育時期不同,不同生育時期遮陰對大豆光合特性影響的報道較少,且不同生育時期遮陰對大豆光合特性的影響差異尚不清楚?!緮M解決的關(guān)鍵問題】本研究選用3個生育時期不同的大豆品種,通過研究不同生育時期遮陰處理下,不同大豆品種葉片光合特性表現(xiàn)的共性規(guī)律,明確不同生育時期遮陰對大豆葉片光合及葉綠素熒光特性的影響差異,為完善大豆間套作栽培技術(shù)提供理論依據(jù)。

      1 材料與方法

      1.1 供試材料

      試驗選取桂夏2號、南豆12和C103為供試大豆品種。桂夏2號2004年通過廣西省品種審定委員會審定,植株莖稈粗壯,株型收斂,是適宜南方間套作種植的早熟、高產(chǎn)大豆品種;南豆12于2008年通過四川省品種審定委員會審定,連續(xù)6年被國家農(nóng)業(yè)部確定為南方地區(qū)主導(dǎo)品種,是中國南方地區(qū)推廣面積最大的大豆品種,在四川、重慶占大豆播種面積50%以上;C103是由農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點實驗室提供的四川省南充市地方品種,該品種晚熟高產(chǎn),耐陰抗倒,適宜間套作種植。各品種生育時期見表1。

      表1 供試大豆品種的生育時期(月/日)和生育期Table 1 Growth stages (month/day) and maturity (d) of experimental cultivars

      1.2 試驗方法

      試驗于2012年6—11月在四川農(nóng)業(yè)大學(xué)教學(xué)科研園區(qū)進行。為準確控制遮陰生育時期和光照環(huán)境等處理條件,采用盆栽方式,3個品種各栽種60盆,其中,單個品種的一個遮陰處理12盆,單個品種的對照24盆,每盆栽3株;供試紫色土養(yǎng)分含量為有機質(zhì)8.96 g·kg-1、全氮1.21 g·kg-1、全磷0.61 g·kg-1、全鉀11.44 g·kg-1、速效氮62.35 mg·kg-1、速效磷24.34 mg·kg-1和速效鉀65.72 mg·kg-1,pH為6.55。

      試驗為雙因素隨機區(qū)組設(shè)計,因素A為遮陰,因素B為大豆品種。試驗參照FEHR等[12]的生育時期劃分法,設(shè)置 50%透光率[3]的遮陽網(wǎng)對不同品種大豆不同生育時期遮陰。處理與對照隨機排列。處理設(shè)置為不遮陰(CK)、出苗至盛花期遮陰(shaded from emergence to full-bloom,VER2)、出苗至始粒期遮陰(shaded from emergence to pod-fill,VER5)、盛花期至完熟期遮陰(shaded from full-bloom to full-ripe,R2R8)。

      1.3 測定項目與方法

      1.3.1 測定時期與部位 前期遮陰處理(VER2和VER5)在遮陰期間的最后一天(改變光強前)和恢復(fù)光照后第15天(改變光強后)測定或取樣;后期遮陰處理(R2R8)在自然光照條件下的最后一天(改變光強前)和遮陰后第15天(改變光強后)測定或取樣,對照(CK)與處理同步測定或取樣,3次重復(fù),每重復(fù)3株,取樣部位為植株倒3葉[13-14]。

      1.3.2 葉面積測定 掃描儀掃描葉片后用軟件Image J 1.44p計算葉面積。

      1.3.3 比葉重測定 采用打孔稱重法測定[15]。

      1.3.4 光合色素測定 參照舒展等[16]的方法,將葉片切成長約5 mm,寬約2 mm的細絲,用80%丙酮溶液浸提12 h。將浸提液在663 nm和645 nm波長下比色,所得光密度(OD)值代入公式計算溶液葉綠素a、葉綠素b和葉綠素(a+b)含量,公式如下:

      1.3.5 光合參數(shù)測定 選擇晴朗無風天氣測定光合參數(shù),采用美國Li-COR公司生產(chǎn)的Li-6400光合測定系統(tǒng),選擇紅藍光源葉室,設(shè)置開放式氣路,CO2濃度為380 μmol·L-1,分別于光量子密度(photosynthetically available radiation,PAR)為0、50、100、200、400、600、800、1 000、1 200、1 400、1 600、1 800和2 000 μmol·m-2·s-1時測定葉片凈光合速率并繪制曲線,同時,利用Li-COR公司研發(fā)的Photosyn Assistant軟件對光響應(yīng)曲線進行擬合,計算并得出響應(yīng)光合參數(shù):光飽和點(light saturation point,LSP)、光補償點(light compensation point,LCP)、表觀量子效率(apparent quanta efficiency,AQE)、暗呼吸速率(dark respiration rate,Rd)和最大光合速率(maximum photosynthetic rate,Pnmax)。

      1.3.6 葉綠素熒光參數(shù)測定 用Mini-PAM(Walz,德國)便攜式脈沖調(diào)制式葉綠素熒光儀測定暗適應(yīng)最大熒光(maximalfluorescence,F(xiàn)m)、暗適應(yīng)初始熒光(minimalfluorescence,F(xiàn)o),光下最大熒光(maximalfluorescence under light,F(xiàn)m′)和光下初始熒光(minimalfluorescence under light,F(xiàn)o′),根據(jù)公式計算出PSⅡ最大量子產(chǎn)量(maximal quantum yield of PSⅡ,F(xiàn)v/Fm)、PSⅡ?qū)嶋H量子產(chǎn)量(actual photochemical efficiency of PSⅡ,Yield)、光化學(xué)淬滅系數(shù)(photochemical quenching,qP)、非光化學(xué)淬滅系數(shù)(non-photochemical quenching,NPQ)和光合電子傳遞相對速率(relative photosynthetic electron transfer rate,rETR)。公式如下:Fv/Fm=(Fm-Fo)/Fm qP=(Fm′-F)/(Fm′-Fo);Yield=(Fm′-F)/Fm′;NPQ=(Fm-Fm′)/Fm′;rETR=Yield*PAR*0.5*0.84。

      2 結(jié)果

      表2 遮陰對大豆倒三葉葉面積和比葉重的影響Table 2 Effect of shading on leaf area and specific leaf weight of soybean leaves

      2.1 不同遮陰處理大豆葉片的葉面積和比葉重

      表2表明,VER2和VER5遮陰期間,參試大豆品種葉面積均高于對照,比葉重均低于對照,VER5受遮陰影響程度大于VER2,桂夏2號VER2和VER5葉面積分別比對照高 15.28%和 28.26%,比葉重分別比對照低15.77%和19.56%,南豆12 VER2和VER5葉面積分別比對照高 15.84%和 28.25%,比葉重分別比對照低15.78%和19.55%,C103 VER2和VER5葉面積分別比對照高 15.28%和 28.25%,比葉重分別比對照低15.80%和19.55%;復(fù)光后,VER2比葉重較對照的差異比在遮陰期間小,但VER5比葉重較對照的差異比在遮陰期間大,桂夏2號VER2和VER5比葉重分別比對照低14.06%和24.94%,南豆12 VER2和VER5比葉重分別比對照低14.05%和24.93%,C103 VER2和 VER5比葉重分別比對照低 14.05%和24.94%;各大豆品種R2R8遮陰后比葉重顯著低于對照,桂夏2號分別比對照低10.16%,南豆12分別比對照低10.15%,C103分別比對照低10.14%。

      2.2 遮陰對大豆葉片葉綠素及其組分含量的影響

      不同遮陰處理對葉綠素及其組分的含量的影響程度不同(表3),VER2和VER5遮陰期間,參試大豆品種葉綠素(a+b)和葉綠素b含量高于對照,葉綠素a/b比值低于對照,桂夏2號VER2和VER5葉綠素(a+b)含量分別比對照高2.25%和35.97%,葉綠素b含量分別比對照高29.07%和91.35%,葉綠素a/b比值分別比對照低 24.12%和 34.81%,南豆 12 VER2和VER5葉綠素(a+b)含量分別比對照高 32.21%和1.34%,葉綠素b含量分別比對照高63.01%和19.81%,葉綠素a/b比值分別比對照低24.64%和22.86%,C103 VER2和VER5葉綠素(a+b)含量分別比對照高3.13% 和 3.78%,葉綠素 b含量分別比對照高 41.88%和39.64%,葉綠素 a/b比值分別比對照低 33.81%和30.69%;復(fù)光后,各大豆品種 VER2葉綠素(a+b)和葉綠素a/b比值低于對照,桂夏2號分別比對照低15.41%和 4.29%,南豆 12分別比對照低 4.79%和17.37%,C103分別比對照低4.8%和17.91%,同時,葉綠素(a+b)含量高于對照,葉綠素a/b比值低于對照,桂夏2號葉綠素(a+b)含量比對照高36.51%,葉綠素a/b比值比對照低34.15%,南豆12葉綠素(a+b)含量比對照高 1.38%,葉綠素 a/b比值比對照低23.33%,C103葉綠素(a+b)含量比對照高3.88%,葉綠素a/b比值比對照低30.96%;R2R8遮陰15d后,各大豆品種葉綠素(a+b)和葉綠素b含量均高于對照,葉綠素a/b比值均低于對照,桂夏2號葉綠素(a+b)和葉綠素b含量分別比對照高19.33%和46.78%,葉綠素a/b比值比對照低25.08%,南豆12葉綠素(a+b)和葉綠素b含量分別比對照高6.58%和44.17%,葉綠素a/b比值比對照低33.53%,C103葉綠素(a+b)和葉綠素b含量分別比對照高6.66%和42.28%,葉綠素a/b比值比對照低33.13%。

      表3 遮陰對大豆葉片葉綠素含量的影響Table 3 Effect of shading on chlorophyll content in soybean leaves

      2.3 不同遮陰處理下大豆葉片的光合參數(shù)

      參試大豆品種不同遮陰處理的光合參數(shù)存在顯著差異(表4),遮陰期間,VER2處理下各大豆品種光飽和點、光補償點和最大光合速率均顯著低于對照,桂夏2號分別比對照低13.23%、34.5%和17.56%,南豆12分別比對照低34.09%、15.02%和33.46%,C103分別比對照低7.98%、14.36%和28.07%,同時VER2表觀量子效率均顯著高于對照,桂夏 2號比對照高39.34%,南豆 12比對照高 87.8%,C103比對照高112.2%;復(fù)光后,VER2光飽和點、光補償點、最大光合速率和表觀量子效率顯著低于對照,桂夏2號分別比對照低19.31%、11.52%、16.42%和26.67%,南豆12分別比對照低14.52%、12.87%、16.82%和8%,C103分別比對照低 21.03%、20.27%、34.99%和29.41%,說明前期遮陰處理遮陰后復(fù)光各大豆品種對光量子利用率卻明顯降低;R2R8遮陰15d后光飽和點、光補償點和最大光合速率均低于對照,桂夏2號分別比對照低17.91%、23.3%和8.39%,南豆12分別比對照低13.87%、15.9%和9.04%,C103分別比對照低18.94%、22.49%和18.36%,同時R2R8表觀量子效率高于對照,桂夏2號比對照高26.67%,南豆12比對照高24%,C103比對照高35.29%,說明后期遮陰處理大豆植株由自然光照環(huán)境轉(zhuǎn)入遮陰環(huán)境后對光量子利用率顯著提高了。

      表4 遮陰對大豆葉片主要光合參數(shù)的影響Table 4 Effect of shading on the photosynthetic parameters of soybean leaves

      2.4 不同遮陰處理對大豆熒光參數(shù)的影響

      熒光參數(shù)是反映遮陰對大豆葉片光合作用過程影響的重要指標(表5),VER2和VER5遮陰期間,參試大豆品種 PSⅡ最大量子產(chǎn)量和非光化學(xué)熒光淬滅系數(shù)均低于對照,PSⅡ?qū)嶋H量子產(chǎn)量、光化學(xué)淬滅系數(shù)和光合電子傳遞相對速率均高于對照,桂夏2號PSⅡ最大量子產(chǎn)量和非光化學(xué)熒光淬滅系數(shù)在VER2處理下分別比對照低3.9%和39.66%,在VER5處理下分別比對照低5.95%和22.73%,PSⅡ?qū)嶋H量子產(chǎn)量、光化學(xué)猝滅系數(shù)和光合電子傳遞相對速率在VER2處理下分別比對照高11.67%、8.51%和8.68%,在VER5處理下分別比對照高12.9%、22.78%和18.03%,南豆12 PSⅡ最大量子產(chǎn)量和非光化學(xué)熒光淬滅系數(shù)在VER2處理下分別比對照低3.85%和37.78%,在VER5處理下分別比對照低4.82%和58.06%,PSⅡ?qū)嶋H量子產(chǎn)量、光化學(xué)淬滅系數(shù)和光合電子傳遞相對速率在VER2處理下分別比對照高11.86%、11.63%和11.5%,在VER5處理下分別比對照高7.81%、4.49%和9.32%, C103 PSⅡ最大量子產(chǎn)量和非光化學(xué)熒光淬滅系數(shù)在VER2處理下分別比對照低5.33%和41.38%,在VER5處理下分別比對照低7.32%和29.31%,PSⅡ?qū)嶋H量子產(chǎn)量、光化學(xué)淬滅系數(shù)和光合電子傳遞相對速率在VER2處理下分別比對照高38.64%、36.99%和39.6%,在VER5處理下分別比對照高1.54%、11.11%和1.8%;復(fù)光后,VER2 PSⅡ最大量子產(chǎn)量低于對照,桂夏 2號比對照低3.61%,南豆12比對照低2.41%,C103比對照低 3.57%,非光化學(xué)熒光淬滅系數(shù)高于對照,桂夏2號比對照高21.88%,南豆12比對照高56%,C103比對照高12.5%,R2R8遮陰后PSⅡ最大量子產(chǎn)量低于對照,桂夏2號比對照低4.82%,南豆12比對照低6.02%,C103比對照低3.57%,光化學(xué)淬滅系數(shù)高于對照,桂夏2號比對照高8.51%,南豆12比對照高8.51%,C103比對照高9.57%。

      2.5 不同遮陰處理下大豆產(chǎn)量的差異

      不同遮陰處理對不同大豆品種產(chǎn)量構(gòu)成因素的影響不同(表6),VER2、VER5和R2R8處理下,桂夏 2號單株粒數(shù)分別比對照低 22.46%、30.23%和32.66%,單株粒重分別比對照低 40.84%、48.67%和 59.16%,百粒重分別比對照低 23.69%、39.31%和26.39%,南豆 12單株粒數(shù)分別比對照低 25.33%、52.29%和 5.01%,單株粒重分別比對照低 46.67%、54.16%和21.19%,百粒重分別比對照低3.91%、19.93% 和 26.14%,C103單株粒數(shù)分別比對照低 3.22%、17.34%和 7.92%,單株粒重分別比對照低 69.8%、74.85%和 73.89%,百粒重分別比對照低 68.8%、69.55%和71.64%,說明前期遮陰和后期遮陰對大豆產(chǎn)量的影響大小因大豆品種而異,但遮陰時間越長對大豆產(chǎn)量構(gòu)成影響越大。

      表5 遮陰對大豆葉片主要熒光參數(shù)的影響Table 5 Effect of shading on chlorophyll fluorescence parameters of soybean leaves

      表6 遮陰對大豆產(chǎn)量性狀的影響Table 6 Effect of shading on yield characters of soybean

      3 討論

      3.1 遮陰對大豆葉片光合特性的影響

      遮陰影響作物光合作用[17]、干物質(zhì)積累分配[18],最終影響產(chǎn)量[19]。董鉆[2]研究表明,不同大豆品種光合作用受遮陰的影響程度不同,本試驗選用3個生育時期長短不同的大豆品種,按生育時期進行遮陰,3個品種不同處理間變化規(guī)律基本一致,試驗的結(jié)果更具普適性。研究表明,葉片是大豆植株主要的光合器官,其形態(tài)生理性狀能反映大豆植株受遮陰影響時的光合特性[3,9-10]。PAUSCH等[20]研究表明,遮陰提高大豆倒3葉葉面積;GHASSEMI-GOLEZANI等[21]研究結(jié)果表明,遮陰降低大豆功能葉單葉干重;本試驗結(jié)果表明,參試大豆品種前期遮陰(VER2和VER5)葉面積增加,比葉重減少,且遮陰時間越長,影響越大,本試驗研究還發(fā)現(xiàn)參試大豆品種后期遮陰(R2R8)對葉面積和比葉重的影響程度小于前期遮陰。XU等[22]研究表明,小麥花期受遮陰影響,旗葉葉綠素(a+b)含量增加,葉綠素 a/b比值減少,本試驗研究結(jié)果與XU的結(jié)果一致,遮陰導(dǎo)致參試大豆品種葉片葉綠素(a+b)和葉綠素b的含量增加,葉綠素a/b比值減少,但葉綠素a含量變化因參試大豆品種不同而不同。馬德華等[23]研究發(fā)現(xiàn),遮陰時間過長會導(dǎo)致黃瓜葉片葉綠素總含量下降,本研究結(jié)果表明,前期遮陰時間超過R2期后(VER5)葉綠素(a+b)含量相對于對照增幅有所下降。且后期遮陰對參試大豆品種葉綠素(a+b)的影響小于前期遮陰。李冬梅等[24]研究表明,遮陰降低玉米葉片的光補償點、光飽和點和最大光合速率,提高表觀量子利用效率。本研究結(jié)果表明,不同生育時期遮陰均降低大豆葉片的光補償點、光飽和點和最大光合速率,提高表觀量子利用效率,且后期遮陰對參試大豆品種葉片光合參數(shù)的影響小于前期遮陰。遮陰導(dǎo)致光合電子傳遞性能的改變,葉綠素熒光參數(shù)能準確反映其變化[9-10]。徐彩龍等[25]研究表明,遮陰6 d后,小麥旗葉PSⅡ最大量子產(chǎn)量顯著低于對照,PSⅡ?qū)嶋H量子產(chǎn)量顯著高于對照,本研究結(jié)果表明,受遮陰影響,VER2和VER5 的PSⅡ最大量子產(chǎn)量減少,PSⅡ?qū)嶋H量子產(chǎn)量增加,且 VER5 PSⅡ最大量子產(chǎn)量減少幅度大于 VER2,VER5 PSⅡ?qū)嶋H量子產(chǎn)量增加幅度小于 VER2,說明遮陰至R2期,隨遮陰時間延長,PSⅡ反應(yīng)中心結(jié)構(gòu)與功能受損程度增加,原初光能轉(zhuǎn)化效率相對于對照增幅減小。

      3.2 復(fù)光對大豆葉片光合特性的影響

      研究表明,作物葉片增加捕光色素復(fù)合體數(shù)量提高其對光能的捕獲能力以適應(yīng)弱光逆境,而恢復(fù)正常光照,傳遞到光反應(yīng)中心的激發(fā)能過剩,過剩能量導(dǎo)致光合系統(tǒng)適應(yīng)性調(diào)整[26],造成葉片光合特性改變。楊丹霞等[27]研究發(fā)現(xiàn)遮陰后復(fù)光,玉米葉片葉綠素a/b比值高于弱光下生長的處理,低于自然光照下處理。本試驗研究結(jié)果表明,VER2和VER5遮陰期間葉綠素a/b均低于對照,且VER5下降幅度大于VER2下降幅度,復(fù)光后VER2和VER5葉綠素a/b仍低于對照,但相對于遮陰時,與對照的差異程度均減小,且VER2與對照差異程度小于VER5與對照差異程度。說明R2期復(fù)光,大豆葉片葉綠素a/b比值恢復(fù)性調(diào)整效果明顯,而R5期復(fù)光,葉綠素a/b比值無明顯變化。前人研究結(jié)果表明,作物葉片遮陰后復(fù)光,通過調(diào)整其光合機構(gòu)性能以適應(yīng)光環(huán)境的變化,表現(xiàn)為葉綠素熒光參數(shù)的改變[27-28]。PSⅡ最大量子產(chǎn)量反映了植物的潛在最大光合能力,PSⅡ最大量子產(chǎn)量下降表示植物受到了脅迫[26],非光化學(xué)熒光淬滅系數(shù)反映植物耗散過剩光能為熱的能力,研究表明,植物光合器官適應(yīng)弱光環(huán)境后恢復(fù)自然光照,會通過提高耗散過剩光能為熱的能力以保護光合器官,表現(xiàn)為非光化學(xué)熒光淬滅系數(shù)上升[27]。本試驗研究結(jié)果表明,VER2和VER5復(fù)光后,VER2 PSⅡ最大量子產(chǎn)量相對對照下降幅度比在遮陰期間小,VER5卻與之相反,VER2和VER5 非光化學(xué)熒光淬滅系數(shù)均高于對照且VER2上升幅度小于VER5,說明R2期復(fù)光,大豆葉片光合機構(gòu)受弱光的損害有一定恢復(fù),R5期復(fù)光,已適應(yīng)弱光環(huán)境的葉片對自然光照表現(xiàn)為強光脅迫,光合機構(gòu)進一步受到強光脅迫破壞,且R2期和R5期復(fù)光,大豆葉片為保護光合組織均表現(xiàn)為耗散過剩光能的能力大幅提升。

      4 結(jié)論

      不同生育時期遮陰對大豆葉片光合作用有顯著影響,光合和葉綠素熒光特性分別在不同大豆品種遮陰處理間的差異上表現(xiàn)出共性規(guī)律:出苗至盛花期遮陰對大豆葉片光合及葉綠素熒光特性的影響大于盛花期至完熟期遮陰;大豆從出苗開始遮陰在盛花期前復(fù)光,有利于葉片光合能力的恢復(fù),但超過鼓粒期復(fù)光,已經(jīng)適應(yīng)弱光環(huán)境的葉片突然暴露在自然光下表現(xiàn)為受到強光脅迫,反而不利于大豆葉片光合作用。因此,從減小遮陰對大豆葉片光合作用不良影響的角度考慮,在中國南方丘陵和山區(qū)玉米大豆間作優(yōu)于玉米大豆套作;在玉米大豆套作模式下選擇品種、播期及種植技術(shù)時,應(yīng)確保大豆在盛花期前恢復(fù)光照,避免遮陰超過大豆鼓粒期。另外,遮陰對大豆產(chǎn)量構(gòu)成也有顯著影響,且遮陰時間越長,大豆減產(chǎn)越嚴重,但大豆產(chǎn)量最終由光合作用和光合同化產(chǎn)物分配2個因素決定,且參試大豆品種間存在差異,所以不同遮陰處理對大豆籽粒產(chǎn)量影響的差異在本文中還不明確,有待進一步試驗研究。

      References

      [1] 楊文鈺, 雍太文, 任萬軍, 樊高瓊, 牟錦毅, 盧學(xué)蘭. 發(fā)展套作大豆, 振興大豆產(chǎn)業(yè). 大豆科學(xué), 2008, 27(1): 1-7. YANG W Y, YONG T W, REN W J, FAN G Q, MU J Y, LU X L. Develop relay-planting soybean, revitalize soybean industry. Soybean Science, 2008, 27(1): 1-7. (in Chinese)

      [2] 董鉆. 大豆產(chǎn)量生理. 北京: 中國農(nóng)業(yè)出版社, 2000: 55-56. DONG Z. Yield Physiology of Soybean. Beijing: China Agriculture Press, 2000: 55-56. (in Chinese)

      [3] 王竹, 楊文鈺, 吳其林. 玉/豆套作蔭蔽對大豆光合特性與產(chǎn)量的影響. 作物學(xué)報, 2007, 33(9): 1502-1507. WANG Z, YANG W Y, WU Q L. Effects of shading in maize/soybean relay-cropping system on the photosynthetic characteristics and yield of soybean. Acta Agronomica Sinica, 2007, 33(9): 1502-1507. (in Chinese)

      [4] 李初英, 孫祖東, 陳懷珠, 楊守臻. 不同時期接受遮光脅迫對大豆產(chǎn)量性狀及產(chǎn)量的影響. 西南農(nóng)業(yè)學(xué)報, 2006, 19(2): 265-269. LI C Y, SUN Z D, CHEN H Z, YANG S Z. Influence of shading stress during different growth stage on yield and main characters of soybean. Southwest China Journal of Agricultural Sciences, 2006, 19(2):265-269. (in Chinese)

      [5] 吳雨珊, 龔萬灼, 廖敦平, 武曉玲, 楊峰, 劉衛(wèi)國, 雍太文, 楊文鈺.帶狀套作蔭蔽及復(fù)光對不同大豆品種(系)生長及產(chǎn)量的影響. 作物學(xué)報, 2015, 41(11): 1740-1747. WU Y S, GONG W Z, LIAO D P, WU X L, YANG F, LIU W G,YONG T W, YANG W Y. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(11):1740-1747. (in Chinese)

      [6] 龔萬灼, 吳雨珊, 雍太文, 劉衛(wèi)國, 楊峰, 楊文鈺. 玉米-大豆帶狀套作中蔭蔽及光照恢復(fù)對大豆生長特性與產(chǎn)量的影響. 中國油料作物學(xué)報, 2015, 37(4): 475-480. GONG W Z, WU Y S, YONG T W, LIU W G, YANG F, YANG W Y. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 475-480. (in Chinese)

      [7] 高陽, 段愛旺, 劉祖貴, 申孝軍. 玉米和大豆條帶間作模式下的光環(huán)境特征. 應(yīng)用生態(tài)學(xué)報, 2008, 19(6): 1248-1254. GAO Y, DUAN A W, LIU Z G, SHEN X J. Light environment characteristics in maize-soybean strip intercropping system. Chinese Journal of Applied Ecology, 2008, 19(6): 1248-1254. (in Chinese)

      [8] EGLI D B. Time and the productivity of agronomic crops and cropping systems. Agronomy Journal, 2011, 3(103): 743-750.

      [9] 宋艷霞, 楊文鈺, 李卓璽, 于小波, 郭凱, 向達兵. 不同大豆品種幼苗葉片光合及葉綠素熒光特性對套作遮蔭的響應(yīng). 中國油料作物學(xué)報, 2009, 31(4): 474-479. SONG Y X, YANG W Y, LI Z X, YU X B, GUO K, XIANG D B. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 474-479. (in Chinese)

      [10] 李植, 秦向陽, 王曉光, 李興濤, 王建輝, 曹敏建. 大豆/玉米間作對大豆葉片光合特性和葉綠素熒光動力學(xué)參數(shù)的影響. 大豆科學(xué),2010, 29(5): 808-811. LI Z, QIN X Y, WANG X G, LI X T, WANG J H, CAO M J. Effect of intercropping with maize on photosynthesis and chlorophyⅡfluorescence parameters of soybean. Soybean Science, 2010, 29(5):808-811. (in Chinese)

      [11] 王瑞, 王宏富, 陳新霞, 曾蓉. 玉米大豆不同間作模式下大豆鼓粒期的光學(xué)特性. 東北農(nóng)業(yè)大學(xué)學(xué)報, 2012, 43(4): 16-19. WANG R, WANG H F, CHEN X X, ZENG R. Light environment characteristics of soybean in maize-soybean intercropping system. Journal of Northeast Agricultural University, 2012, 43(4): 16-19. (in Chinese)

      [12] FEHR W R, CAVINESS C E, BURMOOD D T, PENNINGTON J S. Stage of development descriptions of soybeans, Glycine max(L.)Merrill. Crop Science, 1971, 11(6): 929-931.

      [13] 鄭偉, 謝甫綈, 郭泰, 王志新, 李燦東, 張振宇, 吳秀紅, 張茂明,王慶勝. 密度對不同類型大豆葉部性狀的影響. 中國油料作物學(xué)報, 2014, 36(1): 66-70.ZHENG W, XIE F T, GUO T, WANG Z X, LI C D, ZHANG Z Y, WU X H, ZHANG M M, WANG Q S. Effect of density for different types of leaf traits on soybean. Chinese Journal of Oil Crop Sciences, 2014,36(1): 66-70. (in Chinese)

      [14] 張永強, 張娜, 王娜, 唐江華, 李亞杰, 徐文修. 種植密度對北疆復(fù)播大豆光合特性及產(chǎn)量的影響. 西北植物學(xué)報, 2015, 35(3):571-578. ZHANG Y Q, ZHANG N, WANG N, TANG J H, LI Y J, XU W X. Effects of planting density on photosynthetic characteristics and yield of summer soybean in North Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3): 571-578. (in Chinese)

      [15] 戰(zhàn)吉箴, 黃衛(wèi)東, 王志龍, 王利軍. 葡萄幼苗對弱光環(huán)境的形態(tài)和生長反應(yīng). 中國農(nóng)學(xué)通報, 2002, 18(2): 1-3. ZHAN J Z, HUANG W D, WANG Z L, WANG L J. Morphological and growth response of young grape plants to low light environment. Chinese Agricultural Science Bulletin, 2002, 18(2): 1-3. (in Chinese)

      [16] 舒展, 張曉素, 陳娟, 陳根云, 許大全. 葉綠素含量測定的簡化.植物生理學(xué)通訊, 2010, 46(4): 399-403. SHU Z, ZHANG X S, CHEN J, CHEN G Y, XU D Q. The simplification of chlorophyⅡ content measurement. Plant Physiology Communications, 2010, 46(4): 399-403. (in Chinese)

      [17] 郭翠花, 高志強, 苗果園. 花后遮陰對小麥旗葉光合特性及籽粒產(chǎn)量和品質(zhì)的影響. 作物學(xué)報, 2010, 36(4): 673-679. GUO C H, GAO Z Q, MIAO G Y. Effect of shading at post flowering on photosynthetic characteristics of flag leaf and response of grain yield and quality to shading in wheat. Acta Agronomica Sinica, 2010,36(4): 673-679. (in Chinese)

      [18] EMILY G T, PAGE E R, SWANTON C J. Shade avoidance in soybean reduces branching and increases plant-to-plant variability in biomass and yield per plant. Weed Science, 2011, 59: 43-49.

      [19] ANAN P, KHANISTHA P, ANUCHA L. Influence of low light intenstity on growth and yield of four soybean cultivars during wet and dry seasons of Northeast Thailand. Agricultural Sciences, 2011,2(2): 61-67.

      [20] PAUSCH R C, BRITZ S J, MULCHI C L. Growth and photosynthesis of soybean (Glycine max (L.) Merr. ) in simulated vegetation shade:Influence of the ratio of red to far-red radiation. Plant, Cell & Environment, 2006, 14(7): 647-656.

      [21] GHASSEMI-GOLEZANI K, BAKHSHY J, ZEHTAB-SALMASI S,MOGHADDAM M. Changes in leaf characteristics and grain yield of soybean (Glycine max L.) in response to shading and water stress. International Journal of Biosciences, 2013, 3(2): 71-79.

      [22] XU C, YIN Y, CAI R, WANG P, NI Y, GUO J, CHEN E, CAI T, CUI Z, LIU T, YANG D, WANG Z. Responses of photosynthetic characteristics and antioxidative metabolism in winter wheat to post-anthesis shading. Photosynthetica, 2013, 51(1): 139-150.

      [23] 馬德華, 龐金安, 霍震榮, 李淑菊. 弱光對黃瓜幼苗光合及膜脂過氧化作用的影響. 河南農(nóng)業(yè)大學(xué)學(xué)報, 1997, 32(1): 68-71. MA D H, PANG J N, HUO Z R, LI S J. Effect of low light on photosynthesis and membrane-lipid peroxidation of Cucumis sativus seedling. Acta Agriculturae Universitatis Henanensis, 1997, 32(1):68-71. (in Chinese)

      [24] 李冬梅, 趙奎華, 王延波, 齊華, 王大偉, 吳亞男, 趙海巖, 張春玲,劉明. 不同耐密性玉米品種光合特性對弱光響應(yīng)的差異. 玉米科學(xué), 2013, 5(10): 906-1005. LI D M, ZHAO K H, WANG Y B, QI H, WANG D W, WU Y N,ZHAO H Y, ZHANG C L, LIU M. Responses of photosynthesis characters to low-light stress for maize hybrids with different density tolerances. Journal of Maize Sciences, 2013, 5(10): 906-1005. (in Chinese)

      [25] 徐彩龍, 尹燕枰, 蔡瑞國, 王平, 李勇, 郭俊祥, 陳二影, 翟學(xué)旭,劉鐵寧, 王振林. 弱光條件下不同穗型小麥品種旗葉光合特性和抗氧化代謝. 作物學(xué)報, 2012, 38(7): 1295-1306. XU C L, YIN Y P, CAI R G, WANG P, LI Y, GUO J X, CHEN E Y,ZHAI X X, LIU T N, WANG Z L. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to shading during grain filling in winter wheat cultivars with different spike types. Acta Agronomica Sinica, 2012, 38(7): 1295-1306. (in Chinese)

      [26] 張治安, 陳展宇. 植物生理學(xué). 長春: 吉林農(nóng)業(yè)大學(xué)出版社, 2009:105-106. ZHANG Z A, CHEN Z Y. Plant Physiology. Changchun: Jilin Agricultural University Press, 2009: 105-106. (in Chinese)

      [27] 楊丹霞, 張亞田, 蔡敦江, 孫廣玉. 育苗溫室弱光下的玉米幼苗移栽到自然光下的光合和熒光特性研究. 玉米科學(xué), 2010, 18(5): 60-64. YANG D X, ZHANG Y T, CAI D J, SUN G Y. Studies on photosynthetic characteristics and chlorophyⅡ Fluorescence in maize seedlings transferred from lowlight-grown in greenhouse to sunlight. Journal of Maize Sciences, 2010, 18(5): 60-64. (in Chinese)

      [28] 胡彥波, 許楠, 包卓, 張曉松,孫廣玉. 桑樹葉片光合誘導(dǎo)對光強轉(zhuǎn)換的響應(yīng). 中國農(nóng)業(yè)生態(tài)學(xué)報, 2010, 18(14): 799-803. HU Y B, XU N, BAO Z, ZHANG X S, SUN G Y. Response of photosynthetic induction to irradiance transition in mulberry leaf. Chinese Journal of Eco-Agriculture, 2010, 18(14): 799-803. (in Chinese)

      (責任編輯 楊鑫浩,李莉)

      Effect of Shading on Soybean Leaf Photosynthesis and Chlorophyll Fluorescence Characteristics at Different Growth Stages

      WANG Yi1,2, ZHANG Xia1,3, YANG Wen-yu1, SUN Xin1, SU Ben-ying1, CUI Liang1
      (1College of Agriculture, Sichuan Agriculture University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130;2Agricultural Technology Promotion Station of Daying, Suining 629000, Sichuan;3Chongqing Tongnan Middle School, Chongqing 404100)

      Abstract:【Objective】The present work studied the effect of shading on photosynthesis and chlorophyll fluorescencecharacteristics, including leaf area, lamina mass per unit area, chlorophyll content, yield characters, photosynthetic and fluorescence parameters of three soybean cultivars at different growth stages, in order to support the development of maize-soybean intercropping and relay-intercropping systems in hilly and mountainous area of southern China.【Method】Three cultivars named Guixia 2, Nandou 12 and C103, whose period and total days for growth were different with each other, were studied. Soybean plants were shaded by shading nets with 50% transmittance during growth stages of emergence to full-bloom (VER2), emergence to pod-fill (VER5), and full-bloom to full-ripe (R2R8), respectively. Plants grown under natural light were used as control (CK). Leaf area, lamina mass per unit area, chlorophyll content, photosynthetic and fluorescence parameters, as well as yield characters were measured and analyzed. 【Result】 Compared to the control (CK), leaf area, chlorophyll (a+b)content and apparent quanta efficiency at the VER2 stage increased by 15.5%, 13.0% and 74.1%, respectively; lamina mass per unit area, light compensation point and maximum photosynthetic rate were decreased by 15.8%, 26.2% and 26.5%, respectively,compared to CK. Leaf area, chlorophyll (a+b) content and apparent quanta efficiency increased by 0.3%, 10.5% and 28.1%,respectively at the R2R8 stage; while lamina mass per unit area, light compensation point and maximum photosynthetic rate decreased by 10.2%, 20.3% and 12.1%, respectively, compared to CK. When soybean plants were re-illuminated at full bloom stage, maximal quantum yield of PSII was decreased by 3.0% and non-photochemical quenching was increased by 26.8%,compared to CK. When plants were re-illuminated at pod-fill stage, maximal quantum yield of PSII was decreased by 8.5% and non-photochemical quenching was increased by 40.8%, compared to CK. In addition, at VER2, VER5 and R2R8 stages for Guixia 2, yields per plant decreased by 40.8%, 48.7% and 59.2%, and 100-seed weight decreased by 23.7%, 39.3% and 26.4%,respectively, compared to CK. For Nandou 12 at these stages, yields per plant decreased by 46.7%, 54.2% and 21.2%, and 100-seed weight were decreased by 3.9%, 19.9% and 26.1%, respectively, compared to CK. For C103, yields per plant decreased by 69.8%, 74.9% and 73.9%, and 100-seed weight decreased compared to CK by 68.8%, 69.6% and 71.6%, respectively. 【Conclusion】Shading to the VER2 stage had a greater impact than for R2R8 on the photosynthesis and chlorophyll fluorescence characteristics of soybean. Photosynthetic capacity of soybean leaves made some recovery from shading when re-illuminated at R2. However, high-light stress was observed for plants re-illuminated at R5. Therefore, we suggest that maize-soybean intercropping to be a more advantageous system than relay-intercropping in hilly and mountainous area of southern China, with the perspective of minimizing the negative effects of shading on soybean photosynthesis. We also suggest, it is necessary to re-illuminate the soybean plants before full-bloom stage, in order to avoid an excessively long shading duration, when making decisions about on cultivar use, sowing time, and planting technology. The effect of shading period can influence yield of soybean. Moreover, the longer the shading duration last, the more the expected yield loss.

      Key words:soybean; maize; growth stages; shading; photosynthesis; chlorophyll fluorescence

      收稿日期:2015-11-06;接受日期:2016-03-21

      基金項目:國家自然科學(xué)基金(31171476,31201169)、國家“973”計劃(2011CB100402)、農(nóng)業(yè)部公益性行業(yè)科研專項(201203096)

      猜你喜歡
      大豆玉米
      注意防治大豆點蜂緣蝽
      大豆帶狀種植技術(shù)如何提升我國大豆產(chǎn)量
      從大豆種植面積增長看我國糧食安全
      收玉米啦!
      巴西大豆播種順利
      玉米適當晚收好處多
      大豆的營養(yǎng)成分及其保健作用
      我的玉米送給你
      玉米
      大灰狼(2018年6期)2018-07-23 16:52:44
      用大豆“炸沉”軍艦
      凤翔县| 常德市| 通山县| 三原县| 临清市| 南汇区| 徐汇区| 湖南省| 福建省| 三门峡市| 新乡县| 绥芬河市| 鞍山市| 通州市| 武义县| 左权县| 灵石县| 南皮县| 论坛| 东乌珠穆沁旗| 泰顺县| 睢宁县| 左权县| 义乌市| 亳州市| 西华县| 成安县| 永仁县| 高邮市| 哈巴河县| 天门市| 扬中市| 武汉市| 阿勒泰市| 平谷区| 循化| 会东县| 吴旗县| 宜丰县| 青铜峡市| 滨海县|