陳志騰,杜予州
(揚州大學園藝與植物保護學院應用昆蟲研究所,江蘇揚州 225009)
?
昆蟲線粒體基因組重排的研究進展
陳志騰,杜予州*
(揚州大學園藝與植物保護學院應用昆蟲研究所,江蘇揚州 225009)
動物線粒體基因組通常組成穩(wěn)定,基因排列也相對保守,極少發(fā)生重組。但是昆蟲的線粒體基因組具有重排的可能性,而且這些重排事件可能為系統(tǒng)發(fā)育研究提供重要的信息。因此,深入研究昆蟲線粒體基因組的重排可能有助于解決具有爭議的系統(tǒng)發(fā)生關(guān)系。本文對昆蟲線粒體基因組的重排類型、重排機理和重排在昆蟲系統(tǒng)發(fā)育分析中的應用等方面的研究進展進行了介紹。
線粒體基因組;昆蟲;基因重排;系統(tǒng)進化;系統(tǒng)發(fā)育
昆蟲的線粒體基因組(mitochondrial genome)通常為雙鏈閉合的環(huán)狀DNA分子,長15-20 kb,一般包含37個基因,即13個蛋白質(zhì)編碼基因(PCG)、22個轉(zhuǎn)運RNA(tRNA)基因和2個核糖體RNA(rRNA)基因,此外還有一個最大的非編碼區(qū),即控制區(qū)(Boore, 1999)。昆蟲線粒體基因組的多數(shù)基因在同一條鏈上編碼,該鏈稱為J鏈(majority strand),少數(shù)基因在另一條鏈上編碼,該鏈稱為N鏈(minority strand)(Simonetal., 1994)。線粒體基因組具有分子量小、進化速率快和重組水平較低等特點,因此已經(jīng)被作為分子標記在昆蟲系統(tǒng)學等研究中得到廣泛應用(Wilsonetal., 2000; Lin and Danforth, 2004; Gissietal., 2008; Salvatoetal., 2008; Wangetal., 2014a; Wangetal., 2015; Amaraletal., 2016; Songetal., 2016)。
自從第一個昆蟲線粒體基因組,即果蠅Drosophilayakuba的線粒體基因組被測序(Claryetal., 1985)以來,隨著分子生物學技術(shù)和昆蟲線粒體基因組研究技術(shù)的不斷進步,被測定的昆蟲線粒體基因組的數(shù)量迅速增加,目前GenBank中已有超過790種昆蟲的線粒體基因組被測序。隨著昆蟲線粒體基因組全序列數(shù)據(jù)的逐漸增加,昆蟲線粒體基因的重排現(xiàn)象也不斷被發(fā)現(xiàn)(Crozier and Crozier, 1993; Flooketal., 1995; Szymuraetal., 1996; Shao and Barker, 2003; Thaoetal., 2004; 魏書軍,2009;Tayetal., 2014; Wangetal., 2014b),本文就不同類別昆蟲的線粒體基因重排、常見的重排類型、可能的重排機制以及重排在系統(tǒng)發(fā)生上的應用等方面的研究進展做了介紹。
昆蟲中線粒體基因排列比較保守,一般把果蠅的線粒體基因排列方式作為昆蟲的模式排列方式(圖1),大多數(shù)昆蟲的線粒體基因都遵循這個排列順序,但有些類群會在進化過程中發(fā)生重排(Boore, 1999),因此昆蟲線粒體基因的重排是相對于果蠅的線粒體基因來說的。在昆蟲中,目前已在17個目中發(fā)現(xiàn)有線粒體基因重排現(xiàn)象,即膜翅目、鱗翅目、雙翅目、脈翅目、毛翅目、捻翅目、鞘翅目、纓翅目、半翅目、虱目、嚙蟲目、直翅目、彈尾目、石蛃目、原尾目、紡足目和革翅目。
圖1 推測的昆蟲線粒體基因原始排列方式Fig.1 Putative ancestral mitochondrial gene arrangement of insects注:加下劃線的基因編碼于N鏈,未加下劃線的編碼于J鏈。Note: Underlined genes are encoded on minority strand while non-underlined genes are encoded on majority strand.
在六足總綱中,各個目之間發(fā)生的線粒體基因重排是隨機的,與各類群的進化關(guān)系沒有直接關(guān)聯(lián)(Cameronetal., 2006)?,F(xiàn)在已經(jīng)在昆蟲的17個目中發(fā)現(xiàn)了線粒體基因重排,但他們在重排的發(fā)生頻率和規(guī)模上也有區(qū)別。線粒體基因重排較多的目中,所有類群都檢測到了基因的重排,重排涉及的基因數(shù)量很多,包括蛋白質(zhì)編碼基因、rRNA基因和tRNA基因,如虱目、嚙蟲目、纓翅目和膜翅目等(Dowton and Austin, 1999; Dowtonetal., 2002a),其中虱目、嚙蟲目和纓翅目的重排現(xiàn)象不僅在重排熱區(qū)發(fā)生,在一些非常保守的區(qū)域也有發(fā)生(Schmidt and Barker, 2001)。重排較少的目中,發(fā)生重排的種類和涉及的基因數(shù)量一般較少,如半翅目、雙翅目和鞘翅目等。在有些目中,所有種類都有相同的基因重排,并且基因重排可能是某些類群的共有衍征,如鱗翅目(魏書軍和陳學新,2011;Caoetal., 2012)。
2.1膜翅目
膜翅目昆蟲的線粒體基因重排具有多種類型,包括基因洗牌、移位和倒置(Dowton and Austin, 1999)。此外,膜翅目昆蟲的線粒體基因重排還有以下特點:重排速率較高、重排程度在各類群間有差異、重排以tRNA重排為主、不同類型的重排所占比例幾乎相同等等(魏書軍,2009;Weietal., 2009; Weietal., 2010a; Weietal., 2010b)。Wei等(2014)首次報道了針尾亞目(Aculeata)中出現(xiàn)的線粒體蛋白編碼基因的重排,并且這些重排在膜翅目的大多類群中是獨立進化的。每種已測序的膜翅目昆蟲都有至少一個易位的tRNA,并且在COII-ATP8、ND3-ND5、ND2-COI、控制區(qū)-ND2基因連接部是膜翅目昆蟲線粒體基因組中tRNA重排的多發(fā)區(qū)(Dowton, 1999; Dowton and Austin, 1999; Dowtonetal., 2003)。線粒體基因組的比較研究表明,廣腰亞目的基因排列比細腰亞目保守,即細腰亞目比廣腰亞目的基因重排頻率高;但相對于其他目的大多數(shù)昆蟲來說,廣腰亞目的基因重排更加頻繁(Dowton and Austin, 1999; Dowtonetal., 2003; Songetal., 2016)。有研究發(fā)現(xiàn),膜翅目中獨特的重排非常常見,在已鑒定的67個重排中,只有5個是在兩個或多個物種中共享的,并且5個重排中只有2個是真正同源的(Dowtonetal., 2009)。Maoetal. (2014) 在胡峰Conostigmussp. 中檢測到了線粒體基因組小環(huán),這為基因重組和線粒體基因重排之間的聯(lián)系提供了支持。魏書軍(2009)還發(fā)現(xiàn),在膜翅目昆蟲的線粒體基因組中,有重疊部分的基因很少發(fā)生重排,而發(fā)生重排的基因兩側(cè)通常有基因間隔部分。
2.2鱗翅目
大多數(shù)鱗翅目昆蟲線粒體基因的排列順序不同于果蠅,而是與第一個被測序的鱗翅目昆蟲家蠶一致(王維等,2013)。鱗翅目中,已測定的線粒體基因組除了具有原始排列的種類之外,還包括典型的trnM-trnI-trnQ重排順序,以及trnA-trnF基因簇中的基因重排(Caoetal., 2012; Gongetal., 2012; Wangetal., 2014a; Parketal., 2016)。但是,鱗翅目的原始類群仍然需要更多測序工作來深入研究。
2.3雙翅目
雙翅目中,線粒體基因發(fā)生重排的種類集中在長角亞目Nematocera中(魏書軍,2009)。在雙翅目中比較普遍的重排現(xiàn)象是tRNA基因的增加或者發(fā)生基因倒置,轉(zhuǎn)移到另一條鏈上(de Azeredo-Espin, 2004; Yuetal., 2007)。進化程度較高的種類基因重排并不頻繁,較常見的只是涉及個別tRNA基因的重排;而在低等的雙翅目中,線粒體基因的重排很明顯,涉及到tRNA基因的位置以及蛋白質(zhì)編碼基因的位置(Beckenbach, 2012;梅琰等,2012)。
2.4鞘翅目
鞘翅目中,線粒體基因組的基因排列順序和組成相對保守。目前已知的鞘翅目線粒體基因組的基因組成,特別是蛋白質(zhì)編碼基因的排列大多與祖先昆蟲一致,基因重排較少(Timmermans and Vogler, 2012)。例如,在花蚤Mordellaatrata和象甲Naupactusxanthographus中發(fā)生的tRNA重排(Songetal., 2010)。除了tRNA發(fā)生重排之外,在花螢科的Phrixtothrixhirtus和叩甲科的Teslasenafemoralis中還觀察到了控制區(qū)的位置變化(Amaraletal., 2016)。
2.5纓翅目
纓翅目(薊馬)中已測線粒體基因組的種類有澳洲疫薊馬Thripsimaginis、西花薊馬Frankliniellaoccidentalis、茶黃薊馬Scirtothripsdorsalis、花薊馬Frankliniellaintonsa和稻管薊馬Haplothripsaculeatus(Shao and Barker, 2003; Yanetal., 2012; Yanetal., 2014; Dickeyetal., 2015),并且它們的線粒體基因組都高度重排。在澳洲疫薊馬T.imaginis中出現(xiàn)了2個非常相似的A+T富含區(qū)(Shao and Barker, 2003),在西花薊馬F.occidentalis和花薊馬F.intonsa中也都出現(xiàn)了3個控制區(qū)(Yanetal., 2014)。此外,在茶黃薊馬S.dorsalis的南亞1種群中,還出現(xiàn)了裂化的線粒體基因組,即同時具有兩個環(huán)狀的染色體(Dickeyetal., 2015)。系統(tǒng)發(fā)育研究表明,這幾個已測序的種類所在的屬(薊馬屬、花薊馬屬)是薊馬科中種類最為豐富的屬,也是最為進化的支系,這暗示著薊馬的線粒體基因在早期大量重排后,經(jīng)過長期的進化現(xiàn)已保持穩(wěn)定(Buckmanetal., 2013; Yanetal., 2014)。
2.6半翅目(廣義)
已測序線粒體基因組的半翅目昆蟲中,大多數(shù)種類的線粒體基因排列與模式昆蟲果蠅相同。半翅目中的3個亞目的昆蟲都包含高度重排的類群,即半翅目中胸喙亞目Sternorrhyncha的粉虱科Aleyrodidae、異翅亞目Heteroptera的光背奇蝽屬Stenopirates的個別種類以及一些涉及tRNA重排的個例(Thaoetal., 2004; Lietal., 2012; Lietal., 2016)。在粉虱科中,已經(jīng)測序的12個種中就有8個種發(fā)生了線粒體基因重排,并且這些重排都涉及ND3-trnG-COIII基因簇的變動。
2.7嚙蟲目及虱目
近年來的研究表明,嚙蟲目和虱目的親緣關(guān)系很近,并將二者組成一個總目,即嚙總目(Yoshizawaetal., 2006)。相比于其它目的昆蟲,嚙總目昆蟲的線粒體基因組具有豐富的變異性,而且會發(fā)生裂化,即裂化成數(shù)個線粒體基因組小環(huán)(魏丹丹等,2014)。線粒體基因組的裂化為線粒體基因的重組提供了直接證據(jù),說明線粒體基因組之間有同源與非同源性的重組(Shao and Barker, 2011)。線粒體基因組在裂化后會出現(xiàn)假基因,這可能是不同線粒體基因組環(huán)之間經(jīng)歷重組和刪除后的痕跡(Weietal., 2012)。
對于嚙蟲目而言,已測定的各種類線粒體基因組之間的基因排列均有差異(Shaoetal., 2001b)。在Liposcelisbostrychophila中,典型的單個線粒體基因組分裂成為兩個,這種分裂的情況可能為物種帶來一些進化的優(yōu)勢(Weietal., 2012)。但是相同屬中的L.decolor的線粒體基因排列卻與L.bostrychophila有很大差異,這種情況在動物中很罕見(Chenetal., 2014)。
虱目昆蟲的線粒體基因組在所有節(jié)肢動物中是重排最多的(Shaoetal., 2001a),并且保留祖先昆蟲的原始基因邊界極少,最多的也僅僅保留3個,即發(fā)生在Bothriometopusmacrocnemis的線粒體基因組中(Cameronetal., 2007)。在B.macrocnemis中,基因重排導致了所有的基因均由J鏈編碼,即轉(zhuǎn)錄方向一致,這在昆蟲中是個特例(Cameronetal., 2007)。在Heterodoxusmacropus中所有tNRA基因和9種蛋白質(zhì)基因均發(fā)生重排,并存在2個A+T富含區(qū)(Shaoetal., 2001a)。此外,除了來自Gonioidae科的兩個非常緊密相關(guān)的物種之外,虱目之間共享的異?;蛑嘏欧浅I?Cameron, 2014)。
2.8直翅目
直翅目的蝗亞目Caelifera昆蟲中普遍存在trnK與trnD順序顛倒(DK 重排)的現(xiàn)象,但有個例外就是日本蚤螻Tridactylusjaponicus,這個種類沒有發(fā)生線粒體基因重排(Sheffieldetal., 2010; Zhaoetal., 2010; 王鵬翔,2013)。在螽斯亞目Ensifera的黃臉油葫蘆Teleogryllusemma中,具有ARESNF結(jié)構(gòu)的tRNA排列方式(葉偉等,2008)。此外,在樹螽Phyllomimusdetersus中,還包括trnM-trnI-trnQ的獨特重排順序(Yangetal., 2016)。
2.9其它目
毛翅目:毛翅目中已經(jīng)測定的5個種中,只有Hydropsychepellucidula的srRNA和兩個tRNA(trnP和trnI)發(fā)生了重排(Linardetal., 2015)。
脈翅目:脈翅目中測定的15個種中只有部分涉及到trnC的轉(zhuǎn)置。
彈尾目:在彈尾目已測定線粒體基因組的10個種中,只有3個種涉及到tRNA的重排,其余均與模式昆蟲果蠅的基因排列方式一致。
紡足目:目前僅已知一種紡足目昆蟲Aposthoniajaponica的線粒體基因組,而且其具有trnD-ND5基因簇的重排以及1個額外復制的srRNA基因(Kmotoetal., 2012)。
革翅目:目前僅有一種革翅目昆蟲Challiafletcheri的線粒體基因組已經(jīng)測序,其中涉及到7個tRNA的重排(Wanetal., 2012)。
迄今為止,根據(jù)不同的劃分標準,線粒體基因的重排可以分為幾種不同的類型。根據(jù)線粒體基因組重排基因的種類可以分為主要重排(major rearrangement),即包含蛋白質(zhì)編碼基因或rRNA基因的重排,以及次要重排(minor rearrangement),即只包含tRNA基因的重排(Cameronetal., 2007)。
根據(jù)基因重排中基因的位置變化可以分為(1)基因洗牌(shuffling),即基因在同一條鏈上從一個位置滑移到相鄰位置,距離一般很短,而且一般不會跨越蛋白基因;(2)基因移位(translocation),即基因從原始位置跨越蛋白質(zhì)或rRNA基因重排到不同的位置;(3)基因倒置(inversion),即基因從一條編碼鏈轉(zhuǎn)換到另外一條編碼鏈編碼,這種基因編碼鏈的轉(zhuǎn)換,會導致其閱讀方向的改變,并且發(fā)生倒置的基因在基因組上的排列位置變化并不大?;虻怪糜职ㄔ坏怪?local inversion),即基因的相對位置不變,方向改變(Dowton and Austin, 1999),以及異位倒置(remote inversion),即基因的相對位置和方向都發(fā)生改變(Dowtonetal., 2003)。倒置在昆蟲中是最不常見的重排類型,在革翅目(Wanetal., 2012)、膜翅目(Dowtonetal., 2009)和3個準新翅類(Paraneoptera)(Shaoetal., 2001b; Shao and Barker, 2003; Thaoetal., 2004; Weietal., 2012)中都有記錄。這些不同類型的重排可能組合發(fā)生,而且一般認為短距離的重排比長距離的重排更加頻繁(Dowtonetal., 2009)。
目前用于解釋線粒體基因重排的機制主要有:(1)復制-隨機丟失(duplication-random loss)(Moritz and Brown, 1987);(2)復制-非隨機丟失(duplication-nonrandom loss)(Lavrovetal., 2002);(3)重組(Recombination)(Poultonetal., 1993; Lunt and Hyman, 1997; Dowton and Campbell, 2001);(4)由tRNA 基因錯誤起始引起的復制(illicit priming of replication by tRNA genes)(Cantatoreetal., 1987)。
4.1復制-隨機丟失
復制-隨機丟失是用于解釋線粒體基因重排的最廣泛被接受的機制,該模型由Moritz and Brown(1987)最早提出,并由Maceyetal.(1997)和Boore and Brown(1998)進行了完善。在復制-隨機丟失模型中,一部分線粒體基因由于復制產(chǎn)生了多基因的重復,其中復制可能是通過滑鏈錯配(slipped-strand mispairing)、非精確終止(imprecise termination)、基因組的二聚作用(dimerization of the genome)或重組(recombination)(Moritz and Brown, 1987)。隨后,在多基因重復內(nèi)突變的積累最終使其中一個基因失去功能,這時候縮小基因組的選擇性壓力就會導致無功能基因的消除(Rand, 1994)。復制-隨機丟失模型很容易解釋基因移位但不能解釋基因倒置。在昆蟲中,復制-隨機丟失模型解釋了大多數(shù)觀察到的線粒體基因重排,而在脊椎動物中它解釋了幾乎所有觀察到的重排現(xiàn)象(Dowtonetal., 2009)。
4.2復制-非隨機丟失
復制-非隨機丟失模型由Lavrovetal.(2002)提出。該模型中,線粒體基因組先整體復制,形成一個首尾相連的環(huán)狀二聚體分子,然后根據(jù)基因的轉(zhuǎn)錄方向和位置進行非隨機的刪除(Lavrovetal., 2002)。該模型與與復制-隨機丟失模型相似,只是基因的丟失受到基因組內(nèi)的轉(zhuǎn)錄模塊的限制;在這些轉(zhuǎn)錄模塊邊界的重復基因不能被表達所以被消除,因此基因缺失是非隨機性的(Lavrovetal., 2002)。復制-非隨機丟失模型不常被用于解釋昆蟲中的重排,但它能解釋雙翅目等物種中極性相同的基因聚集的特殊現(xiàn)象(Beckenbach, 2012)。
4.3重組
重組模型由Poultonetal.(1993)首次提出。在該模型中,一個完整的線粒體基因組在多個位點斷裂,斷裂后的片段在重組時由于順序變化導致基因重排。雖然線粒體重組在歷史上有爭論(Moritz and Brown, 1987),但解釋基因倒置和大片段基因的相鄰互換就不能缺少某種形式的重組(Dowton and Campbell, 2001)。此外,該模型是解釋膜翅目昆蟲線粒體基因重排的重要機制之一(Dowton and Austin, 1999)。
4.4由tRNA 基因錯誤起始引起的復制
由tRNA 基因錯誤起始引發(fā)的線粒體基因組復制模型由Cantatoreetal.(1987)首次提出。當tRNA 作為復制起點引起線粒體基因組復制時,該tRNA仍存在于新的DNA鏈上,隨后這個tRNA可能被作為模板而被復制,從而可能導致該tRNA被組合到線粒體基因組的復制起點,使線粒體復制錯誤產(chǎn)生基因重排現(xiàn)象。
目前人們在分析昆蟲線粒體基因重排頻率加速的原因時,大多集中于把生活史特性作為重排事件的預測因子。由于在幾個寄生性昆蟲種群中發(fā)現(xiàn)了高度重排的線粒體基因組,所以寄生習性多次被認為是誘發(fā)因素(Shaoetal., 2001a; Dowtonetal., 2002b)。但隨著線粒體基因組測序的種類增多,有研究發(fā)現(xiàn),在雙翅目昆蟲中寄生狀態(tài)和重排之間沒有相關(guān)性,但在膜翅目中具有相關(guān)性(Castroetal., 2002)。然而隨后的深入研究表明,膜翅目中加速的重排頻率并不與這個目內(nèi)寄生習性的進化情況相一致,從而基本否定了寄生這個因素對重排加速的作用(Dowtonetal., 2009)。這些研究還表明,在寄生的類群中,加速的重排和核苷酸替代比率之間有明顯的相關(guān)性(Castroetal., 2002; Shaoetal., 2003)。
重排加速的第二個原因是控制區(qū)的復制,這已經(jīng)在薊馬和嚙蟲目中得到證實(Shao and Barker, 2003; Shaoetal., 2005; Yanetal., 2012)。雖然控制區(qū)的復制對重排速率的影響尚未充分了解,但是薊馬的控制區(qū)實際上是符合穩(wěn)定的基因組排列的,原因是這兩個含有重復控制區(qū)的薊馬種群之間只存在6個tRNA的重排(Cameron, 2014)。
重排加速的第三個原因可能與單倍二倍體(haplodiploidy)的進化有關(guān)。在8個具有獨立進化的單倍二倍性的昆蟲群體中,除了有4個種的線粒體基因組數(shù)據(jù)尚未獲得外,另外4個群體(膜翅目、纓翅目、粉虱科、眼蕈蚊科)具有加速的重排(Normark, 2003)。但有個例外是虱子,即虱子本身并沒有單倍二倍性,但它會進行父性基因組的消除,從而產(chǎn)生與經(jīng)典的單倍二倍體相似的基因組遺傳模式(McMeniman and Barker, 2006; Cameron, 2014)。
總之,昆蟲中線粒體基因發(fā)生重排的原因可能是多方面的,并且需要進行更深入的研究。
一般來說,線粒體基因重排是一類被稱為“罕見的基因組改變(rare genomic changes,RGCs)”的系統(tǒng)發(fā)育標記,并且它們的相似性很低(Rokas and Holland, 2000)。理論上,使用線粒體基因重排作為系統(tǒng)發(fā)育標記是有利的,原因如下:(1)線粒體基因組的重排基因數(shù)據(jù)集在兩側(cè)對稱動物中幾乎不變;(2)重排基因的同源性通常是清楚的;(3)重排事件似乎不太常見;(4)基因順序明顯選擇性地保持中性;(5)由于潛在基因順序的數(shù)量巨大,趨同的可能性通常很低(Boore and Brown, 1998)。
昆蟲中的基因重排事件對昆蟲各目之間的系統(tǒng)發(fā)育關(guān)系的研究貢獻不大,但是可能有利于研究昆蟲目內(nèi)各類群之間的系統(tǒng)發(fā)育關(guān)系(Cameronetal., 2006; Cameron, 2014)。目前將基因重排現(xiàn)象應用于昆蟲的系統(tǒng)發(fā)育研究方面的研究很少,主要因為已經(jīng)研究過的重排現(xiàn)象和類群非常少。因為基因重排沒有分子鐘,即沒有分子進化速度的恒定性,所以具有相同基因排列的物種可能來自共同的祖先,但也可能是由于在短期內(nèi)快速發(fā)生過多的重排事件導致的,這對線粒體基因重排在系統(tǒng)發(fā)育中的應用會產(chǎn)生干擾,因此要嚴格辨別(Yi, 2007)。
目前已經(jīng)測定的昆蟲線粒體基因組幾乎覆蓋了所有的目,但有些目的線粒體基因組已測序的種類很少,應用這些序列進行大規(guī)模的目與目之間的線粒體基因組比較研究來說,還是很有限的,因此對更多的昆蟲類群,特別是對一些重要類群的線粒體基因組進行測序和分析,顯得尤為重要。由于昆蟲中的線粒體基因重排事件蘊含著與物種系統(tǒng)進化相關(guān)的遺傳信息,因此需要對昆蟲各目的線粒體基因重排進行更透徹和系統(tǒng)的研究。此外,在利用線粒體基因的重排信息來重建系統(tǒng)發(fā)育關(guān)系時,仍然存在許多制約因素,因此要深入研究并且利用基因重排所透露的遺傳信息去更好地解決具有爭議的系統(tǒng)進化問題。
References)
Amaral DT, Mitani Y, Ohmiya Y,etal. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga)[J].Gene,2016.
Beckenbach AT. Mitochondrial genome sequences of Nematocera (lower Diptera): Evidence of rearrangement following a complete genome duplication in a winter crane fly[J].GenomeBiologyEvolution,2012,4(2): 89-101.
Buckman RS, Mound LA, Whiting MF. Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci[J].SystematicEntomology, 2013,38:123-133.
Boore JL. Animal mitochondrial genomes[J].NucleicAcidsResearch,1999,27(8):1767-1780.
Boore JL,Brown WM. Big trees from little genomes: Mitochondrial gene order as a phylogenetic tool[J].CurrentOpinionGeneticsDevelopment,1998,8(6):668-674.
Cao YQ,Ma C,Chen JY,etal. The complete mitochondrial genomes of two ghost moths,ThitarodesrenzhiensisandThitarodesyunnanensis: The ancestral gene arrangement in Lepidoptera[J].BMCgenomics,2012,13(1): 1.
Castro LR, Austin AD, Dowton M. Contrasting rates of mitochondrial molecular evolution in parasitic Diptera and Hymenoptera[J].MolecularBiologyandEvolution,2002,19:1100-1113.
Cameron SL.Insect mitochondrial genomics: Implications for evolution and phylogeny[J].AnnualReviewofEntomology,2014,59:95-117.
Cameron SL,Beckenbach AT,Dowton M,etal. Evidence from mitochondrial genomics on interordinal relationships in insects[J].ArthropodSystematics&Phylogeny,2006,64 (1):27-34.
Cameron SL,Johnson KP,Whiting MF.The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera):Effects of extensive gene rearrangements on the evolution of the genome[J].JournalofMolecularEvolution,2007,65:589-604.
Cantatore P, Gadaleta MN, Roberti M,etal. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes[J].Nature,1987,329(6142):853-855.
Chen SC,Wei DD,Shao R,etal.The complete mitochondrial genome of the booklouse,Liposcelisdecolor: Insights into gene arrangement and genome organization within the GenusLiposcelis[J].PLoSONE,2014,9(3):e91902.
Clary DO,Wolstenholme DR.The mitochondrial DNA molecule ofDrosophilayakuba:Nucleotide sequence,gene organization and genetic code[J].JournalofMolecularEvolution,1985,22:252-271.
Crozier RH,Crozier YC.The mitochondrial genome of the honeybeeApismellifera:Complete sequence and genome organization[J].Genetics,1993,133:97-117.
de Azeredo-Espin AML. The complete mitochondrial genome of the human bot flyDermatobiahominis(Diptera: Oestridae)[C].The 2004 ESA Annual Meeting and Exhibition, 2004.
Dickey AM,Kumar V,Morgan JK,etal.A novel mitochondrial genome architecture in thrips (Insecta:Thysanoptera): Extreme size asymmetry among chromosomes and possible recent control region duplication[J].BMCGenomics,2015,16(1):1.
Dowton M. Relationships among the cyclostome braconid (Hymenoptera:Braconidae) subfamilies inferred from a mitochondrial tRNA gene rearrangement[J].MolecularPhylogeneticsandEvolution,1999,11(2):283-287.
Dowton M, Austin AD. Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera[J].MolecularBiologyandEvolution,1999,16(2):298-309.
Dowton M,Belshaw R,Austin AD,etal.Simultaneous molecular and morphological analysis of braconid relationships (Insecta: Hymenoptera: Braconidae) indicates independent mt tRNA gene inversions within a single wasp family[J].JournalofMolecularEvolution,2002a,54:210-226.
Dowton M,Castro LR,Austin AD.Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: The examination of genome morphology[J].InvertebrateSystematics,2002b,16(1):345-356.
Dowton M,Castro LR,Campbell SL,etal.Frequent mitochondrial gene rearrangements at the Hymenopterannad3-nad5 junction[J].JournalofMolecularEvolution,2003,56(5):517-526.
Dowton M,Cameron SL,Dowavic JI,etal.Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral[J].MolecularBiologyandEvolution,2009,26:1607-1617.
Dowton M,Campbell NJH. Intramitochondrial recombination-is it why some mitochondrial genes sleep around?[J]TrendsinEcologyandEvolution,2001,16(6):269-271.
Flook P,Rowell CHF,Gellissen G.The sequence, organization and evolution of theLocustamigratoriamitochondrial genome[J].JournalofMolecularEvolution,1995,41,928-941.
Gissi C,Iannelli F,Pesole G.Evolution of the mitochondrial genome ofmetazoa as exemplified by comparison of congeneric species[J].Heredity,2008,101:301-320.
Gong YJ,Shi BC,Kang ZJ,etal. The complete mitochondrial genome of the oriental fruit mothGrapholitamolesta(Busck) (Lepidoptera: Tortricidae)[J].MolecularBiologyReports,2012,39(3):2893-2900.
moto N,Yukuhiro K,Tomita S.Novel gene rearrangements in the mitochondrial genome of a webspinner,Aposthoniajaponica(Insecta: Embioptera)[J].Genome,2012,55(3):222-233.
Lavrov DV,Boore JL,Brown WM.Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss[J].MolecularBiologyEvolution,2002, 19(2):163-169.
Lunt DH, Hyman BC. Animal mitochondrial DNA recombination[J].Nature,1997,387(6630):247-247.
Li H, Shi A, Stys P,etal. The complete mitochondrial genome and novel gene arrangement of the unique-headed bugStenopiratessp. (Hemiptera: Enicocephalidae)[J].PloSONE,2012,7:e29419.
Li H, Shi A, Song F, Cai W. Complete mitochondrial genome of the flat bugBrachyrhynchushsiaoi(Hemiptera: Aradidae)[J].MitochondrialDNA,2016,27(1):14-15.
Lin CP, Danforth BN.How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets[J].MolecularPhylogeneticsandEvolution,2004,30:686-702.
Linard B, Arribas P, Andújar C,etal.The mitogenome ofHydropsychepellucidula(Hydropsychidae): First gene arrangement in the insect order Trichoptera[J].MitochondrialDNA,2015:1-2.
Macey JR, Larson A, Ananjeva NB,etal.Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome[J].MolecularBiologyEvolution,1997,14(1):91-104.
Mao M, Austin AD, Johnson NF,etal.Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization[J].MolecularBiologyandEvolution, 2014,31:636-644.
McMeniman CJ, Barker SC.Transmission ratio distortion in the human body louse,Pediculushumanus(Insecta: Phthiraptera)[J].Heredity,2006,96:63-68.
Mei D,Yue QY,Jia FL.Research progress on mitochondrial genomes ofdipteral insect[J].JournalofEnvironmentalEntomology,2012,34(4):497-503.[梅琰, 岳巧云, 賈鳳龍. 雙翅目昆蟲線粒體基因組研究進展[J].環(huán)境昆蟲學報,2012,34(4):497-503]
Moritz C,Brown WM.Tandem duplications in animal mitochondrial DNAs:Variation in incidence and gene content among lizards[J].ProceedingsoftheNationalAcademySciencesoftheUnitedStatesofAmerica,1987,84(20): 7183-7187.
Normark BB.The evolution of alternative genetic systems in insects[J].AnnualReviewofEntomology,2003,48: 397-423.
Park JS,Kim MJ,Jeong SY,etal.Complete mitochondrial genomes of two gelechioids,MesophlepsalbilinellaandDichomerisustalella(Lepidoptera: Gelechiidae), with a description of gene rearrangement in Lepidoptera[J].CurrentGenetics, 2016:1-18.
Poulton J,Deadman ME,Bindoff L,etal. Families of mtDNA rearrangements can be detected in patients with mtDNA deletions: Duplications may be a transient intermediate form[J].HumanMolecularGenetics,1993, 2(1): 23-30.
Rand DM.Thermal habit, metabolic rate and the evolution of mitochondrial DNA[J].TrendsinEcology&Evolution,1994,9:125-131.
Rokas A, Holland PWH. Rare genomic changes as a tool for phylogenetics[J].TrendsinEcology&Evolution, 2000,15: 454-459.
Salvato P, Simonato M, Battisti A,etal.The complete mitochondrial genome of the bag-shelter mothOchrogasterlunifer(Lepidoptera, Notodontidae)[J].BMCGenomics,2008,9:331-345.
Schmidt ER,Barker SC.Increasedrate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects[J].MolecularBiologyandEvolution,2001,18 (9):1828-1832.
Simon C,Frati F,Beckenbach A,etal.Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J].AnnalsoftheentomologicalSocietyofAmerica,1994,87(6):651-701.
Song H,Sheffield NC,Cameron SL,etal.When phylogenetic assumptions are violated:Base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics[J].SystematicEntomology, 2010, 35(1): 429-448.
Song SN,Tang P,Wei SJ,etal. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans[J].ScientificReports,2016,6:20972.
Shao R,Barker SC.The highly rearranged mitochondrial genome of the plague thrips,Thripsimaginis(Insecta: Thysanoptera): Convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes[J].MolecularBiologyandEvolution,2003,20:362-370.
ShaoR,Barker SC.Chimeric mitochondrial minichromosomes of the human body louse,Pediculushumanus: Evidence for homologous and non-homologous recombination[J].Gene,2011,473(1):36-43.
Shao R,Barker SC,Mitani H,etal.Evolution of duplicate control regions in the mitochondrial genomes of metazoan: A case study with Australasian Ixodes ticks[J].MolecularBiologyandEvolution,2005,22:620-629.
Shao R,Campbell NJH,Barker SC.Numerous gene rearrangements in the mitochondrial genome of the wallaby louse,Heterodoxusmacropus(Phthiraptera)[J].MolecularBiologyandEvolution,2001a,18:858-865.
Shao RF,Campbell NJH,Schmidt ER,etal. Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects[J].MolecularBiologyandEvolution,2001b,18(9):1828-1832.
Shao R,Dowton M,Murrell A,etal. Rates of gene rearrangements and nucleotide substitution are correlated in the mitochondrial genomes of insects[J].MolecularBiologyandEvolution,2003,20:1612-1619.
Sheffield NC,Hiatt KD,Valentine MC,etal. Mitochondrial genomics in Orthoptera using MOSAS[J].MitochondrialDNA,2010,21(3-4):87-104.
Szymura J,Lunt D,Hewitt G.The sequence of the meadow grasshopper (Chorthippusparallelus) mitochondrialsrRNA,ND2,COI,COII,ATPase8 and 9 tRNA genes[J].InsectMolecularBiology,1996,5:127-139.
Tay WT, Elfekih S, Court L,etal. Complete mitochondrial DNA genome ofBemisiatabacicryptic pest species complex Asia II-5 (Hemiptera: Aleyrodidae)[J].MitochondrialDNA, 2014, 24: 1-2.
Thao ML,Baumann L,Baumann P.Organization of the mitochondrial genomes of whiteflies, aphids and pysillids (Hemiptera: Sternorrhyncha)[J].BMCEvolutionaryBiology,2004,4:25.
Timmermans MJTN, Vogler AP. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea)[J].MolecularPhylogeneticsandEvolution,2012,63:229-304.
Wan X, Kim MI, Kim MJ,etal. Complete mitochondrial genome of the free-living earwig,Challiafletcheri(Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera[J].PLoSONE,2012,7: e42056.
Wang HL, Xiao N, Yang J,etal. The complete mitochondrial genome ofBemisiaafer(Hemiptera: Aleyrodidae)[J].MitochondrialDNA,2014a, 17.
Wang PX.Sequencing and Analysis ofTridactylusjaponicusandGryllotalpaunispinaMitochondrial Genomes[D]. Hebei: Hebei University Doctor Dissertation,2013,1-45.[王鵬翔.日本蚤螻與單刺螻蛄線粒體基因組測定及分析[D]. 河北: 河北大學, 2013,1-45]
Wang W,Meng ZQ,Shi FX,etal.Advances in comparative studies of Lepidoptera (Arthropoda: Insecta)[J].ChineseScienceBulletin,2013,30:3017-3029. [王維, 孟智啟, 石放雄, 等. 鱗翅目昆蟲比較線粒體基因組學研究進展[J].科學通報, 2013, 30: 3017-3029]
Wang Y, Chen J, Jiang LY,etal. Hemipteran mitochondrial genomes: Features, structures and implications for phylogeny[J].InternationalJournalofMolecularSciences,2015,16 (6):12382-12404.
Wang Y,Liu X,Yang D.The first mitochondrial genome for caddisfly (Insecta: Trichoptera) with phylogenetic implications[J].InternationalJournalofBiologicalSciences,2014b,10 (1):53-63.
Wei DD,Shao RF,Chen SC,etal.Progress in mitochondrial genome diversity and phylogeny of Psocodea[J].ActaEntomologicaSinica,2014,57(4):483-494. [魏丹丹, 邵韌夫, 陳世春, 等. 嚙總目昆蟲的線粒體基因組多樣性及系統(tǒng)發(fā)育研究進展[J].昆蟲學報,2014,57(4):483-494]
Wei DD,Shao R,Yuan ML,etal. The multipartite mitochondrial genome ofLiposcelisbostrychophila: Insights into the evolution of mitochondrial genomes in bilateral animals[J].PLoSONE,2012,7(3):e33973.
Wei SJ. Characterization and Evolution of Hymenopteran Mitochondrial Genomes and Their Phylogenetic Utility[D]. Zhejiang University Doctor Dissertation,2009,1-248. [魏書軍.膜翅目線粒體基因組的特征與進化及其在系統(tǒng)發(fā)育研究中的應用[D].浙江大學,2009,1-248]
Wei SJ,Chen XX. Progress in research on the comparative mitogenomics of insects[J].ChineseJournalofAppliedEntomology,2011,48(6):1573-1585.[魏書軍,陳學新.昆蟲比較線粒體基因組學研究進展[J].應用昆蟲學報,2011,48(6):1573-1585]
Wei SJ, Li Q, van Achterberg K,etal. Two mitochondrial genomes from the families Bethylidae and Mutillidae:Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera[J].MolecularPhylogeneticsandEvolution,2014,77:1-10.
Wei SJ,Shi M,He JH,etal.The complete mitochondrial genome ofDiadegmasemiclausum(Hymenoptera:Ichneumonidae) indicates extensive independent evolutionary events[J].Genome,2009,52:308-319.
Wei SJ,Shi M,Sharkey MJ,etal.Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to holometabolous insects[J].BMCGenomics,2010a,11:371.
Wei SJ,Tang P,Zheng LH,etal.The complete mitochondrial genome ofEvaniaappendigaster(Hymenoptera:Evaniidae) has low A+T content and a long intergenic spacer betweenatp8 andatp6[J].MolecularBiologyReports,2010b,37:1931-1942.
Wilson K,Cahill V,Ballment E,etal.The complete sequence of the mitochondrial genome of the crustaceanPenaeusmondon: Are malacostracan crustaceans more closely related to insects than to branchiopods?[J].MolecularBiologyandEvolution,2000,17:863-874.
Yu DJ, Xu L, Nardi F,etal. The complete nucleotide sequence of the mitochondrial genome of the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae)[J].Gene,2007,396(1): 66-74.
Yan DK, Tang YX, Hu M,etal. The mitochondrial genome ofFrankliniellaintonsa: Insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera[J].Genomics,2014,104(4):306-312.
Yan DK,Tang YX,Xue XF,etal. The complete mitochondrial genome of the western flower thripsFrankliniellaoccidentalis(Thysanoptera: Thripidae) contains triplicate putative control regions[J].Gene,2012,506: 117-124.
Yang J, Ye F, Huang Y. Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications[J].Gene,2016,575(2):702-711.
Ye W, Dang JP, Xie LD,etal. Complete mitochondrial genome ofTeleogryllusemma(Orthoptera: Gryllidae) with a new gene order in orthoptera[J].ZoologicalResearch,2008,3:236-244.[葉偉,黨江鵬,謝令德,等.黃臉油葫蘆線粒體基因組:一種新的基因排列方式[J].動物學研究,2008,3:236-244]
Yi SV. Understanding neutral genomic molecular clocks[J].EvolutionaryBiology,2007,34(3-4):144-151.
Yoshizawa K, Lienhard C, Johnson KP. Molecular systematics of the suborder Trogiomorpha (Insecta: Psocodea: ‘Psocoptera’)[J].ZoologicalJournaloftheLinneanSociety,2006,146(2):287-299.
Zhao L, Zheng ZM, Huang Y,etal. A comparative analysis of mitochondrial genomes in Orthoptera (Arthropoda: Insecta) and genome descriptions of three grasshopper species[J].ZoologicalScience,2010,27(8): 662-672.
Rearrangement of mitochondrial genome in insects
CHEN Zhi-Teng, DU Yu-Zhou*
(School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, Jiangsu Province,China)
Generally, animal mitochondrial genomes have stable gene content, relatively conserved gene arrangement and infrequent recombination. However, insect mitochondrial genomes have the potential of rearrangement, which might provide important information for phylogenetic studies, and further study into this tool may contribute to resolving the debatable phylogeny. This paper reviewed progress in this field, including types, mechanisms of gene rearrangement in insects and its utilization in phylogenetic analysis.
Mitochondrial genome; insects; gene rearrangement; phylogenetic evolution; phylogeny
國家自然科學基金項目(31572295)
陳志騰,男,1990年生,江蘇南通人,博士研究生,研究方向為昆蟲系統(tǒng)學,E-mail: 741208116@qq.com
Author for correspondence,E-mail: yzdu@yzu.edu.cn
2016-04-17; 接受日期 Accepted: 2016-05-09
Q963
A
1674-0858(2016)04-0843-09