• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      鹽地堿蓬2個(gè)DREB1/CBF基因的克隆與表達(dá)調(diào)控分析

      2016-07-18 09:32:38孫曉波蘇家樂賈新平梁麗建鄧衍明
      關(guān)鍵詞:熒光定量PCR

      孫曉波,蘇家樂,賈新平,梁麗建,肖 政,鄧衍明

      (江蘇省農(nóng)業(yè)科學(xué)院園藝研究所/江蘇省高效園藝作物遺傳改良重點(diǎn)實(shí)驗(yàn)室,南京 210014)

      ?

      鹽地堿蓬2個(gè)DREB1/CBF基因的克隆與表達(dá)調(diào)控分析

      孫曉波,蘇家樂,賈新平,梁麗建,肖政,鄧衍明

      (江蘇省農(nóng)業(yè)科學(xué)院園藝研究所/江蘇省高效園藝作物遺傳改良重點(diǎn)實(shí)驗(yàn)室,南京 210014)

      摘要:【目的】從鹽地堿蓬(Suaeda salsa L.)中克隆2個(gè)DREB1/CBF,分析其序列特征、編碼蛋白的亞細(xì)胞定位和轉(zhuǎn)錄激活活性,以及在非生物脅迫下的表達(dá)模式,為進(jìn)一步研究鹽地堿蓬的抗逆機(jī)制提供依據(jù)?!痉椒ā坷猛纯寺》ǐ@得鹽地堿蓬2個(gè)DREB1/CBF片段,采用RACE技術(shù)克隆獲得cDNA全長(zhǎng)序列,分別命名為SsCBF1 和SsCBF2。運(yùn)用生物信息學(xué)軟件對(duì)2個(gè)SsCBF及其編碼蛋白進(jìn)行分析,并將它們分別與GFP融合構(gòu)建植物表達(dá)載體,通過基因槍轉(zhuǎn)化法導(dǎo)入洋蔥表皮細(xì)胞進(jìn)行瞬時(shí)表達(dá),觀察它們編碼蛋白的亞細(xì)胞定位。利用酵母單雜交系統(tǒng)研究2個(gè)SsCBF與DRE/CRT順式作用元件的結(jié)合特異性和轉(zhuǎn)錄激活活性。采用Real time-PCR研究2個(gè)SsCBF在低溫、NaCl、PEG以及ABA處理下的表達(dá)模式?!窘Y(jié)果】 SsCBF1編碼一個(gè)225個(gè)氨基酸的蛋白,預(yù)測(cè)分子量為25.4 kD,理論等電點(diǎn)為4.84。SsCBF2編碼一個(gè)由260個(gè)氨基酸組成的蛋白,預(yù)測(cè)分子量為28.6 kD,理論等電點(diǎn)為5.05。SsCBF1和SsCBF2均含有1個(gè)典型的AP2/ERF保守結(jié)構(gòu)域,在核苷酸和氨基酸水平上分別具有53.5% 和45.4%的同源性,而2個(gè)基因的AP2/ERF結(jié)構(gòu)域在核苷酸和氨基酸水平上分別具有76.2%和 87.3%的相似性。SsCBF1、SsCBF2歸屬于DREB亞組的A-1組,定位于細(xì)胞核內(nèi),均能與DRE/CRT順式作用元件特異性結(jié)合,并激活下游報(bào)告基因的表達(dá)。低溫、干旱、高鹽和ABA能夠誘導(dǎo)SsCBF1表達(dá),而SsCBF2在低溫處理下表達(dá)量上調(diào),但對(duì)干旱、高鹽和ABA處理不響應(yīng)?!窘Y(jié)論】SsCBF1和SsCBF2是鹽地堿蓬的2個(gè)脅迫應(yīng)答轉(zhuǎn)錄因子。在鹽地堿蓬中,SsCBF1通過依賴ABA途徑參與對(duì)高鹽、干旱和低溫等非生物脅迫的應(yīng)激調(diào)控,而SsCBF2則通過不依賴于ABA途徑對(duì)低溫脅迫產(chǎn)生響應(yīng)。

      關(guān)鍵詞:鹽地堿蓬;DREB1/CBF轉(zhuǎn)錄因子;亞細(xì)胞定位;酵母單雜交;熒光定量PCR

      聯(lián)系方式:孫曉波,E-mail:sunxiaobojaas@163.com。通信作者鄧衍明,E-mail:nksdym@163.com

      0 引言

      【研究意義】鹽地堿蓬(Suaeda salsa L.)為藜科堿蓬屬真鹽生植物,在中國(guó)分布廣泛,可用于食品、飼料、醫(yī)藥等,是一種非常有價(jià)值的野生植物資源。鹽地堿蓬不僅是典型的鹽堿地指示植物[1],還兼具耐旱[2]、耐澇[3]等特性,是研究植物抗逆機(jī)制理想的基因庫(kù)[4]。但目前對(duì)它的研究主要集中于人工栽培[2,5]、生理生化[6-7]、營(yíng)養(yǎng)組成成分分析[8-9]和組織培養(yǎng)[10-11]等方面,其抗逆機(jī)理及與抗逆相關(guān)基因還沒有得到很好的挖掘和研究。DREB/CBF轉(zhuǎn)錄因子是目前研究最深入的抗逆相關(guān)轉(zhuǎn)錄因子,在植物對(duì)逆境脅迫的響應(yīng)和耐性方面起關(guān)鍵作用[12-13]??寺←}地堿蓬DREB/CBF,分析它們的序列特征、編碼蛋白的亞細(xì)胞定位和轉(zhuǎn)錄激活活性,以及經(jīng)高鹽、干旱、低溫和 ABA處理后的表達(dá)模式,對(duì)研究鹽地堿蓬抗逆機(jī)制具有積極作用,為完善植物抗逆機(jī)理提供新的理論基礎(chǔ),同時(shí)也可為其他大宗農(nóng)作物抗逆性狀的遺傳改良和種質(zhì)創(chuàng)新提供新的基因資源?!厩叭搜芯窟M(jìn)展】DREB/CBF轉(zhuǎn)錄因子是乙烯應(yīng)答元件結(jié)合蛋白(AP2/EREBP)轉(zhuǎn)錄因子家族中的一個(gè)亞家族。在一些高鹽、干旱和低溫等脅迫應(yīng)答基因啟動(dòng)子中,存在一至多個(gè)DRE/CRT順式作用元件,DREB/CBF能與其特異性結(jié)合,激活下游抗逆功能基因的表達(dá),從而增強(qiáng)植物對(duì)不良環(huán)境的抗性[14-15]。DREB/CBF家族蛋白可進(jìn)一步分為A-1—A-6 6個(gè)亞組,其中A-1和A-2是2個(gè)最大的亞組,包括DREBl/CBF和DREB2兩類基因,分別在冷脅迫及脫水和鹽堿脅迫應(yīng)答中起核心作用[14,16-17]。DREBl/CBF在植物中廣泛存在,已陸續(xù)在擬南芥、油菜、大麥、水稻、番茄、黑麥草和大豆等多種甜土植物及一些鹽生植物中被發(fā)現(xiàn)[18-25]。研究表明,DREB/CBF均含一個(gè)約由60個(gè)氨基酸殘基組成的AP2/ERF保守結(jié)構(gòu)域,包括YRG和RAYD 2個(gè)保守區(qū)。YRG為N端堿性親水區(qū),由19—22個(gè)氨基酸殘基形成3個(gè)反向平行β折疊,有利于與DNA結(jié)合;其中第2個(gè)β折疊中的第14位纈氨酸(V)和第l9位谷氨酸(E)是決定DREB/CBF 與DRE/CRT特異性結(jié)合的關(guān)鍵位點(diǎn)[18, 26-27]。RAYD位于AP2/ERF的C端,含有一個(gè)由18個(gè)氨基酸形成的雙親 α螺旋酸性核心區(qū)域;其并不直接參與對(duì)DRE/CRT的特異識(shí)別,而是通過影響YRG的構(gòu)象或通過與其他蛋白的相互作用來調(diào)節(jié)AP2/ERF與DNA的結(jié)合[26, 28]。不同DREBl/CBF蛋白的羧基端均存在一個(gè)“LWSY”保守序列,同時(shí)在AP2/ERF末端包含一個(gè)“DSAWR”保守序列,這兩個(gè)保守序列是區(qū)分A-1組和其他 5個(gè)亞組 DREB蛋白的特征序列[15,17,19]。DREB1/CBF蛋白N-端一般含有1個(gè)保守的富含堿性氨基酸的核定位信號(hào)PKKR/PAGRxKFxETPHP;C-末端富含酸性氨基酸,被認(rèn)為是轉(zhuǎn)錄激活區(qū)。【本研究切入點(diǎn)】目前,鹽地堿蓬中與抗逆相關(guān)基因的研究主要集中在與滲透平衡、離子平衡和去除活性氧等相關(guān)的基因,關(guān)于鹽地堿蓬DREB轉(zhuǎn)錄因子的報(bào)道還很少[29-32],而有關(guān)DREB1/CBF參與鹽地堿蓬非生物脅迫應(yīng)答的研究尚未見報(bào)道?!緮M解決的關(guān)鍵問題】本研究采用同源克隆法獲得2個(gè)DREB1/CBF cDNA片段,在此基礎(chǔ)上,利用RACE技術(shù)分離克隆這兩個(gè)基因的cDNA全長(zhǎng),同時(shí)對(duì)它們編碼蛋白的特性、保守結(jié)構(gòu)域、亞細(xì)胞定位、與DRE/CRT結(jié)合的特異性與轉(zhuǎn)錄激活活性及在不同逆境脅迫下的基因表達(dá)模式進(jìn)行分析與檢測(cè),為探討鹽生植物鹽地堿蓬的抗逆機(jī)制積累資料,同時(shí)也為通過基因工程改良植物抗逆性提供候選基因。

      1 材料與方法

      試驗(yàn)于2013年5月至2014年12月在江蘇省農(nóng)業(yè)科學(xué)院室內(nèi)進(jìn)行,田間樣本采集分別在2013年4—9月和2014年4—9月在江蘇省農(nóng)業(yè)科學(xué)院灘涂試驗(yàn)地進(jìn)行。

      1.1 材料

      試驗(yàn)所用材料為鹽地堿蓬,取自江蘇省農(nóng)業(yè)科學(xué)院灘涂試驗(yàn)地。

      將生長(zhǎng)至10 cm(未有樹生分枝)高的鹽地堿蓬幼苗分 3部分處理,一部分幼苗提取肉質(zhì)莖基因組DNA和總RNA,用于2個(gè)SsCBF的克?。灰徊糠钟酌绫粡呐囵B(yǎng)土中取出,用無菌水沖洗干凈,于 1/2 Hoagland營(yíng)養(yǎng)液中過渡培養(yǎng)15 d,再分別轉(zhuǎn)移至含有400 mmol·L-1NaCl、20 % PEG 6000和100 μmol·L-1ABA的1/2 Hoagland營(yíng)養(yǎng)液中培養(yǎng),并分別于0、0.5、2、4、8、12和24 h后剪去肉質(zhì)莖以提取其總RNA,用于Real-time PCR分析;一部分幼苗移入光照培養(yǎng)箱進(jìn)行 4℃低溫處理,在處理 0、0.5、2、4、8、12 和24 h后取肉質(zhì)莖并提取總RNA,用于Real-time PCR分析。

      1.2 SsCBF1和SsCBF2片段的同源克隆

      用植物基因組提取試劑盒提取鹽地堿蓬基因組DNA。利用DNAMAN6.0軟件比較NCBI數(shù)據(jù)庫(kù)中已有植物DREB1/CBF的AP2/ERF結(jié)構(gòu)域,從中選取2條保守氨基酸序列TRHPVYRGV和ACLNFADS設(shè)計(jì)1對(duì)簡(jiǎn)并引物,正向引物CBF-S:5′-ACG(A/T/C)A(C)GG(A/T/C)CAC(T)CCG(A/T/C)GTG(A/T/C)TAC(T)A(C)GG(A/T/C)GGG(A/T/C)GT-3′,反向引物CBF-AS:5′-GAA(G)TCG(A/T)GCA(G)AAA(G)TTG(A/T/C)AA(G)A(G)CAG(A/T/C)GC-3′。以鹽地堿蓬基因組為模板,采用PCR聚合酶鏈?zhǔn)椒磻?yīng)擴(kuò)增AP2/ERF保守區(qū)同源序列。PCR反應(yīng)體系為2.5 μL 10×PCR緩沖液、1.0 μL dNTP(脫氧核苷酸混合物,10 mmol·L-1)、正、反向引物10 μmol·L-1各1.0 μL、1.0 μL基因組DNA(濃度50 ng·μL-1)、0.25 μL LA-Taq酶和18.25 μL雙蒸水。PCR反應(yīng)條件為95℃ 5 min;95℃ 30 s,55℃ 40 s,72℃1 min,35個(gè)循環(huán);72℃ 10 min。PCR產(chǎn)物回收后與pMD18-T(TaKaRa)載體連接,轉(zhuǎn)化,挑取白色菌斑,經(jīng) PCR篩選和酶切鑒定后送往上海生物工程公司進(jìn)行測(cè)序鑒定。最終獲得2條SsDREB1/CBF片段。

      1.3 SsCBF1和SsCBF2的cDNA全長(zhǎng)序列的獲得

      取經(jīng)4℃低溫處理的鹽地堿蓬肉質(zhì)莖,用SV Total RNA lysis試劑盒(Promega)提取總 RNA,并經(jīng)DNaseⅠ消化去除DNA。通過測(cè)定其OD260/280比值和1%瓊脂糖凝膠電泳比值,分析檢測(cè)所提取總RNA的純度、濃度及其完整性。以總 RNA為模板,采用Invitrogen公司5′/3′ RACE System(version2. 0)試劑盒克隆基因的末端序列。反轉(zhuǎn)錄引物使用3′AP(表1)。

      為獲得SsCBF1和SsCBF2的3′端序列,根據(jù)已獲得的核苷酸序列,分別設(shè)計(jì)2條3′RACE特異性巢式引物 SsCBF1-3′GSP1、SsCBF1-3′GSP2和 SsCBF2-3′GSP1、SsCBF2-3′GSP2(表1),參照3′RACE試劑盒(Invitrogen)說明進(jìn)行擴(kuò)增,目標(biāo) PCR產(chǎn)物即為SsCBF1和SsCBF2的3′序列。設(shè)計(jì)2條5′RACE特異性巢式引物 SsCBF1-5′GSP1、SsCBF1-5′GSP2和SsCBF2-5′GSP1、SsCBF2-5′GSP2(表1),參照5′RACE試劑盒(Invitrogen)說明進(jìn)行基因序列 5′RACE,目標(biāo)PCR產(chǎn)物即為SsCBF1和SsCBF2的5′序列。確定目的片段的大小并用凝膠回收試劑盒對(duì)其進(jìn)行回收,轉(zhuǎn)化,挑取白色菌斑,經(jīng)PCR篩選和酶切鑒定后送往上海生物工程公司進(jìn)行測(cè)序鑒定。

      使用DNAMAN軟件將已知的中間序列與3′端和5′端序列進(jìn)行拼接獲得SsCBF1和SsCBF2的cDNA全長(zhǎng)序列。在拼接的2條全長(zhǎng)序列兩端分別設(shè)計(jì)擴(kuò)增全長(zhǎng)所需引物 SsCBF1-S、SsCBF1-AS和 SsCBF2-S、SsCBF2-AS,以cDNA為模板進(jìn)行PCR擴(kuò)增,回收,連接,測(cè)序,與拼接序列進(jìn)行比對(duì),獲得SsCBF1和SsCBF2的全長(zhǎng)序列,并將2條序列提交到GenBank。

      1.4 SsCBF1和SsCBF2的生物信息學(xué)分析

      對(duì)鹽地堿蓬SsCBF1和SsCBF2的堿基序列和所編碼的氨基酸序列進(jìn)行分析。通過 BLAST X和BLAST P搜索NCBI的核苷酸和蛋白質(zhì)數(shù)據(jù)庫(kù),進(jìn)行序列相似性分析及氨基酸保守性預(yù)測(cè);ORF finder程序?qū)ふ议_放閱讀框;采用 ProtParam計(jì)算蛋白質(zhì)的相對(duì)分子量和理論等電點(diǎn);使用ClustaW1.83軟件進(jìn)行多重序列比對(duì);利用 Mega5.1軟件,采取 Neighbor-Joining法構(gòu)建系統(tǒng)進(jìn)化樹;采用SignalP 4.0 Server預(yù)測(cè)蛋白的信號(hào)肽;利用TMHMM Server v.2.0軟件對(duì)基因編碼的氨基酸跨膜結(jié)構(gòu)域進(jìn)行預(yù)測(cè)和分析;ProtScale以默認(rèn)算法(Hphob./Kyte & Doolittle)對(duì)蛋白進(jìn)行親疏水性預(yù)測(cè);ExPaSy-SOPMA軟件分析蛋白質(zhì)的二級(jí)結(jié)構(gòu)。

      表1 RACE-PCR 擴(kuò)增所用引物列表Table 1 List of primers used for RACE-PCR amplification

      1.5 SsCBF1和SsCBF2的亞細(xì)胞定位

      以SsCBF1和SsCBF2陽(yáng)性克隆提取的質(zhì)粒作為模板,分別以SsCBF1-OF1:5′-CCCAAATCCAATGG ATAATAATTATGGGCAGCAC-3′,SsCBF1-OF2:5′-TTACGCTGAGAAACTCCACAGTGA-3′和 SsCBF2-OF1:5′-CCCAAATCCAATGGACGTCTATTACAAC AACACC-3′,SsCBF2-OF2:5′-TCAAATGGAGTTGG AGTAACTCCA-3′作為引物擴(kuò)增SsCBF1和 SsCBF2的編碼區(qū)序列,將 PCR產(chǎn)物分別亞克隆至 pXDG-vector[33]GFP的下游,構(gòu)建CaMV35S啟動(dòng)子驅(qū)動(dòng)的攜帶有GFP和SsCBF1融合基因及GFP和SsCBF2融合基因的瞬時(shí)表達(dá)載體 pXDG-GFP-SsCBF1和pXDG-GFP-SsCBF2。切取2 cm×2 cm的洋蔥內(nèi)表皮組織置于固體平板MS培養(yǎng)基,28℃弱光下預(yù)培養(yǎng) 4—6 h后待用。采用 Bio-RAD公司 Model PDS-1000/He型基因槍進(jìn)行轟擊,每皿轟擊1次,基因槍轉(zhuǎn)化步驟參照參考文獻(xiàn)[32]。將轟擊后的洋蔥內(nèi)表皮細(xì)胞在MS培養(yǎng)基上25℃黑暗培養(yǎng)16—18 h后取出,在德國(guó)ZEISS LSM 510 META型激光共聚焦顯微鏡下觀察綠色熒光在細(xì)胞中的表達(dá)部位,利用計(jì)算機(jī)拍攝和存貯圖像。以pXDG-vector載體作為陽(yáng)性對(duì)照。

      1.6 酵母單雜交

      將人工合成的1條含有3個(gè)DRE/CRT核心序列的核酸序列及它的1條突變體核酸序列克隆到酵母的報(bào)告質(zhì)粒pHIS2.1(Clontech公司),獲得的DRE/CRT元件陽(yáng)性質(zhì)粒pHIS2. 1-DRE和mDRE元件陽(yáng)性質(zhì)粒pHIS2.1-mDRE[34]。根據(jù)SsCBF1和SsCBF2的編碼序列分別設(shè)計(jì)1對(duì)引物,在正向和反向引物的兩端分別引入XhoⅠ和SmaⅠ酶切位點(diǎn),以SsCBF1和SsCBF2 的cDNA為模板進(jìn)行PCR擴(kuò)增。擴(kuò)增產(chǎn)物經(jīng)雙酶切后與同樣雙酶切的酵母表達(dá)載體YepGAP(不帶GAL4 AD 激活區(qū))[27]連接,獲得的陽(yáng)性質(zhì)粒分別命名為YepGAP- SsCBF1和YepGAP- SsCBF2。將構(gòu)建好的2個(gè)表達(dá)載體分別與報(bào)告載體 pHIS2.1-DRE/pHIS2.1-mDRE共同轉(zhuǎn)化酵母菌株Y187,在SD/-His-Ura-Trp平板上篩選轉(zhuǎn)化子,獲得的陽(yáng)性克隆在 SD/-His-Ura-Trp+10 mmol·L-13-AT平板上進(jìn)行檢測(cè)???YepGAP載體作為陰性對(duì)照。

      1.7 熒光定量PCR分析

      根據(jù)SsCBF1和SsCBF2全長(zhǎng)cDNA序列,選取不含保守序列的3′端核酸序列設(shè)計(jì)熒光定量PCR引物SsCBF1-qf:5′-CAGAATACATGGATGAGGAG-3′,SsCBF1-qr:5′-GAGACTTCATAGTCACTGTC-3′和SsCBF2-qf:5′-GCAGACAGTAGAAGTATCAG-3′,SsCBF2-qr:5′-CGATAGCAGTAGTAGTGGTG-3′。以鹽地堿蓬A(yù)ctin(GenBank登錄號(hào)FJ587488)作內(nèi)參,設(shè)計(jì)引物Ss-ActinF:5′-ACCGTTCCAATCTATGAGG -3′和 Ss-ActinR:5′-CGTAAGCCAACTTCTCCT-3′。利用羅氏Light Cycler 2.0型熒光定量PCR儀,參考SYBR Premix Ex TaqTM(TaKaRa,Japan)試劑盒說明書,采用三步法進(jìn)行Real-time PCR:95℃ 30 s;95℃5 s,60℃ 15 s,72℃ 20 s,45個(gè)循環(huán);60—95℃,每次上升0.5℃進(jìn)行溶解曲線分析;72℃收集熒光信號(hào)。每個(gè)樣品進(jìn)行 3次重復(fù),取其平均值。采用 2-ΔΔCt法進(jìn)行數(shù)據(jù)的相對(duì)定量分析。

      2 結(jié)果

      2.1 鹽地堿蓬SsCBF1和SsCBF2的克隆與結(jié)構(gòu)分析

      為獲得鹽地堿蓬DREB1/CBF AP2/ERF結(jié)構(gòu)域的部分序列,采用DNAMAN6.0軟件比較NCBI數(shù)據(jù)庫(kù)中已有植物DREB1/CBF的AP2/ERF結(jié)構(gòu)域,從中選取2條保守氨基酸序列TRHPVYRGV和ACLNFADS設(shè)計(jì)一對(duì)簡(jiǎn)并引物,以鹽地堿蓬基因組為模板進(jìn)行PCR擴(kuò)增,獲得1條約180 bp的PCR片段,經(jīng)測(cè)序分析發(fā)現(xiàn)PCR產(chǎn)物中包含2種DREB1/CBF片段。根據(jù)這兩個(gè) DREB1/CBF片段測(cè)序結(jié)果設(shè)計(jì) 5′/3′RACE引物,分別經(jīng)過兩輪巢式PCR擴(kuò)增,獲得它們的cDNA全長(zhǎng),分別命名為SsCBF1(GenBank登錄號(hào)為KM679415)和SsCBF2(GenBank 登錄號(hào)為KM679416)。SsCBF1的cDNA全長(zhǎng)1 105 bp,編碼區(qū)長(zhǎng)675 bp,編碼225個(gè)氨基酸,蛋白分子量(MW)為25.4 kD,理論等電點(diǎn)(pI)為4.84;SsCBF2的cDNA全長(zhǎng)952 bp,編碼區(qū)長(zhǎng)780 bp,編碼260個(gè)氨基酸,蛋白分子量(MW)為28.6 kD,理論等電點(diǎn)(pI)為5.05。

      搜索NCBI SMART網(wǎng)站進(jìn)行蛋白質(zhì)結(jié)構(gòu)功能域分析,結(jié)果顯示這兩個(gè)蛋白均含有1個(gè)典型的由60個(gè)氨基酸組成的 AP2/ERF保守結(jié)構(gòu)域。將這 2個(gè)AP2/ERF結(jié)構(gòu)域提交到SWISS MODEL(http:// swissmodel.expasy.org)在線程序,以AtERF-1(PDB ID: 1gcc.1.C)分子模型為基礎(chǔ)進(jìn)行三維結(jié)構(gòu)預(yù)測(cè),結(jié)果顯示這兩個(gè)結(jié)構(gòu)域均含有3個(gè)反向平行的β折疊和一個(gè) α螺旋(圖 1)。多序列比對(duì)結(jié)果顯示,SsCBF1和SsCBF2序列差異較大,尤其是在N-末端和 C-末端,在核苷酸和氨基酸水平上分別具有53.5%和 45.4%的同源性;而 2個(gè)基因的 AP2/ERF結(jié)構(gòu)域同源性很高,在核苷酸和氨基酸水平上分別具有76.2%和87.3%的相似性。SsCBF1和SsCBF2 在AP2/ERF結(jié)構(gòu)域上游均含有1個(gè)保守的核定位信號(hào)“PKKRAGRKKFKETPHP”,而C-末端均富含酸性氨基酸(圖2)。SsCBF1 AP2/ERF結(jié)構(gòu)域第2個(gè)β折疊中第14位為纈氨酸,第19位為脯氨酸;AP2/ERF結(jié)構(gòu)域下游含有序列“DSAWR”,羧基末端含有序列“LWSF”。SsCBF2 AP2/ERF結(jié)構(gòu)域第2個(gè)β折疊中第14位和第19位分別為纈氨酸和谷氨酸;AP2/ERF結(jié)構(gòu)域下游含有序列“DSSWR”,羧基末端含有序列“LWSY”(圖2)。

      圖1 SsCBF1蛋白(a)和SsCBF2蛋白(b)的三級(jí)結(jié)構(gòu)Fig. 1 Tertiary structures of SsCBF1 protein (a) and SsCBF2 protein (b)

      2.2 鹽地堿蓬SsCBF1、SsCBF2蛋白序列同源性和系統(tǒng)進(jìn)化分析

      利用 BLAST(http://blast.ncbi.nlm.nih.gov/Blast. cgi)將SsCBF1和SsCBF2蛋白序列與GenBank中的蛋白序列比對(duì)分析發(fā)現(xiàn),它們與多種植物DREB的氨基酸序列具有同源性(圖 2),SsCBF1與小葉楊PsCBF4(Populus simonii,AIU92947)、河北楊PhCBF4a、桃PpCBF1、薔薇雜交栽培種Rh-DREB1B、馬鈴薯StCBF3、野生番茄ShCBF1和擬南芥AtCBF4的氨基酸序列一致性為48.7%—53%;SsCBF2與這些DREB氨基酸序列一致性為 42.2%—48.9%,低于SsCBF1與它們的同源性。

      圖2 SsCBF1、SsCBF2與其他7種植物A-1組DREB的氨基酸序列比對(duì)Fig. 2 Comparison of the deduced amino acid sequences of SsCBF1 and SsCBF2 with homologs from 7 other plants

      以擬南芥145個(gè)AP2/ERF轉(zhuǎn)錄因子的分類為基礎(chǔ)[18],利用MEGA5.1軟件對(duì)SsCBF1、SsCBF2和其他物種的DREB/CBF構(gòu)建進(jìn)化樹(圖3)。結(jié)果顯示,SsCBF1和SsCBF2歸屬于 DREB亞組的A-1組,SsCBF1與桃的PpCBF1和楊樹的PnDREB69親緣關(guān)系最近,而 SsCBF2與馬鈴薯的 StCBF3和番茄的ShCBF1親緣關(guān)系最近。

      2.3 SsCBF1和SsCBF2的亞細(xì)胞定位

      將構(gòu)建好的2個(gè)GFP-SsCBF瞬時(shí)表達(dá)載體分別與金粉混合制備成混合液,經(jīng)基因槍轟擊轉(zhuǎn)化洋蔥表皮細(xì)胞后,于25℃黑暗培養(yǎng)16—18 h,使用激光共聚焦顯微鏡在488 nm波長(zhǎng)下觀察洋蔥表皮細(xì)胞綠色熒光分布情況(圖4)。在含空載體35S::GFP的洋蔥表皮細(xì)胞中,綠色熒光蛋白在細(xì)胞膜、細(xì)胞核及細(xì)胞質(zhì)中均有表達(dá)(圖4-A—圖4-C);而在表達(dá)GFP-SsCBF1融合蛋白(圖4-D—圖4-F)和GFP-SsCBF2融合蛋白(圖4-G—圖4-I)的洋蔥表皮細(xì)胞中,綠色熒光僅在細(xì)胞核內(nèi)被觀察到,這一結(jié)果與用SignalP 4.0對(duì)它們信號(hào)肽的預(yù)測(cè)結(jié)果一致。

      2.4 SsCFB1和SsCFB2在酵母中的功能驗(yàn)證

      利用酵母單雜交系統(tǒng)檢測(cè)SsCFB1和SsCFB2編碼蛋白在酵母細(xì)胞內(nèi)對(duì)DRE/CRT的結(jié)合特異性和轉(zhuǎn)錄激活活性。將構(gòu)建好的 YepGAP-SsCBF1和 YepGAPSsCBF2載體分別和pHIS2.1-DRE/pHIS2.1-mDRE載體共同轉(zhuǎn)化酵母菌株 Y187,在SD/-His-Ura-Trp平板上篩選轉(zhuǎn)化子,將獲得的陽(yáng)性克隆進(jìn)一步在SD/-His-Ura-Trp+10 mmol·L-13-AT平板上進(jìn)行檢測(cè),觀察它們生長(zhǎng)狀況(圖5-A和圖5-B)。結(jié)果表明,同時(shí)含有pHIS2.1-DRE和YepGAP-SsCBF1的酵母細(xì)胞能夠在缺少組氨酸并加入10 mmol·L-13-AT的培養(yǎng)基上生長(zhǎng),而含有 pHIS2.1-mDRE和 YepGAPSsCBF1的酵母細(xì)胞不能在相應(yīng)的篩選培養(yǎng)基上生長(zhǎng);同時(shí)含有pHIS2.1-DRE和YepGAP-SsCBF2的酵母細(xì)胞也能夠在缺少組氨酸并加入10 mmol·L-13-AT的培養(yǎng)基上生長(zhǎng),而含有pHIS2.1-mDRE和YepGAPSsCBF2的酵母細(xì)胞不能在相應(yīng)的篩選培養(yǎng)基上生長(zhǎng)。作為陰性對(duì)照,同時(shí)含有pHIS2.1-DRE載體(或pHIS2.1-mDRE載體)和YepGAP空載體的酵母細(xì)胞在篩選培養(yǎng)基也都不能生長(zhǎng)(圖 5-B)。以上結(jié)果表明鹽地堿蓬 SsCFB1和 SsCFB2編碼的蛋白均具有DNA結(jié)合域和轉(zhuǎn)錄激活功能,能夠與DRE/CRT元件特異性結(jié)合,并激活其下游基因的表達(dá)。

      圖3 SsCBF1、SsCBF2與已知DREB的系統(tǒng)進(jìn)化樹分析Fig. 3 Phylogenetic tree analysis of SsCBF1 and SsCBF2 with other plant DREBs

      圖4 GFP-SsCBF1和GFP-SsCBF2融合蛋白在洋蔥表皮細(xì)胞中的亞細(xì)胞定位Fig. 4 Subcellular localization of the GFP-SsCBF1 and GFP-SsCBF2 fusion proteins in onion skin cells

      圖5 SsCFB1和SsCFB2對(duì)DRE/CRT元件特異性結(jié)合能力及轉(zhuǎn)錄激活功能的檢測(cè)Fig. 5 Analysis of DRE/CRT binding activity and transactivation ability of SsCFB1 and SsCFB2

      2.5 SsCBF1和SsCBF2在鹽地堿蓬中響應(yīng)非生物脅迫的表達(dá)特性分析

      通過 Real-time PCR對(duì)多種脅迫下 SsCBF1和SsCBF2在肉質(zhì)莖中的表達(dá)豐度進(jìn)行檢測(cè)(圖 6)。結(jié)果表明,SsCBF1的表達(dá)量在NaCl處理0.5 h迅速提高到對(duì)照的7.6倍,2 h后下降為對(duì)照的2.1倍,4 —24 h基本維持在對(duì)照水平的1.5—2倍,在48 h時(shí)恢復(fù)到未處理前水平;而SsCBF2的表達(dá)量在NaCl處理前后沒有顯著變化。SsCBF1在PEG處理下的表達(dá)模式與NaCl處理下的表達(dá)模式基本相似,表達(dá)量在處理0.5 h后劇烈升高到對(duì)照的68.4倍,2 h后下降為對(duì)照的22.8倍,4—12 h下降為對(duì)照的1.2—2.4倍,在處理48 h時(shí)表達(dá)量又逐漸升高到對(duì)照的6倍;而SsCBF2在PEG處理下維持組成型表達(dá)。低溫處理能夠誘導(dǎo)SsCBF1和SsCBF2的表達(dá)。SsCBF1的表達(dá)水平在低溫處理2 h升高到對(duì)照的2.7倍,然后逐漸降低,在12 h又升高到對(duì)照的5.4倍,在48 h時(shí)下降到未處理前水平;SsCBF2的表達(dá)水平在低溫處理下逐漸升高,在處理8 h達(dá)到最高,為對(duì)照的4.3倍,然后逐漸下降,48 h下降到對(duì)照的1.9倍。ABA處理能誘導(dǎo)SsCBF1的表達(dá),在處理2 h時(shí)達(dá)到最高,為對(duì)照的4.5倍,在處理4—48 h時(shí)表達(dá)量逐漸下降,在48 h時(shí)為對(duì)照的57%;SsCBF2的表達(dá)水平在ABA處理前后沒有明顯變化。

      圖6 NaCl、PEG、4℃和ABA短期處理對(duì)SsCBF1和SsCBF2表達(dá)的影響Fig. 6 The expression analyses of SsCBF1 and SsCBF2 genes with the short-term treatments of NaCl, PEG, 4 ℃ and ABA

      3 討論

      DREB/CBF轉(zhuǎn)錄因子是植物特有的轉(zhuǎn)錄因子,目前對(duì)其家族成員的研究主要集中在 DREB1/CBF和DREB2 2個(gè)亞組[14,16]。SsCBF1和SsCBF2是從鹽地堿蓬中分離的2個(gè)DREB1/CBF同源基因,酵母單雜交試驗(yàn)表明,SsCBF1和SsCBF2編碼的蛋白均能與DRE/ CRT元件特異性結(jié)合,尤其SsCBF1蛋白AP2/ERF結(jié)構(gòu)域中第19位的脯氨酸并不影響其對(duì)DRE/CRT元件的特異性結(jié)合。在小麥、水稻、黑麥和大麥DREB1/CBF 的AP2/ERF結(jié)構(gòu)域中也出現(xiàn)第19位的谷氨酸被脯氨酸取代的現(xiàn)象[14]。由此推測(cè)在 DREB1/CBF的 AP2/ ERF結(jié)構(gòu)域中,第14位氨基酸在進(jìn)化上的保守性比第19位氨基酸更強(qiáng),可能對(duì)AP2/ERF與DRE/CRT的特異性結(jié)合起更重要的作用[35]。SsCBF1和SsCBF2 C末端分別含有酸性活化域“DDSDSDYE”和“DSFDDEIEAEDAD”,可能起轉(zhuǎn)錄激活功能[27,36]。

      以前的研究顯示只有低溫能誘導(dǎo)DREB1/CBF的表達(dá)[27, 37-40]。然而,近年來的研究表明一些 DREB1/ CBF不僅能對(duì)低溫脅迫作出響應(yīng),高鹽、干旱及外源性脫落酸處理也能誘導(dǎo)它們的表達(dá)[41-44]。例如桉樹的EguCBF1(包括EguCBF1a、EguCBF1b和EguCBF1d)只受冷脅迫的誘導(dǎo),而EguCBF1c只對(duì)鹽脅迫進(jìn)行響應(yīng)[45]。低溫、干旱和高鹽能誘導(dǎo)海欖雌AmCBF2的表達(dá),而AmCBF1和AmCBF3的表達(dá)模式在這些環(huán)境刺激下沒有明顯的改變[46]。在本研究中,SsCBF1在鹽、PEG和低溫處理后表達(dá)量明顯升高,表明SsCBF1可能作為幾條逆境脅迫信號(hào)傳導(dǎo)途徑的交叉點(diǎn)或節(jié)點(diǎn),參與鹽地堿蓬對(duì)鹽漬、干旱和低溫脅迫的網(wǎng)絡(luò)調(diào)控。SsCBF2在鹽和PEG處理后表達(dá)量沒有明顯變化,而低溫脅迫能顯著誘導(dǎo)它的表達(dá),表明SsCBF2可能僅參與鹽地堿蓬對(duì)低溫脅迫的網(wǎng)絡(luò)調(diào)控,而不參與對(duì)鹽漬和干旱脅迫的響應(yīng)。

      植物主要通過2條途徑(依賴于ABA的調(diào)控途徑和不依賴于ABA調(diào)控途徑)調(diào)控脅迫響應(yīng)基因的表達(dá)[15,47]。研究表明,無論是內(nèi)源性或外源性的ABA,均參與響應(yīng)于干旱、高鹽和冷脅迫的基因調(diào)控途徑[48-49]。本研究結(jié)果顯示,外源ABA處理能誘導(dǎo)SsCBF1的表達(dá),表明SsCBF1通過依賴于ABA的途徑對(duì)低溫、高鹽和干旱脅迫產(chǎn)生響應(yīng)。SsCBF2對(duì)外源ABA處理不響應(yīng),說明SsCBF2通過不依賴于ABA的途徑對(duì)低溫脅迫產(chǎn)生響應(yīng)。SUN等[32]報(bào)道鹽地堿蓬A(yù)-6組2個(gè)DREB基因通過不依賴于ABA的途徑對(duì)對(duì)干旱和高鹽脅迫作出響應(yīng)。因此,可以推斷鹽地堿蓬DREB基因家族通過依賴于ABA和不依賴于ABA 2條調(diào)控途徑對(duì)非生物脅迫產(chǎn)生響應(yīng)。

      4 結(jié)論

      從鹽地堿蓬中克隆了2個(gè)DREB1/CBF同源基因SsCBF1和SsCBF2,這兩個(gè)基因編碼的蛋白均含有1個(gè)典型的AP2/ERF保守結(jié)構(gòu)域,歸屬于DREB家族的 A-1組。SsCBF1與桃的 PpCBF1和楊樹的PnDREB69親緣關(guān)系最近,而 SsCBF2與馬鈴薯的StCBF3和番茄的ShCBF1親緣關(guān)系最近。SsCBF1和SsCBF2均定位于細(xì)胞核內(nèi),能與DRE/CRT元件特異性結(jié)合,并具有轉(zhuǎn)錄激活活性。在鹽地堿蓬中,SsCBF1可能通過ABA信號(hào)途徑參與對(duì)低溫、干旱和高鹽等非生物脅迫的應(yīng)激調(diào)控,而SsCBF2則通過不依賴于ABA的途徑對(duì)低溫脅迫產(chǎn)生響應(yīng)。

      References

      [1] SONG J, FAN H, ZHAO Y Y, JIA Y H, DU X H, WANG B S. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Botany, 2008, 88(4): 331-337.

      [2] 黃瑋, 李志剛, 喬海龍, 李存楨, 劉小京. 早鹽互作對(duì)鹽地堿蓬生長(zhǎng)及其滲透調(diào)節(jié)物質(zhì)的影響. 中國(guó)農(nóng)業(yè)生態(tài)學(xué)報(bào), 2008, 16(1):173-178. HUANG W, LI Z G, QIAO H L, LI C Z, LIU X J. Interactive effect of sodium chloride and drought on growth and osmotica of Suaeda salsa. Chinese Journal of Eco-Agriculture, 2008, 16(1): 173-178. (in Chinese)

      [3] SONG J. Root morphology is related to the phenotypic variation in water logging tolerance of two populations of Suaeda salsa under salinity. Plant and Soil, 2009, 324: 231-240.

      [4] SONG J, WANG B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 2015, 115(3): 541-553.

      [5] 邵秋玲, 謝小丁, 張方申, 崔宏偉, 曹子誼. 鹽地堿蓬人工栽培與品系選育初報(bào). 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2004, 12(1): 47-49. SHAO Q L, XIE X D, ZHANG F S, CUI H W, CAO Z Y. A preliminary study on the artificial cultivation and breeding selection of Suaeda salsa. Chinese Journal of Eco-Agriculture, 2004, 12(1): 47-49.(in Chinese)

      [6] GUAN B, YU J, WANG X, FU Y, KAN X, LIN Q X, HAN G X, LU Z H. Physiological responses of halophyte Suaeda salsa to water table and salt stresses in coastal wetland of Yellow River Delta. CLEAN-Soil, Air, Water, 2011, 39(12):1029-1035.

      [7] WANG C Q, LIU T. Involvement of betacyanin in chilling-induced photoinhibition in leaves of Suaeda salsa. Photosynthetica, 2007,45(45): 182-188.

      [8] WANG Q, ZHOU D, WANG M, ZHAO Y, CHEN Y, YIN M, FENG X. Chemical constituents of Suaeda salsa and their cytotoxic activity. Chemistry of Natural Compounds, 2014, 50(3): 531-533.

      [9] XU B, ZHANG M, XING C, MOTHIBE K J, ZHU C. Composition,characterisation and analysis of seed oil of Suaeda salsa L.. International Journal of Food Science & Technology, 2013, 48(4):879-885.

      [10] ZHAO S Z, YUAN R, SUN H Z, WANG B S. Highly efficient Agrobacterium-based transformation system for callus cells of the C3 halophyte Suaeda salsa. Acta Physiologiae Plantarum, 2008, 30(5):729-736.

      [11] 趙術(shù)珍, 阮圓, 王寶山. 鹽地堿蓬幼嫩花序的組織培養(yǎng)及植株再生.植物學(xué)通報(bào), 2006, 23(1): 52-55. ZHAO S Z, RUAN Y, WANG B S. Tissue culture and plant regeneration from immature inflorescence explants of Suaeda salsa. Chinese Bulletin of Botany, 2006, 23(1): 52-55. (in Chinese)

      [12] QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and Cell Physiology, 2011, 52(9): 1569-1582.

      [13] NOVILLO F, MEDINA J, RODRIGUEZ-FRANCO M, NEUHAUS M, SALINAS G J. Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. Journal of Experimental Botany, 2012, 63(1):293-304.

      [14] AGARWAL P K, AGARWAL P, REDDY M K, SOPORY S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006, 25(12): 1263-1274.

      [15] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57: 781-803.

      [16] LATA C, PRASAD M. Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany, 2011, 62(14):4731-4748.

      [17] AKHTAR M, JAISWAL A, TAJ G, JAISWAL J, QURESHI M,SINGH N. DREB1/CBF transcription factors: Their structure,function and role in abiotic stress tolerance in plants. Journal of Genetics, 2012, 91(3): 385-395.

      [18] SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002,290(3): 998-1009.

      [19] JAGLO K R, KLEFF S, AMUNDSEN K L, ZHANG X, HAAKE V,ZHANG J Z, DEITS T, THOMASHOW M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiology, 2001, 127(3): 910-917.

      [20] CHOI D W, RODRIGUEZ E M, CLOSE T J. Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiology,2002, 129(4): 1781-1787.

      [21] DUBOUZET J G, SAKUMA Y, ITO Y, KASUGA M, DUBOUZET E G, MIURA S, SEKI M, SHINOZAKI K, YAMAGUCHISHINOZAKI K. OsDREB genes in rice, Oryza sativa L.,encode transcription activators that function in drought-, highsalt- and coldresponsive gene expression. The Plant Journal, 2003, 33(4): 751-763.

      [22] HANG X, FOWLER S G, CHENG H, LOU Y, RHEE S Y,STOCKINGER E J, THOMASHOW M F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. The Plant Jounal,2004, 39(6): 905-919.

      [23] SHEN Y G, ZHANG W K, YAN D Q, DU B X, ZHANG J S, LIU Q,CHEN S Y. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theoretical and Applied Genetics,2003, 107(1): 155-161.

      [24] XIONG Y, FEI S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006, 224(4): 878-888.

      [25] CHEN M, WANG Q Y, CHENG X G, XU Z S, LI L C, YE X G, XIA L Q, MA Y Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 2007,353(2): 299-305.

      [26] OKAMURO J K, CASTER B, VILLARROEL R, VAN MONTAGU M, JOFUKU K D. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,1997, 94(13): 7076-7081.

      [27] LIU Q, KASUGA M, SAKUMA Y, ABE H, MIURA S,YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Two transcription factors, DREB1 and DREB2, with an EREBP /AP2 DNA binding domain separate two cellular signal transduction pathways in droughtand low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406.

      [28] 王平榮, 鄧曉建, 高曉玲, 陳靜, 萬佳, 姜華, 徐正君. DREB轉(zhuǎn)錄因子研究進(jìn)展. 遺傳, 2006, 28(3): 369-374. WANG P R, DENG X J, GAO X L, CHEN J, WAN J, JIANG H, XU Z J. Progress in the study on DREB transcription factor. Hereditas,2006, 28(3): 369-374. (in Chinese)

      [29] 陳國(guó)強(qiáng), 王萍. 鹽地堿蓬耐鹽相關(guān)基因克隆研究進(jìn)展. 生物技術(shù)通報(bào), 2008, 5: 18-21. CHEN G Q, WANG P. Research on advancement of salt tolerant genes in Suaeda salsa. Biotechnology Bulletin, 2008, 5: 18-21. (in Chinese)

      [30] PANG C H, LI K, WANG B. Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiologia Plantarum, 2011, 143(4): 355-366.

      [31] 劉曉雪, 孫曉波, 王秀娥, 馬鴻翔. 鹽地堿蓬SsDREB基因的克隆與表達(dá)分析研究. 核農(nóng)學(xué)報(bào), 2011, 25(4): 684-691. LIU X X, SUN X B, WANG X E, MA H X. Cloning and expression analysis of SsDREB gene from Suaeda salsa L.. Journal of Nuclear Agricultural Sciences, 2011, 25(4): 684-691. (in Chinese)

      [32] SUN X B, MA H X, JIA X P, CHEN Y, YE X Q. Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa. Genes & Genomics, 2015, 37: 199-212.

      [33] CHEN S, SONGKUMARN P, LIU J L, WANG G L. A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiology, 2009, 150(3): 1111-1121.

      [34] 孫曉波, 賈新平, 鄧衍明, 梁立建. 鹽地堿蓬 DREB同源基因SsDREB的功能研究. 植物遺傳資源學(xué)報(bào), 2015, 16(3): 624-632. SUN X B, JIA X P, DENG Y M, LIANG L J. Functional study of a DREB homologous gene SsDREB from Suaeda salsa L.. Journal of Plant Genetic Resources, 2015, 16(3): 624-632. (in Chinese)

      [35] CAO Z F, LI J, CHEN F, LI Y Q, ZHOU H M, LIU Q. Effect of two conserved amino acid residues on DREB1A function. Biochemistry,2001, 66(6): 623-627.

      [36] WANG Z L, AN X M, LI B, REN Y Y, JIANG X B, BO W H,ZHANG Z Y. Identification and characterization of CBF/DREB1-related genes in Populus. Forestry Studies in China, 2008, 10(3):143-148.

      [37] GILMOUR S J, ZARKA D G, STOCKINGER E J, SALAZAR M P,HOUGHTON J M, THOMASHOW M F. Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal,1998, 16(4): 433-442.

      [38] WANG Y M, HE C F. Isolation and characterization of cold-induced DREB gene from Aloe vera L.. Plant Molecular Biology Reporter,2007, 25(3): 121-132.

      [39] LIU L, CAO X L, BAI R, YAO N, LI L B, HE C F. Isolation and characterization of the cold-induced Phyllostachys edulis AP2/ERF family transcription factor, peDREB1. Plant Molecular Biology Reporter, 2011, 30(3): 679-689.

      [40] GAO F, CHEN J M, XIONG A S, PENG R H, LIU J G, CAI B, YAO Q H. Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa. Biologia Plantarum,2009, 53(4): 643-649.

      [41] JIANG F, WANG F, WU Z, LI Y, SHI G, HU J, HOU X. Components of the Arabidopsis CBF cold-response pathway are conserved in non-heading chinese cabbage. Plant Molecular Biology Reporter, 2011, 29(3): 525-532.

      [42] YANG W, LIU X D, CHI X J, WU C A, LI Y, SONG L L, LIU X M,WANG Y F, WANG F W, ZHANG C, LIU Y, ZONG J M, LI H Y. Dwarf apple MbDREB1 enhances plant tolerance to low temperature,drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 2011, 233(2): 219-229.

      [43] WANG Q, GUAN Y, WU Y, CHEN H, CHEN F, CHU C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 2008, 67(6): 589-602.

      [44] WANG Q J, XU K Y, TONG Z G, WANG S H, GAO Z H, ZHANG J Y, ZONG C W, QIAO Y S, ZHANG Z. Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tissue and Organ Culture, 2010, 101(2):211-219.

      [45] NAVARRO M, MARQUE G, AYAX C, KELLER G, BORGES J P,MARQUE C, TEULIERES C. Complementary regulation of four eucalyptus CBF genes under various cold conditions. Journal of Experimental Botany, 2009, 60(9): 2713-2724.

      [46] PENG Y L, WANG Y S, CHENG H, SUN C C, WU P, WANG L Y,F(xiàn)EI J. Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina. Aquatic Toxicology, 2013(140/141): 68-76.

      [47] NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. Abiotic stress adaptation in plants, physiological, molecular and genomic foundation. Springer Netherlands, 2010: 199-216.

      [48] VERSLUES P E, ZHU J K. Before and beyond ABA, upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions, 2005,33(Pt 2): 375-379.

      [49] HIRAYAMA T, SHINOZAKI K. Perception and transduction of abscisic acid signals: Keys to the function of the versatile plant hormone ABA. Trends in Plant Science, 2007, 12(8): 343-351.

      (責(zé)任編輯 李莉)

      Cloning and Expression Analysis of Two DREB1/CBF Genes in Suaeda salsa L.

      SUN Xiao-bo, SU Jia-le, JIA Xin-ping, LIANG Li-jian, XIAO Zheng, DENG Yan-ming
      (Institute of Horticulture, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014)

      Abstract:【Objective】 To provide basic information for understanding the resistant mechanism under abiotic stresses, two DREB1/CBF genes were cloned from Suaeda salsa L. At the same time, the sequence characteristics, subcellular localization and transcriptional activities of the two predicted DREB1/CBF proteins and their expression alteration in response to abiotic stress were analyzed. 【Method】The fragments of two DREB1/CBF genes were obtained by using the technique of homologous cloning. The full-length of cDNA sequences of the two DREB1/CBF genes were isolated by the method of rapid-amplification of cDNA ends (RACE), and they were named as SsCBF1 and SsCBF2, respectively. The structures and functions of the two proteins encoded by SsCBFs were predicted by the bioinformatics software. In order to detect the subcellular localization of the two proteins, the coding sequences of the two SsCBF genes were fused, respectively, downstream to the GFP sequence to obtain two expression vectors and they were separately transferred into onion epidermal cells by the biolistic method. The binding specificity of SsCBF1 and SsCBF2to DRE/CRT cis-acting element and their transcriptional activities were investigated by using a yeast one-hybrid system. The expression of the two SsCBF genes in response to low temperature, NaCl,PEG and ABA were assessed by the real-time quantitative PCR.【Result】 SsCBF1 encoded a peptide of 225 amino acid residues with a predicted molecular mass of 25.4 kD and a pI of 4.84. SsCBF2 encoded a predicted protein of 260 amino acid residues with a predicted molecular mass of 28.6 kD and a calculated pI of 5.05. SsCBF1and SsCBF2 both contained a typical AP2/ ERF domain and shared 53.5% and 45.4% identity at the levels of coding nucleotides and amino acids. However, the AP2/ ERF domains of the two SsCBF genes were highly similar and shared 76.2% and 87.3% identity at the levels of nucleotides and amino acids, respectively. SsCBF1 and SsCBF2 were classified into A-1 subgroup of the DREB subfamily and both localized to the nucleus. The two proteins were able to specifically bind to the DRE/CRT sequence and activate the expression of the down-stream HIS reporter gene in yeast. Low temperature, drought, high salt and ABA could induce the expression of SsCBF1. However, the expression of SsCBF2 could only be induced significantly by low temperature, not by drought, high salt and ABA. 【Conclusion】 The SsCBF1 and SsCBF2 are two stress-responsive transcription factors of S. salsa. In S. salsa, SsCBF1 is involved in the stress responses of cold, high-salt and drought through ABA-dependent pathways and SsCBF2 is responsive to cold stress through ABA-independent pathway.

      Key words:Suaeda salsa L.; DREB1/CBF transcription factors; subcellular localization; yeast one-hybrid; quantitative real-time PCR

      收稿日期:2016-02-22;接受日期:2016-04-21

      基金項(xiàng)目:國(guó)家“十二五”科技支撐計(jì)劃(2013BAD01B070403)

      猜你喜歡
      熒光定量PCR
      長(zhǎng)期夜班工作醫(yī)護(hù)人員腸道菌群結(jié)構(gòu)的變化
      基于線粒體DNA COⅠ基因鑒別畜禽肉中雞源性成分
      肉類研究(2017年8期)2017-11-16 12:06:16
      兒童肺炎支原體感染三種實(shí)驗(yàn)診斷方法評(píng)價(jià)
      獼猴桃細(xì)菌性潰瘍病病原菌的熒光定量PCR檢測(cè)方法優(yōu)化
      泌尿生殖道淋球菌、解脲支原體、沙眼衣原體感染特點(diǎn)分析
      肉制品中沙門氏菌熒光定量PCR標(biāo)準(zhǔn)質(zhì)粒的構(gòu)建
      國(guó)產(chǎn)PCR試劑和COBAS系統(tǒng)血清HBV—DNA檢測(cè)結(jié)果不一致的原因分析
      弗氏檸檬酸桿菌SYBRGreenⅠ熒光定量PCR診斷方法的建立及耐藥性分析
      實(shí)時(shí)熒光定量PCR在手足口病原體檢測(cè)中的應(yīng)用探討
      今日健康(2016年12期)2016-11-17 19:21:34
      兔出血癥病毒感染機(jī)體后炎性因子的檢測(cè)分析
      巴南区| 环江| 大洼县| 固安县| 农安县| 上栗县| 马公市| 阆中市| 鸡东县| 额尔古纳市| 巨鹿县| 岳池县| 洱源县| 常山县| 万载县| 永定县| 武平县| 大埔县| 灌南县| 宝山区| 界首市| 姜堰市| 磴口县| 积石山| 凤庆县| 嵩明县| 芒康县| 中宁县| 大新县| 肇东市| 扶风县| 惠州市| 环江| 临漳县| 康定县| 荣昌县| 临高县| 岢岚县| 汉川市| 前郭尔| 如皋市|