劉之光, 陳 超, 郭海坤, 呂麗萍, 石 巍,2,*
1 中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所,北京 100093 2 農(nóng)業(yè)部授粉昆蟲生物學(xué)重點(diǎn)開發(fā)實(shí)驗(yàn)室,北京 100093 3 全國(guó)畜牧總站,北京 100125
?
2009
—2013年中國(guó)西方蜜蜂蜂群損失情況調(diào)查分析
劉之光1,2,3, 陳超1, 郭海坤1, 呂麗萍1, 石 巍1,2,*
1 中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所,北京100093 2 農(nóng)業(yè)部授粉昆蟲生物學(xué)重點(diǎn)開發(fā)實(shí)驗(yàn)室,北京100093 3 全國(guó)畜牧總站,北京100125
摘要:近年,歐洲和北美地區(qū)相繼出現(xiàn)蜜蜂蜂群崩潰(Colony Collapse Disorder, CCD)現(xiàn)象,蜂業(yè)科學(xué)家在世界范圍內(nèi)開展蜜蜂蜂群損失情況調(diào)查與分析?;诖耍接懡?年我國(guó)主要西方蜜蜂飼養(yǎng)省份蜂群損失情況,并對(duì)損失量、損失原因進(jìn)行分析。研究采用歐盟政府間合作框架(COST)下項(xiàng)目— CoLoss (Prevention of honey bee COlony LOSSes)項(xiàng)目組提供的國(guó)際統(tǒng)一的標(biāo)準(zhǔn)調(diào)查表格,利用R語言在RStudio環(huán)境下開展全部的統(tǒng)計(jì)分析工作,采用廣義線性混合模型分析調(diào)查數(shù)據(jù)的相關(guān)性及因變量為非正態(tài)分布的非獨(dú)立數(shù)據(jù)。調(diào)查我國(guó)12 個(gè)主要西方蜜蜂飼養(yǎng)省份的蜂群越冬死亡損失情況。2009—2013 年蜂群平均損失率為8.9%,損失比例同比低于歐洲和北美國(guó)家和地區(qū)的蜂群損失率,在可接受范圍內(nèi)。利用廣義線性混合模型分析,顯著影響蜜蜂蜂群損失的因素有:巢脾使用時(shí)間及蜂王因素。我國(guó)蜂群損失率較低,大部分損失癥狀不屬于CCD。CCD現(xiàn)象在我國(guó)尚未確認(rèn)發(fā)生。加強(qiáng)蜂螨及其他病害的防治工作,增加更新巢脾頻率,監(jiān)控蜂王在蜂群中的表現(xiàn)及增加換王次數(shù)等可以有效控制蜂群越冬損失率。結(jié)果對(duì)明確我國(guó)蜂群是否受蜜蜂蜂群崩潰癥狀現(xiàn)象影響提出了明確的解釋,對(duì)蜂群損失的防控提供重要的指導(dǎo)建議。
關(guān)鍵詞:西方蜜蜂;蜂群損失率;蜜蜂蜂群崩潰癥狀;中國(guó)
蜜蜂是主要的授粉昆蟲,全世界115 種主要農(nóng)作物中的75%都依賴蜂類授粉。蜂類授粉貢獻(xiàn)了全球35%的農(nóng)作物產(chǎn)值[1]。然而近年,歐洲和北美地區(qū)爆發(fā)的蜜蜂蜂群損失成為影響蜜蜂種群和產(chǎn)業(yè)發(fā)展的重要因素。自2006 年開始,美國(guó)首次出現(xiàn)蜜蜂蜂群崩潰癥狀(Colony collapse disorder, CCD)情況。2006—2013 年,美國(guó)每年蜜蜂種群越冬損失率為32%,35.8%,29%,34%,29.9%,22.5%,30.6%,已經(jīng)遠(yuǎn)遠(yuǎn)超出正常蜂群的越冬損失及蜂農(nóng)的承受范圍[2- 9]。同樣的情況也發(fā)生在歐洲—英格蘭、奧地利、瑞士、土耳其、希臘、比利時(shí)、意大利、克羅地亞、波蘭、丹麥、保加利亞等多個(gè)國(guó)家。為此,歐洲各國(guó)及美國(guó)蜂業(yè)科學(xué)家共同組成一個(gè)國(guó)際組織——CoLoss(Prevention of honeybee COlony LOSSes),調(diào)查并研究蜂群損失情況及其原因[10]。以上國(guó)家均在CoLoss項(xiàng)目的合作框架下共同開展蜜蜂蜂群越冬損失調(diào)查。在調(diào)查的24 個(gè)歐洲國(guó)家蜂群越冬損失率中,2009 年歐洲各國(guó)的平均蜂群損失率為7%—22%,2010 年平均損失率為7%—30%之間。截止到目前,造成蜜蜂蜂群損失的原因仍不明確,很多科學(xué)家認(rèn)為是復(fù)合因素導(dǎo)致的[11-26]。中國(guó)是世界第一養(yǎng)蜂大國(guó),飼養(yǎng)超過830 萬群蜜蜂蜂群(FAOSTA,F(xiàn)ood and Agriculture Organization of the United Nations Statistics Division, 2012)。以生產(chǎn)蜂產(chǎn)品為主,同時(shí)蜜蜂授粉也給農(nóng)業(yè)生產(chǎn)帶來了巨大的經(jīng)濟(jì)效益。近年,歐洲和北美的蜜蜂越冬損失情況頻發(fā),中國(guó)蜂群的損失現(xiàn)狀及損失原因也是不可回避和急需探究的問題。2008 年,中國(guó)農(nóng)業(yè)科學(xué)院蜜蜂研究所作為國(guó)內(nèi)唯一參加單位參與歐盟蜜蜂消失項(xiàng)目(COST Action FA0803),與歐盟主要蜂業(yè)科學(xué)家共同開展了蜜蜂蜂群損失情況調(diào)查與分析。通過對(duì)國(guó)內(nèi)主要養(yǎng)蜂大省西方蜜蜂飼養(yǎng)種群越冬損失的調(diào)查與數(shù)據(jù)統(tǒng)計(jì)分析,了解我國(guó)西方蜜蜂蜂群損失情況,分析導(dǎo)致我國(guó)西方蜜蜂蜂群損失的主要原因及潛在威脅,為我國(guó)蜜蜂蜂群的長(zhǎng)期動(dòng)態(tài)監(jiān)控及保護(hù)提供依據(jù)。
1材料與方法
1.1數(shù)據(jù)收集
數(shù)據(jù)的采集時(shí)間為2009 年10 月—2013 年6 月。采集的數(shù)據(jù)來自我國(guó)主要12 個(gè)西方蜜蜂養(yǎng)殖大省,每個(gè)省基礎(chǔ)調(diào)查量為100 個(gè)西方蜜蜂蜂場(chǎng)。調(diào)查上年度11月份—2月份期間蜜蜂蜂群越冬損失數(shù)據(jù),數(shù)據(jù)采集及上報(bào)時(shí)間為同年4—5月份。蜜蜂蜂群損失數(shù)據(jù)采用實(shí)地調(diào)查、面對(duì)面采集的方式進(jìn)行。每年的數(shù)據(jù)采集及調(diào)查工作主要由“現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系-蜂產(chǎn)業(yè)技術(shù)體系”綜合試驗(yàn)站完成,并將采集數(shù)據(jù)上傳至“蜂產(chǎn)業(yè)技術(shù)體系-蜜蜂育種與授粉功能試驗(yàn)室數(shù)據(jù)庫(kù)”內(nèi)(www.brpdb.com)。
1.2調(diào)查問卷
2009—2013 年的調(diào)查問卷采用歐盟蜜蜂消失項(xiàng)目組統(tǒng)一標(biāo)準(zhǔn)調(diào)查問卷[25,27],翻譯并進(jìn)行國(guó)內(nèi)適應(yīng)性整理后下發(fā)到調(diào)查省份。
1.3數(shù)據(jù)整理
對(duì)全部填報(bào)的數(shù)據(jù)進(jìn)行過濾及整理,尤其是去掉一些關(guān)鍵數(shù)據(jù)不完整的數(shù)據(jù)組及超范圍數(shù)據(jù)組。同時(shí)明顯的重復(fù)數(shù)據(jù)有可能是填報(bào)過程中的重復(fù)填報(bào)紕漏,這類數(shù)據(jù)也會(huì)被刪除。部分省份在某些年份的數(shù)據(jù)量小于10 條,調(diào)查蜂群總數(shù)低于5000 群,缺乏該省份蜂群總體數(shù)據(jù)的代表性,這部分?jǐn)?shù)據(jù)在分析前也予以排除。對(duì)初級(jí)過濾數(shù)據(jù)運(yùn)行自定義Python 程序再次過濾,保證數(shù)據(jù)的可靠性及準(zhǔn)確性。根據(jù)我國(guó)養(yǎng)蜂業(yè)特點(diǎn),對(duì)國(guó)內(nèi)養(yǎng)蜂規(guī)模數(shù)據(jù)進(jìn)行分組,蜜蜂蜂群在50 群以下的設(shè)為業(yè)余組,50—200 群的設(shè)為專業(yè)組,200 群以上的設(shè)為商業(yè)組。通過養(yǎng)蜂規(guī)模分組[9,25,27],可以有效的分析不同規(guī)模蜂場(chǎng)的蜜蜂蜂群損失情況及主要原因。
1.4統(tǒng)計(jì)分析
蜜蜂蜂群損失率依據(jù)Van der zee[28]的統(tǒng)計(jì)標(biāo)準(zhǔn)進(jìn)行。蜜蜂蜂群損失率是蜜蜂蜂群損失數(shù)與蜂群總數(shù)的比值。利用準(zhǔn)二項(xiàng)分布(Quasi-binomial distribution)及l(fā)ogit關(guān)聯(lián)函數(shù)構(gòu)建廣義線性模型,基于標(biāo)準(zhǔn)誤計(jì)算置信區(qū)間。蜂蜜單位產(chǎn)量是蜂蜜總產(chǎn)量與蜂群總數(shù)的比值。更換蜂王次數(shù)的統(tǒng)計(jì)中,去掉了“0” 這個(gè)數(shù)值,“0” 這個(gè)數(shù)值的填入模糊了數(shù)據(jù)的輸出。并不確定是沒有更換蜂王還是數(shù)據(jù)缺省。隨后,構(gòu)建廣義混合線性模型檢測(cè)潛在風(fēng)險(xiǎn)因素對(duì)蜂群損失的影響。在Van der zee[27]的文章中首次使用廣義混合線性模型分析蜜蜂蜂群損失數(shù)據(jù)。將省份和蜂場(chǎng)作為隨機(jī)因素復(fù)合到零模型中,增加是否防治蜂螨,更換蜂王次數(shù),巢脾更新率,蜂王因素及其他威脅因素和飼料等多因素變量到零模型中,檢測(cè)各種因素對(duì)蜜蜂種群損失的影響。由于調(diào)查表的年度更換,無法設(shè)計(jì)可以包含全部影響因素的完整模型(全模型)。
所有的統(tǒng)計(jì)分析用R語言在RStudio統(tǒng)計(jì)環(huán)境下運(yùn)行[29],廣義線性混合模型采用Lme4軟件包進(jìn)行處理[30]。
總計(jì)調(diào)查2009—2013 年每年度全國(guó)范圍內(nèi)12 個(gè)省份,累計(jì)統(tǒng)計(jì)數(shù)據(jù)3742 條(蜂場(chǎng)),統(tǒng)計(jì)蜂群總數(shù)520653 群(表1)。
2結(jié)果與分析
2.1蜜蜂蜂群損失率
2009—2013 年間平均蜂群損失率為8.9%(95%CI:8.4%—9.5%)。其中,蜂群損失率較低的為2012—2013 年度,平均蜂群損失率為8.5%(95%CI:7.8%—9.3%),最高的為2011—2012 年度,平均蜂群損失率僅為12.0% (95%CI:10.7%—13.4%)(表1)。在本文的調(diào)查中,并沒有調(diào)查蜂農(nóng)可以接受的損失率。但是對(duì)比2012—2013 年度美國(guó)蜂農(nóng)可以接受的蜂群損失率14.6%而言[9],我國(guó)的蜂群損失率應(yīng)該在可以接受的范圍內(nèi)。
蜂場(chǎng)規(guī)模的差異也會(huì)對(duì)蜜蜂蜂群損失造成影響。從4年總體來看,業(yè)余組平均損失率為6.9%(95%CI:5.9%—8.0%),專業(yè)組平均損失率為8%(95%CI:7.6%—8.6%),商業(yè)組平均損失率為10.4%(95%CI:8.8%—12.3%),業(yè)余組、專業(yè)組和商業(yè)組蜂群損失均存在顯著差異。按年份來看,2011—2012 年度,業(yè)余組平均損失率為9.4%(95%CI:7.4%—11.7%),商業(yè)組平均損失率為17.4%(95%CI:12.8%—23.2%),業(yè)余組與商業(yè)組蜂群損失存在顯著差異。2012—2013 年度,業(yè)余組平均損失率為5.3%(95%CI:3.8%—7.4%),專業(yè)組平均損失率為9%(95%CI:8.1%—9.9%),業(yè)余組與專業(yè)組蜂群損失存在顯著差異,其他年份及規(guī)模的蜂場(chǎng)不存在顯著差異(表2)。
與此同時(shí),不同的省份間也存在蜜蜂蜂群損失的差異。新疆和河南的蜂群損失率最高,分別達(dá)到了19%(95%CI:17.7%—20.4%)和16.2%(95%CI:13.6%—19.2%),其中新疆的蜂群損失總量顯著高于其它省份。而云南和甘肅的蜂群損失率最低,分別僅有3.4%(95%CI:2.3%—4.9%)和2.3%(95%CI:1.6%—3.4%)。蜂群損失率由高及低的省份排序?yàn)椋盒陆?、河南均?0%以上,其次為吉林、山西、黑龍江、四川、江蘇、遼寧、浙江、重慶、云南、甘肅(表3)。
表1 2009—2013年度蜂群總損失率及年平均損失率
數(shù)據(jù)量指統(tǒng)計(jì)的蜂場(chǎng)數(shù);蜂群數(shù)量四分位數(shù)是通用統(tǒng)計(jì)量,此處用以表現(xiàn)至少50%的蜂場(chǎng)處于統(tǒng)計(jì)的蜂群數(shù); N.op.:數(shù)據(jù)量 Number of apiary operations;N. col. sum:蜂群總數(shù) Number of colonies summary;N. col. median:蜂群數(shù)量四分位數(shù) Median number of colonies
表2 2009—2013年度不同規(guī)模蜂場(chǎng)蜂群損失情況
根據(jù)我國(guó)養(yǎng)蜂業(yè)特點(diǎn),對(duì)國(guó)內(nèi)養(yǎng)蜂規(guī)模數(shù)據(jù)進(jìn)行分組,蜜蜂蜂群在50群以下的設(shè)為業(yè)余組,50—200群的設(shè)為專業(yè)組,200群以上的設(shè)為商業(yè)組
2.2蜜蜂蜂群崩潰癥狀(Colony Collapse Disorder, CCD)
歐洲地區(qū)調(diào)查主要針對(duì)CCD癥狀,CCD是近年在美國(guó)和歐洲地區(qū)出現(xiàn)的導(dǎo)致蜜蜂種群群體消失的現(xiàn)象,主要癥狀為:蜂群的大部分在逆境條件下消失,即便是蜂群內(nèi)還有幼蟲存在,蜂箱內(nèi)外及蜂場(chǎng)周圍沒有死蜂[10,24],這是CCD的典型癥狀。在調(diào)查表的設(shè)計(jì)中,有2個(gè)問題是關(guān)于CCD的:1)是否經(jīng)歷過CCD現(xiàn)象;2)出現(xiàn)CCD癥狀而導(dǎo)致崩潰的蜂群數(shù)量。在本文的調(diào)查中,僅有360份問卷反饋此問題,其中僅有1份問卷回答是肯定的。在第2個(gè)問題調(diào)查中,92%的反饋問卷明確表示沒有CCD原因?qū)е碌姆淙簱p失。因此,可以推斷,蜂農(nóng)并不清楚CCD的發(fā)生情況及CCD發(fā)生的典型癥狀。結(jié)合現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系-蜂產(chǎn)業(yè)技術(shù)體系試驗(yàn)站日常監(jiān)測(cè)情況看,目前沒有確認(rèn)CCD在國(guó)內(nèi)的發(fā)生。
表3 2009—2013年度不同省份蜂場(chǎng)蜂群損失情況
2.3潛在風(fēng)險(xiǎn)因素
利用廣義線性混合模型檢測(cè)潛在的風(fēng)險(xiǎn)因素,主要風(fēng)險(xiǎn)因素有:蜂螨、更換蜂王次數(shù)、巢脾的更換頻率、蜂王因素及其他威脅因素是對(duì)蜜蜂蜂群造成損失的潛在威脅因素。其中,蜂王因素是直接關(guān)系到蜂群損失的因素,在蜂群的日常管理中,及時(shí)發(fā)現(xiàn)蜂王的不適應(yīng)狀況(諸如不產(chǎn)卵,損傷,丟失等),及時(shí)更換新蜂王是避免蜂群損失的關(guān)鍵因素。于此同時(shí),巢脾的更換頻率也直接影響到蜂群的損失情況。長(zhǎng)期使用的巢脾是對(duì)蜂群潛在的風(fēng)險(xiǎn)威脅(表4)。
表4 潛在風(fēng)險(xiǎn)因素情況
連續(xù)隨機(jī)變量-巢脾更新率及蜂王因素的差異顯著比較基于蜂群損失率變化
2.4威脅因素對(duì)蜜蜂的影響
省份與蜂場(chǎng)作為隨機(jī)變量構(gòu)建廣義線性混合模型,計(jì)算不同威脅因素相對(duì)與基本干擾對(duì)蜜蜂蜂群損失的影響(將人類干擾設(shè)為基本干擾因素)(表5)。從分析數(shù)據(jù)可知,大黃蜂、老鼠、殺蟲劑、螞蟻的發(fā)生較其他因素更為頻繁。大黃蜂侵害在我國(guó)北方地區(qū)普遍發(fā)生,需要加強(qiáng)日常管理及防控,尤其在夏秋交替季節(jié)。鼠害威脅低于其他國(guó)家平均發(fā)生水平,這與我國(guó)蜂農(nóng)的日常管理和有效控制直接相關(guān)。熊和火災(zāi)的發(fā)生并不頻繁,但是一旦發(fā)生熊和火災(zāi)的威脅,對(duì)于蜜蜂蜂群而言將是毀滅性打擊。
表5 其他威脅發(fā)生對(duì)蜜蜂蜂群損失的影響
N. affected:統(tǒng)計(jì)數(shù)量 Number of affected
3討論
在連續(xù)4年的蜜蜂蜂群損失調(diào)查中,我國(guó)西方蜜蜂蜂群損失率一直穩(wěn)定在可接受的范圍內(nèi)。4年調(diào)查統(tǒng)計(jì)全國(guó)蜜蜂蜂群平均損失率為8.9%,我國(guó)現(xiàn)有蜂群830 萬群,由此計(jì)算,北方蜜蜂蜂群越冬合計(jì)年度損失蜂群約為74 萬群,對(duì)我國(guó)蜜蜂蜂群整體數(shù)量的影響在可控范圍內(nèi)。
本文調(diào)查的12 個(gè)省份是我國(guó)主要的西方蜜蜂養(yǎng)殖大省。近4年中,年度損失率較為近似,均在10%左右?,F(xiàn)有的蜂群損失率相對(duì)美國(guó)的蜂群損失率而言,在合理的范圍內(nèi)[7-9,24]。加強(qiáng)蜂場(chǎng)的日常管理及蜂螨治理,可以有效的維護(hù)蜂群的群勢(shì),降低蜂群的損失率[27]。蜂場(chǎng)規(guī)模的差異導(dǎo)致蜂群管理方式及飼養(yǎng)方式的差異,商業(yè)型蜂場(chǎng)對(duì)蜂群的基本管理較為粗放,更注重蜂群利益產(chǎn)出和主要流行性疾病防控方面。因此,蜂群年度損失偏高。但是由于商業(yè)型蜂場(chǎng)蜂群基數(shù)較大,春季繁殖更快,蜂群可以快速增長(zhǎng),并不影響第2年的蜂群總量。對(duì)傳染性疾病或蜂螨進(jìn)行有效的控制,現(xiàn)有的商業(yè)蜂場(chǎng)損失率仍在可控和可接受的范圍內(nèi)。
不同省份的蜂群損失率統(tǒng)計(jì)中,新疆和河南是蜂群損失較高的省份。在統(tǒng)計(jì)中發(fā)現(xiàn),這兩個(gè)省份所屬蜂場(chǎng)規(guī)模較大,集約化管理程度較高,年度治理蜂螨的次數(shù)較其他省份偏高。目前,我國(guó)蜜蜂蜂場(chǎng)蜂螨治理主要以藥物治理為主,氟胺氰菊酯類藥物是其主要成分。在兩年期蜂群巢脾內(nèi)檢測(cè)到氟胺氰菊酯類藥物的殘留和積累,該類藥物對(duì)蜜蜂幼蟲發(fā)育會(huì)造成危害[31-33]。由于這兩個(gè)省份強(qiáng)化集約式飼養(yǎng)與管理,不排除用藥過量及藥物殘留對(duì)蜂群的影響,造成了蜂群損失率偏高。
蜜蜂蜂群崩潰癥狀(CCD)在我國(guó)并沒有確認(rèn)發(fā)生。不同規(guī)模蜂場(chǎng)具有不同的管理方式。商業(yè)型蜂場(chǎng)的管理更為粗放,注重傳染性疾病的防控,疏于日常管理。而業(yè)余型蜂場(chǎng)的日常管理更為細(xì)致,對(duì)于蜂王的檢查,蜂螨及其他疾病的防控較為細(xì)致和嚴(yán)格。我國(guó)雖是養(yǎng)蜂大國(guó),但是養(yǎng)蜂規(guī)模普遍偏小,業(yè)余型和專業(yè)型蜂場(chǎng)數(shù)合計(jì)占到統(tǒng)計(jì)蜂場(chǎng)的87%左右,蜂群總數(shù)約為61%。而歐洲小型蜂場(chǎng)蜂群數(shù)僅占到了28%,其余均為大型蜂場(chǎng)的蜂群[10]。美國(guó)小型和中型蜂場(chǎng)蜂群數(shù)僅占到約4%[5]。由此可見,細(xì)致的管理和病害防控對(duì)于降低蜜蜂蜂群損失尤為重要。在前文的分析中,蜂王因素是導(dǎo)致蜂群損失的主要原因,而細(xì)致的管理可以及時(shí)發(fā)現(xiàn)蜂王的損害或損失,對(duì)蜜蜂蜂群的進(jìn)一步損失做出提前的防控。不同蜂場(chǎng)規(guī)模導(dǎo)致的不同飼養(yǎng)管理模式或許是影響CCD 發(fā)生的因素之一。
在損失因素的分析中,蜂王因素和巢脾更新率是導(dǎo)致蜂群損失的主要原因。蜂王因素主要有蜂王丟失、蜂王損失、蜂王使用時(shí)間過長(zhǎng)、蜂王產(chǎn)卵不佳等情況,蜂王因素直接導(dǎo)致蜂群損失,尤其在越冬前后。因此,在秋季繁殖前更換新王或加強(qiáng)越冬前蜂王的監(jiān)控,保證健康蜂王越冬,可以有效減少蜂群的越冬損失。巢脾更新率也是導(dǎo)致蜂群越冬損失的原因之一。多年用巢脾存在藥物殘留、螨害幼蟲殘留、吸引其他病害侵襲等多種危害。適時(shí)更換巢脾,可以有效切斷病害侵襲,降低蜂群感染病害等危險(xiǎn)。同時(shí),較新的巢脾有利于蜂王的產(chǎn)卵和蜂群的壯大,對(duì)秋季繁殖的蜂群尤為重要。因此,提高巢脾更新率是降低蜂群越冬損失的方法之一。蜂螨一直是危害蜂群的主要因素,但是由于我國(guó)成熟蜂場(chǎng)均有按時(shí)開展蜂螨防控的習(xí)慣,提前開展關(guān)王治螨或藥物治螨等工作,蜂螨危害在近年并不突出。但對(duì)螨害的防控仍然不能松懈。因此,合理的生產(chǎn)方式和病害的提前防控工作是保證蜂群健康的主要因素。
4結(jié)論
自2006 年美國(guó)、歐洲相繼出現(xiàn)蜜蜂CCD現(xiàn)象,各國(guó)均開展蜜蜂蜂群損失的調(diào)查,試圖查明蜜蜂蜂群損失情況并解釋損失原因。中國(guó)作為世界蜂業(yè)大國(guó),一直密切關(guān)注著本國(guó)蜜蜂蜂群的損失情況。2009—2013 年,我們調(diào)查并統(tǒng)計(jì)了我國(guó)西方蜜蜂蜂群損失情況,西方蜜蜂蜂群自然損失在可接受范圍內(nèi),并沒有受到美國(guó)、歐洲蜜蜂蜂群大規(guī)模消失的影響。加強(qiáng)蜂群的日常管理和飼喂,及時(shí)更換蜂王,可以有效降低西方蜜蜂蜂群的逆境損失情況。這是我國(guó)首次在全國(guó)范圍內(nèi)開展蜂群損失調(diào)查與分析,在“現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系——蜂產(chǎn)業(yè)技術(shù)體系”及“中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程項(xiàng)目”的支持下,持續(xù)開展我國(guó)蜜蜂蜂群損失監(jiān)控是未來工作的重點(diǎn)。
致謝:“現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系-蜂產(chǎn)業(yè)技術(shù)體系”吉林試驗(yàn)站、天水試驗(yàn)站、晉中試驗(yàn)站、興城試驗(yàn)站、揚(yáng)州試驗(yàn)站、金華試驗(yàn)站、烏魯木齊試驗(yàn)站、新鄉(xiāng)試驗(yàn)站、紅河試驗(yàn)站、牡丹江試驗(yàn)站、成都試驗(yàn)站、重慶試驗(yàn)站在連續(xù)多年的蜂場(chǎng)調(diào)查中給予大量的幫助,調(diào)查蜂農(nóng)給予積極配合,Leon YE 工作室為蜜蜂資源與授粉功能試驗(yàn)室數(shù)據(jù)庫(kù)網(wǎng)站的建設(shè)提供技術(shù)支持,特此致謝。
參考文獻(xiàn)(References):
[1]Klein A M, Vaissiere B E, Cane J H, Steffan-Dewenter I, Cunningham S A, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1608): 303- 313.
[2]Ellis J D, Evans J D, Pettis J S. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. Journal of Apicultural Research, 2010, 49(1): 134- 136.
[3]vanEngelsdorp D, Underwood R, Caron D, Hayes J Jr. An estimate of managed colony losses in the winter of 2006- 2007: A report commissioned by the Apiary Inspectors of America. American Bee Journal, 2007, 147: 599- 603.
[4]vanEngelsdorp D, Hayes J Jr, Underwood R M, Pettis J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PloS ONE, 2008, 3(12): e4071.
[5]vanEngelsdorp D, Hayes J Jr, Underwood R M, Pettis J. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. Journal of Apicultural Research, 2010, 49(1): 7- 14.
[6]vanEngelsdorp D, Hayes J Jr, Underwood R M, Pettis J. A survey of managed honey bee colony losses in the USA, fall 2009 to winter 2010. Journal of Apicultural Research, 2011, 50(1): 1- 10.
[7]vanEngelsdorp D, Caron D, Hayes J, Underwood R, Heoson M, Rennich K, Spleen A, Andree M, Snyder R, Lee K, Roccasecca K, Wilson M, Wilker J, Lengerich E, Pettis J. A national survey of managed honey bee 2010- 11 winter colony losses in the USA: results from the Bee Informed Partnership. Journal of Apicultural Research, 2012, 51(1): 115- 124.
[8]Spleen A M, Lengerich E J, Rennich K, Caron D, Rose R, Pettis J S, Henson M, Wilkes J T, Wilson M, Stitzinger J, Lee K, Andree M, Snyder R, van Engelsdorp D. A national survey of managed honey bee 2011- 12 winter colony losses in the United States: results from the Bee Informed Partnership. Journal of Apicultural Research, 2013, 52(2): 44- 53.
[9]Steinhauer N A, Rennich K, Wilson M E, Caron D M, Engerich E J, Pettis J S, Rose R, Skinner J A, Tarpy D R, Wilker J T, vanEngelsdorp D. A national survey of managed honey bee 2012- 2013 annual colony losses in the USA: results from the Bee Informed Partnership. Journal of Apicultural Research, 2014, 53(1): 1- 18.
[10]Aston D. Honey bee winter loss survey for England, 2007- 8. Journal of Apicultural Research, 2010, 49(1): 111- 112.
[11]Brodschneider R, Moosbecherofer R, Cralsheim K. Surveys as a tool to record winter losses of honey bee colonies: a two year case study in Austria and South Tyrol. Journal of Apicultural Research, 2010, 49(1): 23- 30.
[12]Charrière J-D, Neumann P. Surveys to estimate winter losses in Switzerland. Journal of Apicultural Research, 2010, 49(1): 132- 133.
[13]Currie R W, Pernal S F, Ernesto Guzmán-movoa E. Honey bee colony losses in Canada. Journal of Apicultural Research, 2010, 49(1): 104- 106.
[14]Gray T, Kence M, Oskay D, D?ke M A, Kence A. Scientific note: Colony losses survey in Turkey and causes of bee deaths. Apidologie, 2010, 41(4): 451- 453.
[15]Hatjina F, Bouga M, Karatasou A, Kontothanasi A, Charistons L, Emmanouil C, Emmanouil N, Maistros A D. Data on honey bee losses in Greece: a preliminary note. Journal of Apicultural Research, 2010, 49(1): 116- 118.
[16]Ivanova E N, Petrov P P. Regional differences in honey bee winter losses in Bulgaria during the period 2006- 9. Journal of Apicultural Research, 2010, 49(1): 102- 103.
[17]Mutinelli F, Costa C, Lodesani M, Baggio A, Medrzycki P, Formato G, Porrini C. Honey bee colony losses in Italy. Journal of Apicultural Research, 2010, 49(1): 119- 120.
[19]Topolska G, Gajda A, Pohorecka K, Bober A, Kasprzak S, Skubida M, Semkiw P. Winter colony losses in Poland. Journal of Apicultural Research, 2010, 49(1): 126- 128.
[21]Van der Zee R. Colony losses in the Netherlands. Journal of Apicultural Research, 2010, 49(1): 121- 123.
[22]Van der Zee R, Pisa L, Andonov S, Brodschnerier R,Charrière J D, Chlebo R, Coffey M F, Cralscheim K, Dahle B, Gajda A, Gray A, Drazic M, Higes M, Kauko L, Kence A, Kence M, Kezic N, Kiprijanovska H, Kralj J, Kristiansen P, Martin-hernandez R, Mutinelli F, Nguyen B K, Otten C, ?zkirim A, Pernal S F, Peterson M, Ramsay G, Santrac V, Soroker V, Topolska G, Uzunov A, Vejsns F, Wei S, Wilkins S. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008- 9 and 2009- 10. Journal of Apicultural Research, 2012, 51(1): 100- 114.
[23]Gray A, Peterson M, Teale A. An update on recent colony losses in Scotland from a sample survey covering 2006- 2008. Journal of Apicultural Research, 2010, 49(1): 129- 131.
[24]Neumann P, Carreck N L. Honey bee colony losses. Journal of Apicultural Research, 2010, 49(1): 1- 6.
[25]Potts S G, Roberts S P M, Dean R, Marris G, Brown M A, Jones H R, Neumann P, Settele J. Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research, 2010, 49(1): 15- 22.
[26]Nguyen B K, Mignon J, Lagent J, De graaf D C, Jacobs F J, vanEngelsdorf D, Brostaux Y, Saegerman C, Haubruge E. Honey bee colony losses in Belgium during the 2008- 9 winter. Journal of Apicultural Research, 2010, 49(4): 333- 339.
[27]Van der Zee R, Brodschneider R, Brusbardis V, Charriere J, D, Chlebo R, Coffey M, F, Dahle B, Drazic M, M, Kauko L, Kretavicius J, Kristiansen P, Mutinelli F, Otten C, Peterson M, Raudmets A, Santrac V, Sepp?l? A, Soroker V, Topolska G, Vejsns F, Gray A. Results of international standardised beekeeper surveys of colony losses for winter 2012- 2013: analysis of winter loss rates and mixed effects modelling of risk factors for winter loss. Journal of Apicultural Research, 2014, 53(1): 19- 34.
[28]Van der Zee R, Gray A, Holzmann C, Pisa L, Brodschneider R, Chlebo R, Coffey M F, Kence A, Kristiansen P,Mutinelli F, Nguyen B K, Adjlane N, Peterson M, Soroker V, Topolska G, Vejsns F, Wilkins S. Standard survey methods for estimating colony losses and explanatory risk factors inApismellifera. Journal of Apicultural Research, 2013, 52(4), doi: 10.3896/IBRA.1.52.4.18.
[29]R Development Core Team.R:A Language and Environment for Statistical Computing. Vienna,Austria:R Foundation for Statistical Computing, 2011.
[30]Bates D, Maechler M, Bolker B. Lme4: Linear mixed-effects models using S4 classes. Vienna: Institute for Statistics and Mathematics, University of Economics and Business, 2011.
[31]Bryden J, Gill R J, Mitton R A, Raine N E, Jansen V A A. Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16(12): 1463- 1469.
[32]Frost E H, Shutler D, Hillier N K. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. The Journal of Experimental Biology, 2013, 216(15): 2931- 2938.
[33]Goswami V, Srivastava P, Khan M S. Efficacy of essential oils against Varroa destructor infestingApismelliferaLinn. Colonies and their impact on brood development. The Journal of Applied and Natural Science, 2014, 6(1): 27- 30.
Mortality inApismelliferaL. colonies in China from 2009 to 2013
LIU Zhiguang1,2,3, CHEN Chao1, GUO Haikun1, LYU Liping1, SHI Wei1,2,*
1InstituteofApiculturalResearch,ChineseAcademyofAgriculturalSciences,Beijing100093,China2KeyLaboratoryofPollinatingInsectBiology,MinistryofAgriculture,Beijing100093,China3NationalAnimalHusbandryServiceStation,Beijing100125,China
Abstract:In recent years, large-scale losses of honeybee (Apis mellifera) colonies have taken place in Europe and North America. Apiculture scientists have organized a CoLoss Network to investigate and explain these losses. This article presents survey results and analyses of honeybee (Apis mellifera L.) colony mortality from 2009 to 2013 in 12 provinces in China, analyses of the proportions of colony mortality, and their possible causes. Standard questionnaires were used in this survey, as supplied by CoLoss, and financial support was provided by the European Cooperation in Science and Technology (COST). All statistical analyses were performed using R statistical software. A generalized linear mixed effects model (GLMM) was used to analyze potential risk factors. In total, more than 5300 beekeepers responded to the survey. This included less than half of the Apis cerana survey data set. A total of 3742 apiaries, which were part of the valuable Apis mellifera dataset that contains 520653 colonies, were also statistically analyzed in this paper. Average mortality over the winters of 2009—2013 was estimated to be 8.9%. The loss (12%) during the winter of 2011—2012 was higher than in other years. This level of mortality was considered acceptable by beekeepers and apiculture scientists. There was substantial variation in total loss by province (range 2.3%—19%). Xinjiang Province and Henan Province differed significantly from other provinces in their average loss. Average loss also differed significantly by type of operation, such as commercial, part-time, and sideline operations, although part-time and sideline operations did not differ significantly from each other during most surveyed years. Xinjiang Province and Henan Province have large numbers of commercial beekeeping operations. Province and operational data were calculated collectively, and the results supported the hypothesis that commercial beekeeping operations caused frequent honeybee queen failure and fostered the spread of other diseases, confirming that these were the two causes of colony loss. Colony collapse disorder (CCD) was not a common problem in China until recently. Overall rates of colony loss were low in general, with differences among operations of different sizes and among different provinces. The GLMM results highlighted several factors that have a significant effect on winter losses. The frequency of comb renewal and problems with the queens were responsible for most losses. The rates of colony mortality were considered acceptable, and the symptoms of colony mortality did not match those of CCD. The parasitic mite Varroa destructor was not found to be the main cause of these losses. This is because beekeepers regularly treat colonies for Varroa destructor in early spring before the queens lay most of their eggs and again in late fall. This twice-yearly treatment kept the colonies in normal or better conditions before the onset of winter. Improving the frequency of comb renewal, strengthening the prevention and control of bee mites and other diseases, monitoring the queens, and increasing the use of the new queens may keep colony mortality within acceptable ranges. This is the first nationwide investigation of Apis mellifera colony losses. These results could help prevent and control honey bee colony losses in China.
Key Words:Apis mellifera L.; colony mortality; Colony collapse disorder (CCD); China
基金項(xiàng)目:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系-蜂產(chǎn)業(yè)技術(shù)體系(CARS- 45);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP- 2015-IAR);中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2013ymf-mf- 3)
收稿日期:2014- 08- 13; 網(wǎng)絡(luò)出版日期:2015- 09- 28
*通訊作者
Corresponding author.E-mail: shiwei@caas.cn
DOI:10.5846/stxb201408131605
劉之光, 陳超, 郭海坤, 呂麗萍, 石巍.2009—2013年中國(guó)西方蜜蜂蜂群損失情況調(diào)查分析.生態(tài)學(xué)報(bào),2016,36(10):3005- 3012.
Liu Z G, Chen C, Guo H K, Lyu L P, Shi W.Mortality inApismelliferaL. colonies in China from 2009 to 2013.Acta Ecologica Sinica,2016,36(10):3005- 3012.