徐 瑤,牟建梅,張國芹,馬佳佳,徐 君,李 軍,劉鳳軍,佘旭東
(江蘇省太湖地區(qū)農業(yè)科學研究所,江蘇蘇州 215155)
?
施硫對不結球白菜硝酸鹽累積及氮硫同化關鍵基因表達的影響
徐瑤,牟建梅,張國芹,馬佳佳,徐君,李軍,劉鳳軍,佘旭東
(江蘇省太湖地區(qū)農業(yè)科學研究所,江蘇蘇州 215155)
摘要:【目的】確定降低不結球白菜硝酸鹽累積效果最佳的硫素形態(tài),從轉錄水平篩選影響不結球白菜硝酸鹽累積的關鍵基因,為完善不結球白菜科學施硫技術及進一步揭示硝酸鹽累積分子調控機制、指導分子育種奠定基礎?!痉椒ā窟x取4種硫素形態(tài)及3個施用濃度處理不結球白菜,測定其對植株葉片及葉柄中硝酸鹽含量的影響;利用半定量PCR技術從轉錄水平分析施硫對氮及硫代謝同化網絡中30個基因表達的影響?!窘Y果】不同形態(tài)硫處理均顯著增加了不結球白菜的地上生物量,其中 30 mg·kg-1Na2SO4處理的增幅最大,比對照增加 49.76%,以 Na2SO4處理的增幅最大。在降低小白菜硝酸鹽含量中,以Na2SO4、Na2S2O3處理效果相對顯著,其中Na2SO4降低葉片中硝酸鹽12.23%—23.55%,葉柄中33.08%—41.98%,降幅與濃度呈正相關,30 mg·kg-1Na2SO4處理的降幅最大;Na2S2O3處理降低植株葉片中硝酸鹽15.34%—33.08%,葉柄中11.95%—19.68%。硫處理在一定程度上促進氮同化,對照葉片中NR-1、NADH-GOGAT-1、NADH-GOGAT-2、Cytoplasm-GS-4、Cytoplasm-GS-5、GDH-3表達量低于其他處理,對照葉柄中NR-1、NADH-GOGAT-2、Cytoplasm-GS-1、GDH-2表達量低于其他處理,其中,各處理NADH-GOGAT-2表達量與葉片及葉柄中硝酸鹽含量變化呈現(xiàn)一定規(guī)律性。硫處理對植株硫同化基因也產生一定影響,對照葉片中ATPS-2、ATPS-3、ATPS-4、APSR-3、SIR、SAT1.1、SAT2.1表達量較低,而對照葉柄中僅SIR、OASTL-A表達量明顯低于其他處理。【結論】Na2SO4是降低不結球白菜硝酸鹽效果較為顯著的硫素,且能夠顯著提高產量,30 mg·kg-1的Na2SO4為較優(yōu)處理。NADH-GOGAT-2表達量與不結球白菜內硝酸鹽含量呈負相關,推測其可能是影響氮同化的關鍵基因。
關鍵詞:不結球白菜;硫;硝酸鹽;氮硫同化;基因表達
聯(lián)系方式:徐瑤,E-mail:xuchenyao@163.com。牟建梅,E-mail:thmjm@163.com。徐瑤和牟建梅為同等貢獻作者
【研究意義】不結球白菜(Brassica campestris ssp. chinensis Makino)是中國重要的葉菜作物,但極易富集硝酸鹽,安全品質堪憂。硝酸鹽是亞硝胺的合成前體,過量攝入易引發(fā)消化系統(tǒng)的癌變,很多國家對葉菜的硝酸鹽都有嚴格限定,中國規(guī)定葉菜類硝酸鹽含量≤3 000 mg·kg-1,但大部分地區(qū)的不結球白菜硝酸鹽含量嚴重超標,上海、南京等地市場抽樣檢測結果最高可達6 293.91 mg·kg-1[1-2]。因此,加強降低不結球白菜硝酸鹽含量的研究,對于保障綠色食品供應、改善人民健康狀況有重大意義?!厩叭搜芯窟M展】植物氮同化由硝酸還原酶(nitrate reductase,NR)、亞硝酸還原酶(nitrite reductase,NiR)、谷氨酸合酶(glutamate synthase,GOGAT)、谷氨酰胺合成酶(glutamine synthetase,GS)、谷氨酸脫氫酶(glutamate dehydrogenase,GDH)等關鍵酶催化完成;硫同化網絡則包括ATP硫酸化酶(ATP sulfurylases,ATPS)、APS還原酶(APS reductase,APSR)、亞硫酸鹽還原酶(sulfite reductase,SiR)、絲氨酸乙酰轉移酶(serine acetyltransferase,SAT)、O-乙酰絲氨酸硫裂解酶(O-acetylserine(thio)lyase,OASTL)等關鍵酶[3-4]。大量研究表明,植物體內氮硫同化存在高度相關性[3-7],這種同化相關性使植物穩(wěn)定在一定的氮硫比例以保證蛋白質生物合成[8]。氮硫同化的相關性更表現(xiàn)在其同化酶結構的相似性,NiR與SiR的結構相似性眾所周知[4],在藻青菌中SiR甚至能夠在NiR缺失突變體中充當NiR發(fā)生催化作用[9]。適當施硫能夠有效促進氮的吸收同化,提高氮素利用率,降低植株硝酸鹽累積,同時在氮代謝的轉錄組與蛋白組上均有所影
響[8,10]。在油菜上的研究表明,施硫能顯著降低植株中的硝酸鹽含量,并導致NR及GS表達量顯著增加;反之,缺硫導致其葉片與根中硝酸鹽大量累積,NR 及GS的表達量急劇下降[11]。同時,增施硫也能在作物光合作用、蛋白質合成、激素代謝以及抗重金屬毒害方面有明顯積極作用[12-14]?!颈狙芯壳腥朦c】通過硫素調節(jié)氮同化,降低蔬菜硝酸鹽累積,成為行之有效且成本低廉的安全栽培方法。韭菜[15]、大蔥[16]等作物中均有報道,施硫顯著降低植株硝酸鹽含量。不結球白菜也開展了相關研究[17-18],但是僅限表觀水平,并未涉及分子調控機理;且國內外關于氮硫代謝網絡中,分析不結球白菜硝酸鹽累積的關鍵步驟及關鍵基因的研究也近乎空白,氮硫互作分子機制尚不明晰?!緮M解決的關鍵問題】本研究比較不同形態(tài)硫對不結球白菜硝酸鹽累積的影響,從轉錄水平分析施硫對氮及硫代謝同化網絡中30個基因表達影響,篩選影響不結球白菜硝酸鹽累積的關鍵步驟及關鍵基因,為完善不結球白菜科學施硫技術,進一步揭示硝酸鹽累積分子調控機制奠定基礎。
1.1 材料與處理
試驗材料為不結球白菜品種‘華王’,試驗為盆栽試驗,于2014年10—11月在蘇州市農業(yè)科學院試驗基地進行。塑料盆43 cm×20 cm×14 cm,每盆裝土4.5 kg。供試土壤為黃泥土,基本理化性質為有機質35.82 g·kg-1、堿解氮111.21 mg·kg-1、速效磷41.51 mg·kg-1、速效鉀287.98 mg·kg-1、有效硫12.16 mg·kg-1、pH 7.39。以分析純尿素、磷酸氫二氨、氯化鉀為基肥,施用量為氮 80 mg·kg-1,P2O540 mg·kg-1,K2O 80mg·kg-1。每盆種植不結球白菜 25株,全生育期嚴格控制水分,保持絕對含水量在34%,其他均常規(guī)管理。
試驗選取4種硫素形態(tài)及3個施用濃度,共設置13個處理,詳見表1。每個處理設置3個重復,隨機排列。硫肥于植株長至三葉期時施入土中,至五葉期時選取晴朗天氣的早晨9:00—10:00取樣,測定各處理地上部生物量、葉柄及葉片硝酸鹽含量,分別采集葉片及葉柄樣品于液氮速凍,-80℃保存,用于硝酸鹽及硫代謝相關基因表達試驗。
1.2 地上生物量及硝酸鹽含量
取不結球白菜植株地上部分,稱取鮮重,每個重復均取15株,地上部生物量為其平均值。分別測定植株葉片、葉柄硝酸鹽含量,測定方法參照李合生[19]的紫外分光光度計法。
1.3 總RNA提取及引物設計
總RNA提取純化步驟參照植物總RNA抽提純化試劑盒(生工生物工程股份有限公司,上海)。cDNA合成參照M-MuLV第一鏈cDNA合成試劑盒(生工生物工程股份有限公司,上海)。根據(jù) NCBI (http://www.ncbi.nlm.nih.gov/)上公布的油菜氮硫同化關鍵基因序列,由Primer 5.0軟件根據(jù)其開放閱讀框設計引物,其中每個基因的同源基因與多拷貝基因均分開設計引物。選擇 Actin為內參基因[20]。引物合成由生工生物工程(上海)股份有限公司完成。引物序列如表2所示。
1.4 半定量基因表達分析
利用RT-PCR引物(表2)對不同處理下,不結球白菜的兩個部位的樣品cDNA進行擴增。反應體系參照PCR擴增試劑盒(Taq)(生工生物工程股份有限公司,上海),模板為20 ng cDNA,反應體系均覆蓋已滅菌的石蠟油。反應程序為:94℃預變性2 min;94℃變性40 s,58℃退火40 s,72℃延伸70 s,35個循環(huán);72℃充分延伸10 min。擴增產物用1%瓊脂糖凝膠電泳檢測,并測序比對驗實擴增序列。
1.5 數(shù)據(jù)分析
試驗數(shù)據(jù)統(tǒng)計分析采用DPS 7.05軟件,作圖采用Excel 2007?;虮磉_分析通過對比半定量 RT-PCR擴增條帶的亮度強弱,比較其表達量高低。
圖1 硫處理對不結球白菜地上部生物量的影響Fig. 1 Changes in aboveground biomass of non-heading Chinese cabbage for sulphate treatments
2.1 不結球白菜地上生物量
不同形態(tài)硫處理均顯著增加了不結球白菜的地上生物量,其中S6的增幅最大,相對S0增加49.76%(圖1)。各處理間,以Na2SO4處理的S4—S6的增幅最大,其次依次為 Na2S2O3、NaHSO3、硫磺。硫磺處理的S1—S3呈現(xiàn)先增加后降低的趨勢,與對照相比,總體增幅為1.46%—8.78%,S2處理地上部生物量增幅最大。S4—S6處理隨著 Na2SO4的濃度增加呈現(xiàn)上升趨勢,與對照相比,增幅為 31.22%—49.76%。NaHSO3處理的S7—S9地上生物量先上升后下降,與對照相比,增幅為18.54%—30.73%。S9—S12處理隨著Na2S2O3濃度增加而下降,與對照相比,增幅為25.85%—41.95%。以上結果證明施硫能有效提高不結球白菜產量。
表2 氮及硫同化相關基因表達引物Table 2 The primers for the expression of nitrogen and sulphate assimilation related genes
2.2 葉片硝酸鹽含量
不結球白菜葉片中硝酸鹽累積隨著硫素形態(tài)差異呈現(xiàn)不同的變化(圖2)。S6、S10,以及S12均顯著降低了葉片中硝酸鹽含量,相較S0分別降低33.08%、23.55%、17.47%。硫素形態(tài)中Na2S2O3、Na2SO4處理效果相對顯著,其中Na2S2O3效果最好,不結球白菜對低量的Na2S2O3最為敏感,S10—S12處理降低硝酸鹽含量15.34%—33.08%;Na2SO4處理與 Na2S2O3相反,高濃度的Na2SO4對硝酸鹽降幅最大,S4—S6處理降幅為12.23%—23.55%。硫磺對小白菜葉片中硝酸鹽含量隨著硫磺施用量的增加而降低。NaHSO3處理引起不結球白菜葉片中硝酸鹽含量的增加,隨著濃度的增加而增加,不利于降低其硝酸鹽累積。
2.3 葉柄硝酸鹽含量
葉柄中硝酸鹽含量明顯高于葉片,硫處理對降低不結球白菜葉柄中硝酸鹽有著顯著效果(圖 3),處理效果最佳的為 Na2SO4處理,降幅為 33.08%—41.98%,降幅與濃度呈現(xiàn)正相關,高濃度降幅最大。Na2S2O3處理也取得較好效果,降幅為 11.95%—19.68%,低濃度處理效果較好。NaHSO3處理對葉柄硝酸鹽的影響與葉片相似,硝酸鹽含量與濃度正相關,低濃度處理顯著降低硝酸鹽累積,高濃度 S9處理與S0中硝酸鹽含量沒有顯著差異。硫磺與NaHSO3處理效果相反,高濃度處理 S2、S3能降低葉柄中硝酸鹽含量。
圖2 硫處理對不結球白菜葉片硝酸鹽含量的影響Fig. 2 Changes in nitrate content of non-heading Chinese cabbage leaves for sulphate treatments
圖3 硫處理對不結球白菜葉柄硝酸鹽含量的影響Fig. 3 Changes in nitrate content of non-heading Chinese cabbage petioles for sulphate treatments
2.4 氮同化相關基因的表達
葉片及葉柄中硝酸鹽代謝 GS/GOGAT途徑及GDH途徑中的基因表達隨著硫處理均發(fā)生變化(圖4)。葉片中NR-1、NADH-GOGAT-1、NADH-GOGAT-2、Cytoplasm-GS-4、Cytoplasm-GS-5、GDH-3的表達量表現(xiàn)為 S0弱于其他處理,硫處理均一定程度促進氮代謝。硫磺處理的S1—S3中,NADH-GOGAT-1的表達量均要弱于其他處理。各處理NADH-GOGAT-2表達量與葉片中硝酸鹽含量變化呈現(xiàn)一定規(guī)律性,S10表達量最高,S6、S7、S11、S12表達量次之,而S0、S1、S9的表達量相對較低。Na2SO4處理的S4—S6中Cytoplasm-GS-1的表達量顯著高于其他處理及對照。
圖4 硫處理對不結球白菜葉片中氮同化相關基因表達的影響Fig. 4 Sulphate affects the expression of nitrogen assimilation related genes in the leaves of non-heading Chinese cabbage
葉柄的硝酸鹽代謝基因對硫處理的響應表現(xiàn)出一定規(guī)律,與葉片中的基因表達變化有所差異(圖5)。NR-1、NADH-GOGAT-2、Cytoplasm-GS-1、GDH-2表達量 S0均弱于其他處理,硫處理均一定程度促進不結球白菜葉柄氮代謝。S6處理在較多基因中表達量均較高或最高,NR-1、NADH-GOGAT-1、NADH-GOGAT-2、Cytoplasm- GS-1、Cytoplasm-GS-2、Cytoplasm- GS-3、Cytoplasm- GS-4、Cytoplasm-GS-5、GDH-1、GDH-2、GDH-3在S6處理中的表達量較高,其中NR-1、NADH-GOGAT-2、Cytoplasm-GS-2、Cytoplasm- GS-5中 S6表達量為各處理中最高。NADH-GOGAT-2在Na2SO4處理的S4—S6中表達量最大,其次為Na2S2O3處理的S9—S12,與硫處理降低葉柄硝酸鹽的含量的表現(xiàn)吻合。Cytoplasm-GS-2在NaHSO3處理的S7—S9中表達量弱于其他處理。
2.5 硫同化相關基因表達
硫處理對不結球白菜硫同化相關基因表達也表現(xiàn)出一定的規(guī)律性(圖6)。在葉片中對照S0處理中很多基因的表達量較低,如ATPS-2、ATPS-3、ATPS-4、APSR-3、SIR、SAT1.1、SAT2.1,其中ATPS-3、ATPS-4、APSR-3、SAT2.1的表達量S0中為最低。另外,ATPS-1、ATPS-2、ATPS-3在硫磺處理的S1—S3中表達也弱于其他硫形態(tài)處理,且ATPS-3、SAT1.1的表達與硫磺施用量呈現(xiàn)正相關。Na2SO4處理的S4—S6中很多基因表現(xiàn)出規(guī)律性變化,ATPS-2、ATPS-3、SAT2.1、OASTL-C表達量與Na2SO4處施用量呈現(xiàn)正相關,而APSR-3、OASTL-A表達量與Na2SO4處施用量呈現(xiàn)負相關。
圖5 硫處理對不結球白菜葉柄中氮同化相關基因表達的影響Fig. 5 Sulphate affects the expression of nitrogen assimilation related genes in the petioles of non-heading Chinese cabbage
在不結球白菜葉柄中,硫同化基因對處理的響應沒有葉片明顯,僅SIR、OASTL-A表達量在S0處理中明顯低于其他處理(圖7)。S6處理中大多數(shù)基因均表現(xiàn)出高表達量,包括 ATPS-1、ATPS-2、ATPS-3、ATPS-4、APSR-1、APSR-3、SIR、SAT1.1、SAT2.1、OASTL-B、OASTL-C,其中ATPS-1、SAT2.1、OASTL-C的表達量超過其他所有處理。SAT2.1、SAT2.2在Na2SO4處理的S4—S6中表達量均超過其他處理,且隨著濃度增加,表達量增大。
圖7 硫處理對不結球白菜葉柄中硫同化相關基因表達的影響Fig. 7 Sulphate affects the expression of sulphate assimilation related genes in the petioles of non-heading Chinese cabbage
硫為植物生長的重要的中量元素,是生物合成半胱氨酸與蛋氨酸的主要原料[21],十字花科作物對于硫的需求尤其敏感,在生育進程中需要更為大量的硫,其風味物質形成更是與硫有著密切關系,糖苷油、芥子油均為硫脂化合物[12-13,22-23]。
植物從外界吸收硫元素,除少量從空氣中吸收的SO2、H2S,大部分是從土壤中獲?。?4-25],其中,硫酸鹽是主要的硫源,這在大量試驗中得到證明[26-28],同樣在本研究中,硫酸鈉是最有利于不結球白菜生長及降低硝酸鹽最為有效的硫素??傮w而言,參試的硫素形態(tài)在降低硝酸鹽累積效用上呈現(xiàn) SO42->S2O32->HSO3->S的趨勢(圖 2、3)。其中,S2O32-、HSO3-對于植物作用差異有可能與其改變土壤 pH而影響植株吸收效率有關,S2O32-使土壤呈弱堿性,而 HSO3-則會酸化土壤。Na2S2O3對不結球白菜有顯著的增產效應(圖 1),同時在降低植株硝酸鹽含量,尤其是葉片中硝酸鹽含量有最佳的效果(圖 2),但值得注意的是,小白菜對低濃度的 Na2S2O3較為敏感,但是隨著Na2S2O3濃度增加,其無論在增產還是降低硝酸鹽上的效果都有所降低,這可能也與其改變土壤 pH有關。
施硫能夠顯著提高作物的生物量,30 mg·kg-1的Na2SO4處理使不結球白菜顯著增產49.76%(圖1),大田試驗證實相同濃度的Na2SO4確實能夠有效增產,使不結球白菜增產21%(數(shù)據(jù)未公布),同樣的結果在油菜、大麥等作物中得到應證[13,22,29]。硫對于促進植物葉片生長有顯著作用,尤其是新葉的生長,主要原因被認為是其加速植株內源氮、硫的同化速率,同時,硫在作物光合作用、蛋白質合成、激素代謝以及抗重金屬毒害方面也有明顯作用[12-14]。
硫對于植株硝酸鹽的改變有著顯著作用,在本研究中,施硫最高降低不結球白菜葉片中硝酸含量33.08%(圖2),降低葉柄中41.98%(圖3),其中葉柄中降幅更大,其原因一方面是由于施硫對疏導組織的作用更為顯著;另一方面,小白菜葉柄肥厚,為硝酸鹽的貯藏器官,硝酸鹽含量高于葉片中,最高可達到葉片中的兩倍(圖2、3),為硝酸鹽的儲藏器官,可見硫對硝酸鹽儲藏器官的影響大于其同化器官。與此同時,其他研究檢測到硫對于植株地上部硝酸鹽含量影響大于其地下部[10],并且通過15NO3-定位發(fā)現(xiàn)在缺硫植株中新吸收的硝酸鹽含量也相應降低[30]。
目前,關于影響硝酸鹽累積的研究很多,但是其分子機制尚不明晰,關鍵基因尚無定論。通過分析表觀含量與其代謝基因相關性,以確定其關鍵基因的研究方法提供了新的思路[31]。硝酸還原酶是植株體內硝酸鹽同化第一步的酶,催化硝酸鹽轉變?yōu)閬喯跛猁},在本研究中,NR表達量對施硫反應敏感,在不結球白菜的葉片及葉柄中均檢測到施硫處理NR的表達量均明顯高于CK,但是其對施硫的種類及濃度并不敏感,尤其是在葉片中(圖4、5)。同樣,其他試驗也報道缺硫會引起NR活性降低及氨基酸累積[11,32-33]。
谷氨酰胺合成酶與谷氨酸合酶是 GS/GOGAT循環(huán)中重要的酶,在高等植物中,GS/GOGAT循環(huán)是正常條件下氮同化的主要途徑[34-36],GDH途徑則是起一種補充及緩解氨脅迫的作用[37]。在植物體內含有兩種GS,分別為Cytoplasm-GS與Chloroplast-GS,在基因組中 Cytoplasm-GS是以基因群的形式存在,而Chloroplast-GS是以單一基因的形式[37-38]。研究顯示,補充硫能使油菜中的GS活性增加,而減少硫則恰恰相反[11],GS可能是硫促進氮同化的關鍵基因。本試驗中,葉片Cytoplasm-GS-1的表達量在Na2SO4處理的 S4—S6中顯著高于其他處理及對照,這可能是因為Na2SO4處理降低硝酸鹽比例較大(圖4);同時,葉柄中Cytoplasm-GS-2在NaHSO3處理的S7—S9中表達量弱于其他處理(圖5),這也可能是由于NaHSO3處理造成了硝酸鹽的累積。
高等植物體內,根據(jù)電子載體的不同有兩種GOGAT,分別為NADH-GOGAT與Fd-GOGAT。NADH-GOGAT大量存在植物根系中,參與初級氮同化以及分解氨基酸產生銨的再同化;Fd-GOGAT的主要作用是參與葉片中光呼吸分解銨離子的再同化[39]。NADH-GOGAT被認為是影響氮同化的重要基因,在抑制NADH-GOGAT表達的轉基因水稻株系中,發(fā)現(xiàn)葉片中谷氨酸及其他氨基酸,與多數(shù)含氮化合物如葉綠素、吡啶核苷酸等有顯著下降,地上部分的全氮含量也有所降低[40],相似的現(xiàn)象也出現(xiàn)在擬南芥突變體中[41]。本研究中,葉片及葉柄中Fd-GOGAT的表達量較高,但在施硫處理與不施硫處理間并無顯著變化(圖4、5);NADH-GOGAT-1僅CK葉片中表達量較低,但NADH-GOGAT-2在不結球白菜葉片及葉柄中均表現(xiàn)出規(guī)律變化(圖4、5),葉片中NADH-GOGAT-2在硝酸鹽含量最低的S10處理中表達量最高,硝酸鹽含量較低的S6、S7、S11、S12中表達量次之,而硝酸鹽累積的 S0、S1、S9的表達量相對較低;同樣在葉柄中,NADH-GOGAT-2在Na2SO4處理的S4—S6中表達量最大,其次為Na2S2O3處理的S9—S12,與硫處理降低葉柄硝酸鹽含量的表現(xiàn)吻合。由此可見,在不結球白菜中,NADH-GOGAT-2表達量與硝酸鹽含量呈負相關,因此,推測NADH-GOGAT-2在硫素影響不結球白菜硝酸鹽累積中發(fā)揮重要的作用,可能是影響氮同化的關鍵基因,其具體功能有待進一步驗證。
硫處理會對植株硫代謝相關基因產生一定影響,ATPS是硫同化途經第一步的酶,miR395被認為是通過調控ATPS表達而影響硫同化[42]。在擬南芥中發(fā)現(xiàn)4個基因編碼 ATPS(ATPS-1、ATPS-2、ATPS-3、ATPS-4),其中,通過數(shù)量性狀遺傳標記(quantitative trait locus,QTL)分析,得出ATPS-1是參與硫同化最主要的基因,擬南芥atps1突變體中ATPS-1表達也是最大貢獻ATP酶活的同位基因,同樣驗證了以上結論[14]。在本研究中,葉片中的硫處理以 ATPS-2、ATPS-3、ATPS-4表達量顯著高于對照,葉柄中卻無顯著變化(圖6、7)。APSR在植物基因組中有3個同位基因(APSR-1、APSR-2、APSR-3),在生菜的研究中發(fā)現(xiàn) APSR為調控植株硫醇含量的關鍵基因[10]。OASTL在高等植物中主要存在胞液中,半胱氨酸生物合成的氮前體修飾需要精準的氮、硫調控,OASLT被認為在這方面發(fā)揮重要作用[29]。本研究中,葉柄中硫同化基因響應不如葉片明顯,且尚無足夠證據(jù)發(fā)現(xiàn)氮硫調控關鍵基因。
通過比較4種硫素形態(tài)對不結球白菜體內硝酸鹽含量的影響,確定Na2SO4是降低不結球白菜硝酸鹽效果較為顯著的硫素,且能夠顯著提高其產量,30 mg·kg-1的Na2SO4是較優(yōu)處理。NADH-GOGAT-2表達量與不結球白菜內硝酸鹽含量呈負相關,推測NADHGOGAT-2在硫素影響不結球白菜硝酸鹽累積中發(fā)揮重要的作用,可能是影響氮同化的關鍵基因。
References
[1] 謝國祥, 郭寶福, 趙士權, 王艷莉, 陳輝. 南京市市售蔬菜硝酸鹽含量及居民暴露量評估. 現(xiàn)代預防醫(yī)學, 2013, 40(7): 1236-1238. XIU G Q, GUO F B, ZHAO S Q, WANG Y L, CHEN H. The nitrate contents in commercial vegetables and assessment of nitrate exposure in Nanjing residents. Modern Preventive Medicine, 2013, 40(7):1236-1238. (in Chinese)
[2] 郭開秀, 姚春霞, 陳亦, 楊業(yè)鳳, 陸利民. 上海市秋季蔬菜硝酸鹽含量及風險攝入評估. 環(huán)境科學, 2011, 32(4): 1177-1181. GUO K X, YAO C X, CHEN Y, YANG Y F, LU L M. Nitrate contents in autumn vegetables and assessment of nitrate intake in Shanghai. Environmental Science, 2011, 32(4): 1177-1181. (in Chinese)
[3] KOPRIVOVA A, SUTER M, OPDEN C R, BRUNOLD C, KOPRIVA S. Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiology, 2000, 122: 737-746.
[4] MARIO G, JOHN A R. Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 2014, 118: 45-61.
[5] HOEFGEN R, NIKIFOROVA V. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Plant Physiology, 2008, 132: 190-198.
[6] CARFAGNA S, VONA V, DI MARTINO V, ESPOSITO S, RIGANO C. Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environmental and Experimental Botany, 2011, 71: 18-24.
[7] DONNA M K, JOSHUA N, NANCY L E, TIMOTHY J T, DAVID E G. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Bioresource Technology, 2013, 130: 125-135.
[8] HESSE H, NIKIFOROVA V, GAKIERE B, HOEFGE R. Molecular analysis and control of cysteine biosynthesis, integration of nitrogen and sulphur metabolism. Journal of Experimental Botany, 2004, 55:1283-1292.
[9] IMAMURA S, TERASHITA M, OHNUMA M, MARUYAMA S,MINODA A, WEBER A P M, INOUYE T, SEKINE Y, FUJITA Y,OMATA T, TANAKA K. Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductaselike enzyme. Plant Cell Physiology, 2010, 51(5): 707-717.
[10] ALEKSANDRA K, PETER B, ELISABETH E S, FREEK S P,STANISLAV K, MALCOLM J H, LUIT J D K. Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. Journal of Plant Physiology, 2009, 166: 168-179.
[11] ZHANG Q, BOK-RYE L, SANG-HYUN P, RASHED Z,JEAN-CHRISTOPHE A, ALAIN O, TAE-HWAN K. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus. Plant Physiology and Biochemistry, 2015, 87: 1-8.
[12] Muhammad S, Mei H T, Elisabeth E S, Aleksandra K, Freek S,Posthumus, Jan H V, Saroj P, Henk S, Malcolm J H, Luit J D K. Copper exposure interferes with the regulation of the uptake,distribution and metabolism of sulfate in Chinese cabbage. Journal of Plant Physiology, 2010, 167: 438-446.
[13] ABDALLAHA M, ETIENNE P, OURRY A, MEURIOT F. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Science, 2011, 180: 511-520.
[14] ANNE H, MIKIKO K, RICHARD H, WOLFGANG F, HITOSHI S,CORNELIA H, HEINZ R. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression,metabolites, and plant hormones. Journal of Experimental Botany,2012, 63(5): 1873-1893.
[15] 李曉峰, 王俊玲, 李林妍, 謝鑫, 高志奎. 硫磺與水楊酸配施對韭菜硝酸鹽累積及氮代謝的影響. 植物營養(yǎng)與肥料學報, 2013,19(5): 1264 -1271. LI X F, WANG J L, LI L Y, XIE X, GAO Z K. Effects of sulfur and salicylic acid on nitrate accumulation and nitrogen metabolism in leaves of Chinese chive. Journal of Plant Nutrition and Fertilizer,2013, 19(5): 1264-1271. (in Chinese)
[16] 孔靈君, 徐坤, 張永征, 何平. 硫對大蔥生長及氮硫同化關鍵酶活性的影響. 園藝學報, 2013, 40(12): 2505-2512. KONG L J, XU K, ZHANG Y Z, HE P. Effects of sulfur on growth and key enzyme activities involved in nitrogen and sulfur assimilation in Chinese spring onion. Acta Horticulturae Sinica, 2013, 40(12):2505-2512. (in Chinese)
[17] 霍捷, 王俊玲, 薛占軍, 王梅, 高志奎. 亞硫酸氫鈉對白菜葉片硝酸鹽還原及光合能力的影響. 園藝學報, 2012, 39(4): 669-676. HUO J, WANG J L, XUE Z J, WANG M, GAO Z K. Effects of sodium bisulfite on nitrate reduction and photosynthetic capacity in the leaves of non-heading Chinese cabbage. Acta Horticulturae Sinica,2012, 39(4): 669-676. (in Chinese)
[18] 付雪清, 王俊玲, 高志奎. NaHSO3和Na2SO4配施對小白菜葉片硝酸鹽含量及營養(yǎng)品質的影響. 河北農業(yè)大學學報, 2013, 36(6):43-47. FU X Q, WANG J L, GAO Z K. Effects of NaHSO3and Na2SO4combination on the nitrate and nutritional quality non-heading Chinese cabbage. Journal of Agricultural University of Hebei, 2013,36(6): 43-47. (in Chinese)
[19] 李合生. 植物生理生化實驗原理和技術. 北京: 高等教育出版社,2000, 123-137. LI H S. Theory and Technology of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000: 123-137. (in Chinese)
[20] REN J, CHEN Z W, DUAN W K, SONG X M, ZHOU J, LIU T K,WANG J J, HOU X L, LI Y. Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiology and Biochemistry, 2013, 73: 229-236.
[21] TAKAHASHI H, KOPRIVA S, GIORDANO M, SAITO K, HELL R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 2011, 62: 157-184.
[22] DUBOUSSET L, ABDALLAH M, DESFEUX A S, ETIENNE P,MEURIOT F, HAWKESFORD M J, GOMBERT J, SEGURA R,BATAILLE M P, REZE S, BONNEFOY J, AMELINE1 A F, OURRY A, DILY F L, AVICE J C. Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. Journal of Experimental Botany, 2009, 60(11): 3239-3253.
[23] RUSLAN Y, SARAH G M, COLETTE M, TAMARA G, HENNING F, SEAN D, ANNA K, ULF-INGO F STANISLAV K. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. The Plant Journal, 2010, 62: 1-11.
[24] RIEMENSCHNEIDER A, NIKIFOROVA V, HOEFGEN R, DE K,KOK L J D, PAPENBROCK J. Impact of elevated H2S onmetabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiology and Biochemistry, 2005, 43:473-483.
[25] DAVIDIAN J C, KOPRIVA S. Regulation of sulfate uptake and assimilation—the same or not the same? Molecular Plant, 2010, 3(2):314-325.
[26] GIORDANO M, NORICI A, HELL R. Sulfur and phytoplankton:acquisition, metabolism and impact on the environment. New Phytologist, 2005, 166(2): 371-382.
[27] ABDALLAH M, DUBOUSSET L, MEURIOT F, ETIENNE P,AVICE J C, OURRY A. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.. Journal of Experimental Botany, 2010,61(10): 2635-2646.
[28] ZHANG B, PASINI R, HANBIN D, NAVEEN J, ZHAO Y H,THOMA, ZHENG Z. Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. The Plant Journal,2014, 77: 185-197.
[29] SIMONA C, VINCENZA V, VITTORIA D M, SERGIO E,CARMELO R. Nitrogen assimilation and cysteine biosynthesis in barley: Evidence for root sulphur assimilation upon recovery from N deprivation. Environmental and Experimental Botany, 2011, 71:18-24.
[30] LEE B R, MUNEER S, KIM K Y, AVICE J C, OURRY A, KIM T H. S-deciency responsive accumulation of amino acids is mainly due to hydrolysis of the previously synthesized proteins not to de novo synthesis in Brassica napus. Physiologia Plantarum, 2013, 147:369-380.
[31] XU Y, ZHU X, CHEN Y, GONG Y Q, LIU L. Expression profiling of genes involved in ascorbate biosynthesis and recycling during fleshy root development in radish. Plant Physiology and Biochemistry, 2013,70: 269-277.
[32] PROSSER I M, PURVES J V, SAKER L R, CLARKSON D T. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Journal of Experimental Botany, 2001, 52:113-121.
[33] NIKIFOROVA V J, BIELECKA M, GAKIERE B, KRUEGER S,RINDER J, KEMPA S R, MORCUENDE R, SCHEIBLE W R,HESSE H, HOEFGEN R. Effect of sulfur availability on the integrity of amino acid biosynthesis in plants. Amino Acids, 2006, 30: 173-183.
[34] LEA P J, MIFLIN B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974, 251: 614-616.
[35] SUáREZ M F, AVILA C, GALLARDO F, CANTóN F R, GARCíAGUTIéRREZ A, CLAROS M G, CáNOVAS F M. Molecular and enzymatic analysis of ammonium assimilation in woody plants.Journal of Experimental Botany, 2002, 53: 891-904.
[36] TEIXEIRA J, FIDALGO F. Salt stress affects glutamine synthetase activity and mRNA accumulation on potato plants in an organdependent manner. Plant Physiology and Biochemistry, 2009, 47:807-813.
[37] CASTRO-RODRíGUEZ V, GARCíA-GUTIéRREZ A, CANALES J,AVILA C, KIRBY E G, CáNOVAS F M. The glutamine synthetase gene family in Populus. BMC Plant Biology, 2011, 11: 119-134.
[38] BERNARD S M, HABASH D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 2009, 182: 608-620.
[39] LAM H M, COSCHIGANO K T, OLIVEIRA I C, MELO-OLIVEIRA R, CORUZZI G. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Biology, 1996, 47: 569-593.
[40] LU Y E, LUO F, YANG M, LI X H, LIAN X M. Suppression of glutamate synthase genes significantly affects carbon and nitrogen metabolism in rice (Oryza sativa L.). Sciences China Life Sciences,2011, 54(7): 651-663.
[41] LANCIEN M, MARTIN M, HSIEH M H, LEUSTEK T, GOODMAN H, CORUZZI G M. Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. The Plant Journal, 2002, 29: 347-358.
[42] LIANG G, YANG F, YU D. MicroRNA395 mediates regulation of sulphate accumulation and allocation in Arabidopsis thaliana. The Plant Journal, 2010, 62, 1046-1057.
(責任編輯 趙伶俐)
Effect of Sulphur Availability on Nitrate Accumulation and Expression of Nitrogen and Sulphur Assimilation Related Genes in Non-Heading Chinese Cabbage
XU Yao, MU Jian-mei, ZHANG Guo-qin, MA Jia-jia, XU Jun, LI Jun, LIU Feng-jun, SHE Xu-dong
(Institute of Agricultural Sciences in Taihu Lake District, Suzhou 215155, Jiangsu)
Abstract:【Objective】The objective of this paper is to identify the best sulfate to reduce nitrate accumulation in non-heading Chinese cabbage, and analyze the key genes involved in nitrogen and sulphur assimilation. The results of this study will provide new insights into sulphur fertilization and investigation of the molecular mechanisms of nitrate accumulation with the goal of molecular breeding.【Method】Nitrate content of non-heading Chinese cabbage leaves and petioles were measured under treatments of 4 forms of sulphur with 3 concentrations. The expression of 30 nitrogen and sulphur assimilation related genes were analyzed by semi-quantitative RT-PCR. 【Result】Sulphur treatments were significantly increased the aboveground biomass of non-heading Chinese cabbage, and the treatments of Na2SO4had the best effect, and 30 mg·kg-1Na2SO4was the most effective treatment as the aboveground biomass increased by 49.76% compared with the control. Na2SO4and Na2S2O3reduced nitrate content of non-headingChinese cabbage more significantly than others. Na2SO4decreased nitrate content by 12.23%-23.55% in leaves and by 33.08%-41.98% in petioles compared with the control, and it was also found a positive correlation between the reduction and concentration of Na2SO4, and 30 mg·kg-1Na2SO4also had the best effect. Na2S2O3decreased nitrate content by 15.34%-33.08% compared with the control in leaves and by 11.95%-19.68% in petioles. Sulphur promoted nitrogen assimilation, and the expression of NR-1, NADH-GOGAT-1, NADH-GOGAT-2, Cytoplasm-GS-4, Cytoplasm-GS-5, and GDH-3 were higher than the control in leaves,and the expression of NR-1, NADH-GOGAT-2, Cytoplasm-GS-1, and GDH-2 were higher than the control in petioles. The expression of NADH-GOGAT-2 was correlated with nitrate levels. Sulphur treatments also had an effect on sulphur assimilation genes, and the expressions of ATPS-2, ATPS-3, ATPS-4, APSR-3, SIR, SAT1.1, and SAT2.1 were higher than the control in leaves, and only the expressions of SIR and OASTL-A were higher than the control in petioles. 【Conclusion】 Na2SO4had the best effect in reducing nitrate content and increasing yield of non-heading Chinese cabbage, and 30 mg·kg-1Na2SO4was the most effective treatment. The expression of NADH-GOGAT-2 was correlated with nitrate levels. The data suggested that NADH-GOGAT-2 may be the key gene in nitrogen assimilation.
Key words:non-heading Chinese cabbage; sulphur; nitrate; nitrogen and sulphur assimilation; gene expression
收稿日期:2015-11-16;接受日期:2016-03-29
基金項目:蘇州市科技計劃項目(SYN201421)