• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      新疆麥后復(fù)播大豆適宜滴灌量研究

      2016-08-24 09:10:05張永強(qiáng)徐文修李亞杰彭姜龍蘇麗麗胡春輝
      關(guān)鍵詞:復(fù)播子粒特征值

      張永強(qiáng), 徐文修, 李亞杰, 張 娜, 彭姜龍, 蘇麗麗, 胡春輝

      (1 新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 新疆烏魯木齊 830052; 2 新疆農(nóng)業(yè)科學(xué)院糧食作物研究所, 烏魯木齊 830091)

      ?

      新疆麥后復(fù)播大豆適宜滴灌量研究

      張永強(qiáng)1,2, 徐文修1*, 李亞杰1, 張 娜1, 彭姜龍1, 蘇麗麗1, 胡春輝1

      (1 新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 新疆烏魯木齊 830052; 2 新疆農(nóng)業(yè)科學(xué)院糧食作物研究所, 烏魯木齊 830091)

      復(fù)播大豆; 滴灌量; 干物質(zhì); 品質(zhì)

      新疆地處亞歐大陸腹地,氣候干燥,降雨稀少,蒸發(fā)強(qiáng)烈,水資源匱乏,是我國典型的綠洲灌溉農(nóng)業(yè)區(qū),92.4%的耕地為灌溉農(nóng)業(yè),沒有水就沒有新疆的農(nóng)業(yè)[1]。近年來,在全球氣候急劇變化和溫室效應(yīng)劇增的背景下,北疆地區(qū)秋季氣溫也明顯增高、 初霜期有所推遲,使該區(qū)一年兩熟成為了可能[2]。北疆小麥常年播種面積在6.51×105hm2左右,占全疆的56.61%[3],是新疆小麥的主產(chǎn)區(qū),小麥?zhǔn)斋@后仍有較為充足的光熱資源,這為復(fù)播大豆提供了廣闊的空間。然而,在小麥?zhǔn)斋@后正是春播玉米等作物需水高峰期,麥后復(fù)播大豆無疑會(huì)加重農(nóng)業(yè)用水的緊張程度。因此,探索復(fù)播大豆的節(jié)水高產(chǎn)高效栽培技術(shù),對(duì)北疆麥后復(fù)播大豆的大面積推廣具有重要意義。

      1 材料和方法

      1.1試驗(yàn)區(qū)概況

      1.2試驗(yàn)設(shè)計(jì)

      采取單因素隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì)。共設(shè)4個(gè)灌水處理: 3000、 3600、 4200、 4800 m3/hm2, 分別以W1、 W2、 W3、 W4表示, 各處理均重復(fù)3次,共計(jì)12小區(qū)。小區(qū)面積18 m2,各小區(qū)進(jìn)水口均有水表控制進(jìn)水量,為防止水流外滲,不同小區(qū)間設(shè)置1 m寬的隔離帶。大豆品種為黑河43,種植密度52.5×104plant/hm2,30 cm等行距播種(株距約6.3 cm),每小區(qū)播種12行,毛管采用1管2的鋪設(shè)方式,毛管間距60 cm。播前結(jié)合整地,深施尿素75 kg/hm2,在開花期隨水滴施尿素150 kg/hm2,結(jié)莢期、 鼓粒期各噴施KH2PO4一次,其他田間管理措施同當(dāng)?shù)爻R?guī)方式。

      根據(jù)復(fù)播大豆各生育時(shí)期需水特性及當(dāng)?shù)貧夂驐l件,設(shè)定各處理每次滴灌定額依次為375、 450、 525、 600 m3/hm2,全生育期共灌水8次,具體灌水量及分配時(shí)期見表1。

      表1 各處理不同生育階段滴灌量(m3/hm2)

      1.3測(cè)試項(xiàng)目與方法

      1.3.1 生育進(jìn)程調(diào)查各處理達(dá)到四葉期、 初花期、 盛花期、 初莢期、 盛莢期、 鼓粒期、 鼓粒滿期和成熟期的日期。

      1.3.3 養(yǎng)分含量測(cè)定植株莖、 葉柄、 葉、 莢、 子粒樣品用H2SO4-H2O2消煮,萘氏比色法測(cè)定氮,釩鉬黃比色法測(cè)定磷,火焰光度計(jì)法測(cè)定鉀[12]。

      1.3.4 相關(guān)參數(shù)的計(jì)算 采用Logistic方程擬合復(fù)播大豆干物質(zhì)及養(yǎng)分積累變化,

      y=k/[1+e(a-bt)]

      式中, y為復(fù)播大豆出苗后t天單株干物質(zhì)(或養(yǎng)分)積累量(g/plant); t為大豆出苗后的天數(shù)(d); k表示復(fù)播大豆單株干物質(zhì)(或養(yǎng)分)理論最大積累量(g/plant); a、 b為待定系數(shù)。

      根據(jù)方程計(jì)算得到的幾個(gè)特征值:

      最快生長時(shí)間段的起始時(shí)間t1=[ln(ea)-1.317]/b, 終止時(shí)間t2=[ln(ea)+1.317]/b;

      最大相對(duì)生長速率Vm=-bk/4, 最大相對(duì)生長速率出現(xiàn)時(shí)間tm=-a/b;

      快速增長期持續(xù)的時(shí)間△t= t2-t1;

      生長特征值GT指干物質(zhì)(或養(yǎng)分)積累已達(dá)到最大積累量的65%以上,GT=Vm×△t。

      1.3.5 產(chǎn)量及品質(zhì)測(cè)定成熟后實(shí)收小區(qū)產(chǎn)量,實(shí)收前每小區(qū)分別隨機(jī)選取連續(xù)的10株進(jìn)行考種,調(diào)查單株有效莢數(shù)、 單株粒數(shù)、 單株粒重和百粒重。大豆子粒品質(zhì)由農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心測(cè)定,其中蛋白質(zhì)含量用8400型全自動(dòng)凱氏定氮儀測(cè)定,脂肪含量用索氏提取法測(cè)定。

      試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2003作圖,用DPS 7.05 軟件統(tǒng)計(jì)分析。

      2 結(jié)果與分析

      2.1滴灌量對(duì)復(fù)播大豆干物質(zhì)積累的影響

      表2 大豆地上部分干物質(zhì)積累的Logistic模擬及其特征值

      注(Note): t—出苗后天數(shù)Days after emergence; y—干物質(zhì)積累量Dry matter accumulation; Vm—干物質(zhì)積累最大速率Maximum rate of dry matter accumulation; tm—干物質(zhì)積累最大速率出現(xiàn)時(shí)間Days for the maximum dry matter accumulation rate occurred; t1和t2分別為Logistic生長函數(shù)的兩個(gè)拐點(diǎn) t1and t2are two inflexions of the Logistic equations; △t—干物質(zhì)快速積累持續(xù)天數(shù)Lasting days for the rapid dry matter accumulation; GT—快速積累生長特征值—Eigenvalues of the fast growth.

      2.2滴灌量對(duì)復(fù)播大豆干物質(zhì)分配的影響

      表3 不同處理復(fù)播大豆各生育期干物質(zhì)分配 (g/plant)

      注(Note): 同一行中不同小寫字母表示差異顯著(P<0.05) Different small letters mean significant differences among the treatments (P<0.05).

      2.3滴灌量對(duì)復(fù)播大豆養(yǎng)分吸收特征的影響

      表4 復(fù)播大豆地上部氮素積累的模擬方程及特征值

      注(Note): t—出苗后天數(shù)Days after emergence; y—氮積累量Nitrogen accumulation; Vm—氮最大積累速率Maximum N accumulation rate; tm—氮最大積累速率出現(xiàn)時(shí)間Days for maximum N accumulation rate occurred; t1和t2分別為Logistic生長函數(shù)的兩個(gè)拐點(diǎn) t1and t2are two inflexions of the Logistic equations; △t—氮快速積累持續(xù)天數(shù)Lasting days of rapid N accumulation; GT—快速積累生長特征值Eigenvalues of fast growth.

      表5 復(fù)播大豆地上部磷素積累的模擬方程及特征值

      注(Note): t—出苗后天數(shù)The days after emergence; y— P2O5積累量P2O5accumulation(mg/plant); Vm—磷最大積累速率Maximum P2O5accumulation rate; tm—磷最大積累速率出現(xiàn)時(shí)間Days for maximum P2O5accumulation rate occurred; t1和t2分別為Logistic生長函數(shù)的兩個(gè)拐點(diǎn)—t1and t2are two inflexions of the Logistic equations; △t—磷快速積累持續(xù)天數(shù)Lasting days of rapid P2O5accumulation; GT—快速積累生長特征值Eigenralues of fast growth.

      表6 復(fù)播大豆地上部鉀素積累的模擬方程及特征值

      注(Note): t—出苗后天數(shù)The days after emergence; y—K2O積累量K2O accumulation; Vm—鉀最大積累速率Maximum K2O accumulation rate; tm—鉀最大積累速率出現(xiàn)時(shí)間The time for maximum K2O accumulation rate occurred; t1和t2分別為Logistic生長函數(shù)的兩個(gè)拐點(diǎn)—t1and t2are two inflexions of the Logistic equations, respectively; △t—鉀快速積累持續(xù)天數(shù)Lasting days for rapid K2O accumulation; GT—快速積累生長特征值Eigenralues of fast growth.

      2.4不同滴灌量對(duì)復(fù)播大豆蛋白質(zhì)、 脂肪及產(chǎn)量的影響

      由表7可知,各處理單株莢數(shù)、 單株粒數(shù)、 百粒重及產(chǎn)量均隨著滴灌量的增加呈“先增后降”的變化趨勢(shì),各項(xiàng)指標(biāo)均以灌水量4200 m3/hm2處理最高,比滴灌量最少的3000 m3/hm2處理單株莢數(shù)增加了17.83%,單株粒數(shù)增多了9.03%,百粒重高出8.34%,且均達(dá)到了顯著差異水平(P<0.05); 但4200 m3/hm2處理與3600、 4800 m3/hm2兩個(gè)處理間單株莢數(shù)、 單株粒數(shù)以及百粒重差異不顯著。通過對(duì)滴灌量(x)和產(chǎn)量(y)的關(guān)系進(jìn)行模擬可得: y=-0.000484x2+4.1360x-5217.7998,R2=0.9175,為開口向下的拋物線。其中以4200 m3/hm2處理的產(chǎn)量最高,為3741.23 kg/hm2,分別較3000、 3600和4800 m3/hm2三個(gè)處理增產(chǎn)30.42%、 13.98%和8.44%。

      不同滴灌量處理,復(fù)播大豆子粒中蛋白質(zhì)與脂肪含量呈負(fù)相關(guān)關(guān)系(r= -0.77),其中子粒中蛋白質(zhì)的含量隨著滴灌量的增大有增加的趨勢(shì),以4200 m3/hm2處理達(dá)到最大,為35.53%,比3000、 3600 m3/hm2分別高出4.50%和1.69%,滴灌量最大的4800 m3/hm2處理反而比4200 m3/hm2處理降低0.42%,差異不顯著; 子粒中脂肪含量隨滴灌量的增加而降低,3600、 4200、 4800 m3/hm2較滴灌量最小的3000 m3/hm2處理降幅依次為0.56%、 2.29%和5.26%。蛋脂總量以4200 m3/hm2處理最高為53.03%,比滴灌量最小的3000 m3/hm2處理高出1.98%,比滴灌量最大的4800 m3/hm2處理高出1.05%,處理間差異不顯著。綜上說明,適宜的滴灌量不僅可協(xié)調(diào)復(fù)播大豆產(chǎn)量構(gòu)成因素間的關(guān)系,達(dá)到增加產(chǎn)量的目的,還能改善復(fù)播大豆子粒中蛋白質(zhì)和脂肪的比例,提高蛋脂總含量。

      表7 不同處理大豆蛋白質(zhì)、 脂肪含量及產(chǎn)量

      注(Note): 數(shù)據(jù)后不同小寫字母表示處理間差異在5%水平顯著 Values followed by different small letters mean significant different among treatments at 5% level.

      3 討論

      大豆脂肪和蛋白質(zhì)含量是品種遺傳內(nèi)在屬性和外在生態(tài)環(huán)境共同作用的綜合表現(xiàn)[18-19]。Piper等[20]研究表明,子粒中的蛋白質(zhì)含量與脂肪含量呈負(fù)相關(guān),張敬榮等[21]研究表明,春大豆在開花、 結(jié)莢及鼓粒期干旱,蛋白質(zhì)含量均上升,脂肪含量及脂蛋總量則下降,這與本研究結(jié)論一致,但本研究還得出,子粒中蛋白質(zhì)含量在滴灌量過小和滴灌灌量過大時(shí)均會(huì)受到影響,只有在適宜的滴灌量條件下才能獲得較高的蛋白質(zhì)含量。

      4 結(jié)論

      2)大豆各器官干物質(zhì)積累變化不同,葉在結(jié)莢期達(dá)到最大,莖、 葉柄在鼓粒期達(dá)到最大; 莢、 子粒隨著生育進(jìn)程的推進(jìn)而逐漸增大。莖、 葉、 葉柄、 莢及子粒最大值均以滴灌量為4200 m3/hm2最高。不同滴灌量只改變了單株各器官干物質(zhì)總重,但對(duì)其在總干物重所占比例基本無影響。

      3)大豆產(chǎn)量在滴灌量為4200 m3/hm2最高。子粒中蛋白質(zhì)含量隨著滴灌量的增加而增大,脂肪含量卻隨著滴灌量的增加而下降,二者呈顯著負(fù)相關(guān)關(guān)系(r=-0.77)。

      [1]張娜, 張永強(qiáng), 唐江華, 等. 滴灌帶配置方式對(duì)冬小麥生長及產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2013, 33(6): 1197-1201.

      Zhang N, Zhang Y Q, Tang J H,etal. Effect of drip irrigation layout on growth and yield of winter wheat[J]. Journal of Triticeae Crops, 2013, 33(6): 1197-1201.

      [2]徐嬌媚. 伊犁河谷氣候變化及其對(duì)農(nóng)業(yè)影響初探[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué)碩士學(xué)位論文, 2013.

      Xu J M. Climate change in Ili River Basin and its influence on agriculture[D]. Urumqi: MS Thesis of Xinjiang Agricultural University, 2013.

      [3]新疆統(tǒng)計(jì)年鑒[M]. 中國統(tǒng)計(jì)出版社, 2010.

      Xinjiang statistical yearbook[M]. China Statistics Press, 2010.

      [4]楊鵬輝, 李貴全, 郭麗, 等. 干旱協(xié)迫對(duì)不同抗旱大豆品種花莢期質(zhì)膜透性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2003, 21(3): 127-129.

      Yang P H, Li G Q, Guo L,etal. Effect of drought stress on plasma membrane permeality of different soybean varieties during flowering-poding stage[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 127-129.

      [5]徐淑琴, 宋軍, 吳硯.大豆需水規(guī)律及噴灌模式探討[J]. 節(jié)水灌溉, 2003, (3): 23-25.

      Xu S Q, Song J, Wu Y. Discussion on water requirement law and sprinkle irrigation module of soybean[J]. Water Saving Irrigation, 2003, (3): 23-25.

      [6]趙宏偉, 李秋祝, 魏永霞. 不同生育時(shí)期干旱對(duì)大豆主要生理參數(shù)及產(chǎn)量的影響[J]. 大豆科學(xué), 2006, 25(3): 329-332.

      Zhao H W, Li Q Z, Wei Y X. Effect of drought at different growth stages on main physiological parameters and yield on soybean[J]. Soybean Science, 2006, 25(3): 329-332.

      [7]謝甫綈, 董鉆. 不同生育期干旱對(duì)大豆生長和產(chǎn)量的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào), 1994, 25(1): 13-16.

      Xie P T, Dong Z. Effect of drought at different growth stages on growth and yield on soybean[J]. Journal of Shenyang Agricultural University, 1994, 25(1): 13-16.

      [8]Sort N V. Effect of water logging on soybean critical growth stages[J]. Journal of Soil and Crops, 1995, 5(2): 141-144.

      [9]王培武, 李治遠(yuǎn), 礒田昭弘, 等. 新疆大豆生產(chǎn)及生態(tài)的研究I開花期缺水和遮光處理對(duì)大豆干物質(zhì)生產(chǎn)及株型的影響[J]. 作物學(xué)報(bào), 1995, 21(2): 396-403.

      Wang P W, Li Z Y, Yi T Z H,etal. The study of soybean ecotypes and its production in Xinjiang I. The effect of shading and moisture stress on flowering and dry matter production on soybean ecotypes[J]. Acta Agronomica Sinica, 1995, 21(2): 396-403.

      [10]李永孝, 崔如,丁發(fā)武, 等. 夏大豆植株氮磷鉀含量與水肥的關(guān)系[J]. 作物學(xué)報(bào), 1992, 18(6): 463-474.

      Li Y X, Cui R, Ding F W,etal. Relationship between the contents of N, P, K and water supply and fertilizer in summer soybean[J]. Acta Agronomica Sinica, 1992, 18(6): 463-474.

      [11]張娜, 張永強(qiáng), 李大平, 等. 滴灌量對(duì)冬小麥光合特性及干物質(zhì)積累過程的影響[J]. 麥類作物學(xué)報(bào), 2014, 34(6): 795-801.

      Zhang N, Zhang Y Q, Li D P,etal. Effect of drip irrigation amount on photosynthesis characteristics and dry matter accumulation of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(6): 795-801.

      [12]鄒琦. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京: 中國農(nóng)業(yè)出版社, 2000.

      Zhou Q. Handbook of plant physiological experiment[M]. Beijing: China Agriculture Press, 2000.

      [13]Yan D C, Zhu Y, Wang S H, Cao W X. A quantitative knowledge-based model for designing suitable growth dynamics in rice[J]. Plant Production Science, 2006, 9(2): 93-105.

      [14]任紅玉, 崔振才, 沈能展, 等. 大豆干物質(zhì)積累與水分動(dòng)態(tài)變化的關(guān)系[J]. 中國油料作物學(xué)報(bào), 2005, 27(3): 41-44.

      Ren H Y, Cui Z C, Shen N Z,etal. Study on relationship between accumulation of dry matter and water at growth stages of soybean[J]. Chinese Journal of Oil Crop Sciences, 2005, 27(3): 41-44.

      [15]周欣, 滕云, 王孟雪, 等. 東北半干旱區(qū)大豆水肥耦合效應(yīng)盆栽試驗(yàn)研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2007, 38 (4): 442-445.

      Zhou X, Teng Y. Wang M X,etal. Effect of water and fertilizer coupling on soybean yield in northeast semiarid areas[J]. Journal of Northeast Agricultural University, 2007, 38(4): 442-445.

      [16]汪德水. 旱地農(nóng)田肥水關(guān)系原理與調(diào)控技術(shù)[M]. 北京: 中國農(nóng)業(yè)科技出版社, 1995.

      Wang D S. The principle and control technology of relationship between fertilizer and water on dryland[M]. Beijing: Chinese Agricultural Science and Technology Press, 1995.

      [17]王朝輝,王兵,李生秀.缺水與補(bǔ)水對(duì)小麥氮素吸收及土壤殘留氮的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(8): 1339-1343.

      Wang Z H, Wang B, Li X S. Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil[J]. Chinese Journal of Applied Ecology, 2004, 15(8): 1339-1343.

      [18]董鉆. 大豆栽培生理[M]. 北京: 中國農(nóng)業(yè)出版, 1997.

      Dong Z. Cultivation physiology of soybean.[M]. Beijing: China Agriculture Press, 1997.

      [19]董鉆. 大豆產(chǎn)量生理[M]. 北京: 中國農(nóng)業(yè)出版, 2000. 172-192.

      Dong Z. Yield physiology of soybean[M]. Beijing: China Agriculture Press, 2000. 172-192.

      [20]Piper E L, Boote K J. Temperature and cultivar effects on soybean seed oil and protein concentrations[J]. Journal of the American Oil Chemists’ Society, 1999, 76(10): 1233-1241.

      [21]張敬榮, 高繼國, 李辰仁, 等. 開花至鼓粒期干旱對(duì)大豆籽?;瘜W(xué)品質(zhì)的影響[J]. 大豆科學(xué), 1996, 15(1): 84-90.

      Zhang J R, Gao J G, Li C R,etal. The effect of dry condition from flowering to seeding stage on chemical composition in soybean[J]. Soybean Science, 1996, 15(1): 84-90.

      Suitable drip irrigation amount for summer soybean sown after wheat in Xinjiang

      ZHANG Yong-qiang1,2, XU Wen-xiu1*, LI Ya-jie1, ZHANG Na1, PENG Jiang-long1, SU Li-li1, HU Chun-hui1

      (1CollegeofAgronomy,XinjiangAgriculturalUniversity,Urumqi,Xinjiang830052,China;2ResearchInstituteofGrainCrops,XinjiangAcademyofAgriculturalScience,Urumqi,Xinjiang830091,China)

      【Objectives】 In order to ease pressure on agricultural water usage caused by the enlargement of winter wheat-summer soybean cropping system in northern Xinjiang, which exacerbated the contradiction between summer soybean and spring crop, this experiment was carried out to find out an appropriate amount of drip irrigation and provide a theoretical basis with water saving, and high yield and quality cultivation techniques for summer soybean. 【Methods】 The field experiment was conducted in summer soybean (Cultivar Heihe 43) field with 4 drip irrigations: 3000, 3600, 4200 and 4800 m3/hm2by using the randomized block experimental design,and the dry matter accumulation, distribution and nutrient absorption were observed. 【Results】 The results showed that the accumulation amounts of dry matter,N,P2O5and K2O in plants of summer soybean were fitted in the Logistic equations. The accumulation amounts of dry matter per plant of summer soybean were increased first and then decreased with the increasing of drip irrigation amounts, and the same as N, P2O5and K2O contents of summer soybean. The fastest accumulation rate of total dry matter of summer soybean was found from 49.5 to 53.0 d after the emergence with the maximum average accumulation rate of 0.48 g/(plant·d), and the rapid growth period of total dry matter accumulation was from 30.3 to 31.9 d. The fast accumulation rates of N, P2O5and K2O were from 47.1 to 49.9 d, from 44.8 to 45.1 d and from 44.6 to 46.1 d after the emergence,the rapid accumulation periods were from 31.7 to 36.4 d,from 22.2 to 22.4 d and from 28.7 to 31.46 d, respectively, and the average absorption rates were 26.35,8.15 and 9.30 mg/(plant·d). The relationship between the yield and drip irrigation amount at the heading stage could be fitted with a quadratic curve, and the highest yield of 3741.23 kg/hm2was in 4200 m3/hm2treatment, which was 30.42%, 13.98% and 8.44% higher than treatments of 3000, 3600 and 4800 m3/hm2, respectively. The fat content in seed was negatively correlated with protein content in seed, and the highest total content of protein and fat was in treatment of 4200 m3/hm2(53.03%).【Conclusions】 In the 4200 m3/hm2drip irrigation condition, sowing soybean was not only higher in the dry matter accumulation and yield, but also promoted the absorption of soybean plant nutrients and improved the total content of protein and fat in seed, achieving the purpose of high yield and water saving.

      summer soybean; drip irrigation amount; dry matter; quality

      2015-01-25接受日期: 2016-03-14

      國家自然科學(xué)基金項(xiàng)目(31560372, 31260312)資助。

      張永強(qiáng)(1988—), 男, 河南平輿人, 碩士, 主要從事作物高產(chǎn)栽培與生理研究。 E-mail: zyq988@yeah.net

      E-mail: xjxwx@sina.com

      S3443; S275.6

      A

      1008-505X(2016)04-1133-08

      猜你喜歡
      復(fù)播子粒特征值
      一類帶強(qiáng)制位勢(shì)的p-Laplace特征值問題
      單圈圖關(guān)聯(lián)矩陣的特征值
      基于商奇異值分解的一類二次特征值反問題
      關(guān)于兩個(gè)M-矩陣Hadamard積的特征值的新估計(jì)
      復(fù)播玉米品種主要農(nóng)藝性狀與產(chǎn)量的相關(guān)分析
      滴灌冬小麥免耕復(fù)播青貯玉米技術(shù)
      冬小麥及麥后復(fù)播技術(shù)探討
      一二四團(tuán)滴灌冬麥與復(fù)播青貯玉米“一年兩作”種植情況調(diào)查
      長期不同施肥對(duì)南方黃泥田水稻子粒與土壤鋅、硼、銅、鐵、錳含量的影響
      鉬磷配合施用對(duì)甘藍(lán)型油菜產(chǎn)量和子粒品質(zhì)的影響
      大荔县| 阿巴嘎旗| 松原市| 嘉峪关市| 枝江市| 乌兰县| 新蔡县| 油尖旺区| 桃源县| 石台县| 博湖县| 嵊州市| 临潭县| 密山市| 会东县| 曲沃县| 汉川市| 兰坪| 灵丘县| 东丰县| 广丰县| 上林县| 青铜峡市| 阳泉市| 车致| 天津市| 双辽市| 乐业县| 威信县| 定西市| 古丈县| 荥阳市| 福州市| 平湖市| 正镶白旗| 徐州市| 抚顺市| 贵南县| 独山县| 增城市| 靖安县|