莊紅梅, 盧春生*, 龔 鵬, 徐葉挺, 謝 輝, 樊丁宇
(1 新疆農(nóng)業(yè)科學(xué)院園藝作物研究所, 烏魯木齊 830091; 2 農(nóng)業(yè)部新疆地區(qū)果樹(shù)科學(xué)觀測(cè)試驗(yàn)站, 葉城縣 844900)
?
新疆‘葉爾羌’扁桃果實(shí)不同生育期葉片氮磷鉀光譜特性研究
莊紅梅1,2, 盧春生1,2*, 龔 鵬1,2, 徐葉挺1,2, 謝 輝1,2, 樊丁宇1,2
(1 新疆農(nóng)業(yè)科學(xué)院園藝作物研究所, 烏魯木齊 830091; 2 農(nóng)業(yè)部新疆地區(qū)果樹(shù)科學(xué)觀測(cè)試驗(yàn)站, 葉城縣 844900)
‘葉爾羌’扁桃; 氮素、 磷素、 鉀素; 光譜反射率; 果實(shí)生育期; 敏感期
氮、 磷、 鉀是作物生長(zhǎng)發(fā)育所需的大量營(yíng)養(yǎng)元素,不僅影響作物生長(zhǎng)速度和產(chǎn)量,還影響植株體內(nèi)多種生化成分的變化[1]。探尋實(shí)時(shí)、 快速、 無(wú)損、 精準(zhǔn)的植物營(yíng)養(yǎng)診斷方法是各國(guó)農(nóng)業(yè)學(xué)者研究的熱點(diǎn)之一[2-4]。光譜分析技術(shù)速度快、 效率高、 重現(xiàn)性好、 測(cè)試方便、 成本低,已經(jīng)用于探測(cè)和獲取作物營(yíng)養(yǎng)狀況和長(zhǎng)勢(shì)信息[5]。目前光譜分析診斷技術(shù)已經(jīng)應(yīng)用在玉米[6-10]、 小麥[11-12]、 水稻[13-14]、 番茄[15-16]、 棉花[17]、 黑麥草[18]、 紫葉稠李[19]氮素營(yíng)養(yǎng)的實(shí)時(shí)檢測(cè)與診斷。已有研究發(fā)現(xiàn),綠光、 紅邊波段為利用葉片光譜估測(cè)全N含量的敏感波段,窄波段綠光、 紅邊比值指數(shù)SR(R780,R580)和SR(R780,R704)可用于冠層全N含量的監(jiān)測(cè)[20]。賀冬仙等發(fā)現(xiàn)560、 650和720 nm作為特征波長(zhǎng)及940 nm作為參比波長(zhǎng)適用于植物營(yíng)養(yǎng)快速無(wú)損診斷,(T940-T560)/(T940+T560)、log(T940/T560)和log(T940/T650)與植物N營(yíng)養(yǎng)水平的相關(guān)性較好[21]。Thomas等通過(guò)測(cè)定甜椒葉片的反射率,發(fā)現(xiàn)N元素營(yíng)養(yǎng)水平對(duì)甜椒葉片在550 nm和670 nm波段反射率的影響大[22],胡珍珠等發(fā)現(xiàn)輪臺(tái)白杏葉片的光譜反射率也在550 nm處[23]。Osbome等[24]發(fā)現(xiàn)玉米葉片內(nèi)N含量的預(yù)測(cè)在紅光和綠光波段,具體波段不受生育期的影響。Al-Abbas等[25]發(fā)現(xiàn)不同營(yíng)養(yǎng)N、 P、 K脅迫下不同位置葉片的光譜特性,其營(yíng)養(yǎng)脅迫對(duì)530 nm波段處作物葉片光譜反射率有顯著性影響,Daughtry等[26]提出可以利用作物葉片反射光譜率進(jìn)行葉片葉綠素含量評(píng)價(jià)。這些研究結(jié)果表明,光譜指數(shù)通過(guò)反映作物葉綠素含量,可以間接反映作物N素營(yíng)養(yǎng)狀況。南疆扁桃(AmygdaluscommunisL.)由于缺少類似快速診斷技術(shù),施肥依然主要靠經(jīng)驗(yàn)。因此,研發(fā)自動(dòng)化程度高、 精確度高、 簡(jiǎn)單快捷的扁桃營(yíng)養(yǎng)光譜診斷技術(shù),制定符合樹(shù)體營(yíng)養(yǎng)盈虧狀況的科學(xué)施肥方案,是加快南疆扁桃產(chǎn)業(yè)提質(zhì)增效的迫切需求。本項(xiàng)目采用“3414”肥料效應(yīng)田間試驗(yàn),分析‘葉爾羌’扁桃果實(shí)不同生育期葉片光譜反射率對(duì)N、 P、 K的敏感性差異,探尋采用葉片光譜指數(shù)診斷N、 P、 K的敏感期,旨在為‘葉爾羌’扁桃快速、 精準(zhǔn)、 非破壞性營(yíng)養(yǎng)診斷提供最佳時(shí)間窗。
1.1試驗(yàn)地點(diǎn)及土壤條件
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)采用“3414”肥料效應(yīng)田間試驗(yàn)設(shè)計(jì),具體處理、 編碼和肥料用量見(jiàn)表1。于2014年在扁桃果實(shí)座果期、 膨大期、 硬核期、 成熟期采集扁桃新梢中部葉片,每個(gè)處理選取樹(shù)體5株,每株樹(shù)體大小一致。在樹(shù)冠中部東、 西、 南、 北方向隨機(jī)選取生長(zhǎng)健康的成熟葉片,每株選取葉片12片(帶葉柄)帶回實(shí)驗(yàn)室內(nèi),于105℃恒溫殺青30 min后70℃烘至恒重,用不銹鋼料理機(jī)粉碎后裝入自封袋備用,分析氮磷鉀含量。
表1 葉爾羌扁桃施肥田間施肥方案
注(Note): TSP—重過(guò)磷酸鈣Triple superphosphate.
1.3光譜數(shù)據(jù)采集
1.4數(shù)據(jù)分析
葉片光譜指數(shù)的計(jì)算采用與葉綠素含量正相關(guān)性較好的公式:
ND705=(R750-R705)/(R750+R705-2R445)[31]
式中, R750、 R705、 R445分別是測(cè)定葉片敏感波段750 nm、 705 nm、 445 nm的光譜反射率值。
葉片用H2SO4-H2O2消煮,全氮用凱氏定N法測(cè)定,全磷用釩鉬黃法在紫外可見(jiàn)分光光度計(jì)(UV-1800) 450 nm處比色測(cè)定,全鉀用原子吸收分光光度計(jì)(PE-Analysist100)測(cè)定[23]。
數(shù)據(jù)分析采用DPS v 9.5 統(tǒng)計(jì)軟件與Origin 9.0軟件。葉片光譜指數(shù)的差異性分析采用單因素方差分析(One-way ANOVA),多重比較采用最小顯著方差法(LSD方法)。
2.1‘葉爾羌’扁桃果實(shí)不同生育期葉片光譜特性
圖1 ‘葉爾羌’扁桃果實(shí)不同生育期葉片光譜反射率Fig.1 The leaf spectral reflectance of ‘Yarkent’ almond at different growing stages
2.2‘葉爾羌’扁桃果實(shí)不同生育期葉片光譜反射率對(duì)氮、磷、 鉀肥的響應(yīng)
圖2 不同氮素水平下‘葉爾羌’扁桃果實(shí)不同生育期可見(jiàn)光波段葉片光譜反射率Fig.2 The leaf spectral reflectance of ‘Yarkent’ almond at visible wavelength under different N levels at different growing stages
圖3 不同磷素水平下‘葉爾羌’扁桃果實(shí)不同生育期可見(jiàn)光波段葉片光譜反射率Fig.3 The leaf spectral reflectance of ‘Yarkent’ almond at visible wavelength under different P levels at different growing stages
2.3果實(shí)不同生育期葉片光譜指數(shù)(ND705)的差異性
由于氮素能直接影響葉綠素,因此可以通過(guò)可見(jiàn)光以及近紅外波段特定波長(zhǎng)區(qū)域的反射率的光譜指數(shù),區(qū)分葉片氮含量的高低。
通過(guò)多重比較,可以看出,隨著N元素含量的升高,各處理葉片光譜指數(shù)(ND705)之間無(wú)顯著性差異(表2)。不同果實(shí)發(fā)育期存在顯著性差異。座果期葉片光譜指數(shù)(ND705)與膨大期、 硬核期的光譜指數(shù)不存在顯著性差異,但與成熟期存在顯著性差異; 膨大期、 硬核期的光譜指數(shù)與成熟期光譜指數(shù)存在顯著性差異,硬核期光譜指數(shù)與成熟期光譜指數(shù)存在顯著性差異。可見(jiàn),果實(shí)成熟期、 硬核期是葉爾羌扁桃氮素葉片光譜營(yíng)養(yǎng)診斷的敏感時(shí)期。
隨著磷元素含量的升高,各處理葉片光譜指數(shù)(ND705)之間無(wú)顯著性差異(表2)。不同果實(shí)發(fā)育期存在顯著性差異。座果期葉片光譜指數(shù)(ND705)與膨大期、 硬核期的光譜指數(shù)不存在顯著性差異,但與成熟期存在顯著性差異; 膨大期、 硬核期的光譜指數(shù)與成熟期光譜指數(shù)存在顯著性差異,硬核期光譜指數(shù)與成熟期光譜指數(shù)存在顯著性差異??梢?jiàn),果實(shí)成熟期與硬核期是‘葉爾羌’扁桃磷素葉片光譜營(yíng)養(yǎng)診斷的敏感時(shí)期。
圖4 不同鉀素水平下‘葉爾羌’扁桃果實(shí)不同生育期可見(jiàn)光波段葉片光譜反射率Fig.4The leaf spectral reflectance of ‘Yarkent’ almond at visible wavelength under different K levels at different growing stages
隨著鉀元素含量的升高,各處理葉片光譜指數(shù)(ND705)之間無(wú)顯著性差異(表2)。不同果發(fā)育期存在顯著性差異。座果期葉片光譜指數(shù)(ND705)與膨大期、 硬核期的光譜指數(shù)不存在顯著性差異,但與成熟期存在顯著性差異; 膨大期、 硬核期的光譜指數(shù)與成熟期光譜指數(shù)存在顯著性差異,硬核期光譜指數(shù)與膨大期光譜指數(shù)不存在顯著性差異。可見(jiàn),果實(shí)成熟期與硬核期是‘葉爾羌’扁桃鉀素葉片光譜營(yíng)養(yǎng)診斷的敏感時(shí)期。
2.4葉爾羌扁桃葉片氮、 磷、 鉀含量與不同波段光譜反射率的相關(guān)性
表2 不同N、 P、 K素處理果實(shí)不同生育期葉片光譜指數(shù)ND705差異分析
注(Note): 肥料因素為氮(N)、 磷(P)、 鉀(K),4個(gè)水平分別為0(不施肥)、 1(常規(guī)施肥量的0.5倍)、 2(常規(guī)施肥量)、 3(常規(guī)施量的1.5倍)The fertilizer factors are N (nitrogen), P (phosphor), K (potassium), four levels are 0 (no fertilization), 1 (0.5 times of conventional fertilization),3 (conventional fertilization), 3 (1.5 times of conventional fertilization).n=9
圖5 葉爾羌扁桃果實(shí)不同生長(zhǎng)發(fā)育階段葉片氮含量與光譜反射率的相關(guān)系數(shù)Fig.5 Correlation coefficient between foliar N concentration and spectral reflectance of ‘Yarkent’ almond at different growing stages
圖6 葉爾羌扁桃果實(shí)不同生長(zhǎng)發(fā)育階段葉片磷含量與光譜反射率的相關(guān)系數(shù)Fig.6 Correlation coefficient between foliar P concentration and spectral reflectance of ‘Yarkent’ almond at different growing stages
圖7 葉爾羌扁桃果實(shí)不同生長(zhǎng)發(fā)育階段葉片鉀含量與光譜反射率的相關(guān)系數(shù)Fig.7 Correlation coefficient between foliar K concentration and spectral reflectance of ‘Yarkent’ almond at different growing stages
‘葉爾羌’扁桃樹(shù)體N、 P、 K葉片光譜營(yíng)養(yǎng)診斷的敏感時(shí)期為果實(shí)成熟期與硬核期。有關(guān)作物對(duì)N、 P、 K光譜診斷敏感期的研究較多。不同植物葉片光譜特性對(duì)N、 P、 K素的敏感期也不同。缺氮會(huì)導(dǎo)致葉片光譜反射率增加,在光譜特征曲線上表現(xiàn)為反射率上升[6]。有研究學(xué)者發(fā)現(xiàn)夏玉米葉片近紅外波段處葉片反射率隨氮肥用量的增加而提高[32]; 而在可見(jiàn)光波段,隨著氮肥施用量的增加,在綠光波段反射率明顯降低[30]。
[1]李民贊. 光譜分析技術(shù)及其應(yīng)用[M]. 北京: 科學(xué)出版社, 2006: 176-180.
Li M Z. Technique and application of spectral analysis[M]. Beijing: Science Press, 2006: 176-180.
[2]薛利紅, 曹衛(wèi)星, 羅衛(wèi)紅, 等. 基于冠層反射光譜的水稻群體葉片氮素狀況監(jiān)測(cè)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2003, 36(7): 807-812.
Xue L H, Cao W X, Luo W H,etal. Diagnosis of nitrogen status in rice leaves with the canopy spectral reflectance[J]. Scientia Agricultura Sinica, 2003, 36(7): 807-812.
[3]Bronson K F, Chua T T, Booker J D. In-season nitrogen status in sensing irrigated cotton. Ⅱ. Leaf nitrogen and biomass[J]. Soil Science Society of American Journal, 2003, 67: 1439-1448.
[4]Racy M B, James S S, Garye V. Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies[J]. Agronomy Journal, 1996, 88: 1-5.
[5]蔣煥煜, 彭永石, 謝麗娟, 等. 掃描次數(shù)對(duì)番茄葉漫反射光譜和模型精度的影響研究[J]. 光譜學(xué)與光譜分析, 2008, 28(8): 1763-1766.
Jiang H Y, Peng Y S, Xie L J,etal. Studies on impact of scan times of tomato leaf diffuse reflection spectrum and model precision[J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1763-1766.
[6]李敏霞. 蘋果葉片光譜反射率與葉綠素和全氮含量的相關(guān)研究[D]. 陜西楊凌: 西北農(nóng)林科技大學(xué)碩士學(xué)位論文, 2009. 1-40.
Li M X. Correlation between apple leaf spectral reflectance and chlorophyll content and leaf total nitrogen [D]. Yanglin Shanxi: MS Thesis of Northwest Agriculture and Forestry Science and Technology University, 2009. 1-40.
[7]周麗麗, 馮漢宇, 閻忠敏, 等. 玉米葉片氮含量的高光譜估算及其品種差異[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(8): 195-199.
Zhou L L, Feng H Y, Yan Z M,etal. High spectral estimation and difference among varieties of maize in leaf nitrogen content[J]. Transactions of the CSAE, 2010, 26(8): 195-199.
[8]孫紅, 李民贊, 張彥娥, 等. 不同施氮水平下玉米冠層光譜反射特征分析[J]. 光譜學(xué)與光譜分析, 2010, 30(3): 715-719.
Sun H, Li M Z, Zhang Y E,etal. Spectral characteristics of corn under different nitrogen treatments[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 715-719.
[9]梁惠平, 劉湘南. 玉米氮營(yíng)養(yǎng)指數(shù)的高光譜計(jì)算模型[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(1): 250-255.
Liang H P, Liu X N. Hyperspectral calculation model of corn nitrogen nutrition index[J]. Transactions of the CSAE, 2010, 26(1): 250-255.
[10]王磊, 白由路, 盧艷麗, 等. 基于光譜分析的玉米氮素營(yíng)養(yǎng)診斷[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2011, 17(2): 333-340.
Wang L, Bai Y L, Lu Y L,etal. Nitrogen nutrition diagnosis for corn based on spectral analysis[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 333-340.
[11]張俊華, 張佳寶. 冬小麥特征光譜對(duì)其全氮和硝態(tài)氮的響應(yīng)[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28(1): 104-110.
Zhang J H, Zhang J B. Response of the spectral reflectance to total N and NO3-N of winter wheat[J]. Agricultural Reserch in the Arid Areas, 2010, 28(1): 104-110.
[12]胡昊, 白由路, 楊俐蘋, 等. 不同氮營(yíng)養(yǎng)冬小麥冠層光譜紅邊特征分析[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(6): 1317-1323.
Hu H, Bai Y L, Yang L P,etal. Red edge parameters of winter wheat canopy under different nitrogen levels[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317-1323.
[13]覃夏, 王紹華, 薛利紅. 江西鷹潭地區(qū)早稻氮素營(yíng)養(yǎng)光譜診斷模型的構(gòu)建與應(yīng)用[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(4): 691-698.
Tan X, Wang S H, Xue L H. Nitrogen nutrition diagnosis of early rice with NDVI and its application for nitrogen topdressing recommendation at Yingtan, Jiangxi Province[J]. Scientia Agricultura Sinica, 2011, 44(4): 691-698.
[14]唐延林. 水稻高光譜特征及其生物理化參數(shù)模擬與估測(cè)模型研究[D]. 杭州: 浙江大學(xué)博士學(xué)位論文, 2004: 1-64.
Tang Y L. Study on the hyperspectral characteristics and simulating and estimating models about biophysical and biochemical parameters of rice [D]. Hangzhou: PhD Thesis of Zhejiang University, 2004. 1-64.
[15]韓小平, 左月明, 李靈芝. 水培番茄施氮量近紅外光譜預(yù)測(cè)模型的研究[J]. 光譜學(xué)與光譜分析, 2010, 30(9): 2479-2483.
Han X P, Zuo Y M, Li L Z. Study on the near infrared spectral prediction model of hydroponic tomatoes[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2479-2483.
[16]李靈芝, 郭榮, 李海平, 等. 不同氮濃度對(duì)溫室番茄生長(zhǎng)發(fā)育和葉片光譜特性的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(4): 965-969.
Li L Z, Guo R, Li H P,etal. Effects of nitrogen concentration in hydroponics on growth and development of tomato and spectral characteristics of leaf in greenhouse[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 965-969.
[17]王克如, 潘文超, 李少昆, 等. 不同施氮量棉花冠層高光譜特征研究[J]. 光譜學(xué)與光譜分析, 2011, 31(7): 1868-1872.
Wang K R, Pan W C, Li S K,etal. Monitoring models of the plant nitrogen content based on cotton canopy hyperspectral reflectance[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1868-1872.
[18]楊紅麗, 陳功, 吳建付. 施氮水平對(duì)多花黑麥草植株氮含量及反射光譜特征的影響[J]. 草業(yè)學(xué)報(bào), 2011, 20(3): 239-244.
Yang H L, Chen G, Wu J F. Plant nitrogen content of annual ryegrass and spectral reflectance response to nitrogen application level[J]. Acta Prataculturae Sinica, 2011, 20(3): 239-244.
[19]李雪飛, 韓甜甜, 董彥, 等. 紫葉稠李葉片色素及氮含量與其光譜反射特性的相關(guān)性[J]. 林業(yè)科學(xué), 2011, 47(8): 75-81.
Li X F, Han T T, Dong Y,etal. Relationships between spectral reflectance and pigment or nitrogen concentrations in leaves ofPadusVirginiana‘Schubert’[J]. Scientia Silvae Sinicae, 2011, 47(8): 75-81.
[20]田永超, 楊杰, 姚霞, 等. 利用葉片高光譜指數(shù)預(yù)測(cè)水稻群體葉層全氮含量[J]. 作物學(xué)報(bào), 2010, 36(9): 1529-1537.
Tian Y C, Yang J, Yao X,etal. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice[J]. Acta Agronomica Sinica, 2010, 36(9): 1529-1537.
[21]賀冬仙, 胡娟秀. 基于葉片光譜透過(guò)特性的植物氮素測(cè)定[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(4): 214-218.
He D X, Hu J X. Plant nitrogen detection based on leaf spectral transmittance[J]. Transactions of the CSAE, 2011, 27(4): 214-218.
[22]Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectancrnal measurements[J]. Agrononmy Journal, 1972, 64: 11-13.
[23]胡珍珠, 潘存德, 王世偉, 等. 輪臺(tái)白杏葉片氮磷鉀含量光譜估算模型[J]. 新疆農(nóng)業(yè)科學(xué), 2013, 50(2): 238-248.
Hu Z Z, Pan C D, Wang S W,etal. Models for estimating foliar NPK content ofarmeniacavulgaris‘luntaibaixing’using spectral reflectance[J]. Xinjiang Agricultural Sciences, 2013, 50(2): 238-248.
[24]Osbome S L. Schepers J S, Schlemmer M R,etal. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements[J]. Agronomy Journal, 2002, 94: 1215-1221.
[25]AI-Abbas A H, Barr R, Hall J D,etal. Spectra of normal and nutrient deficient maize leaves[J]. Agronomy Journal, 1974, 66: 16-20.
[26]Daughtry C S T, Walthall C L, Kim M S,etal. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74: 229-239.
[27]Milton N M, Ager C M, Eiswerth B A,etal. Arsenic and selenium induced changes in spectral reflectance and morphology of soybean plants[J]. Remote Sensing of Environment, 1989, 30(3): 263-269.
[28]Milton N M, Eiswerth B A, Ager C M. Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants[J]. Remote Sensing of Environment, 1991, 36: 121-127.
[29]楊波, 車玉紅, 崔艷麗, 等. 扁桃葉片礦質(zhì)元素質(zhì)量分?jǐn)?shù)的年周期變化[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2013, 22(4): 114-119.
Yang B, Che Y H, Cui Y L,etal. Annual periodical variation for mineral element mass fraction of Almond leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(4): 114-119..
[30]高淑然, 潘存德, 王振錫, 等. 輪臺(tái)白杏葉片光譜特征及對(duì)施肥的響應(yīng)[J]. 新疆農(nóng)業(yè)科學(xué), 2011, 48(11): 1961-1966.
Gao S R, Pan C D, Wang Z X,etal. The leaf spectral characteristics ofArmenicaVulgaris‘Luntaibaixing’and its response to the fertilizer[J]. Xinjiang Agricultural Sciences, 2011, 48(11): 1961-1966.
[31]David W, Natalie T B, Matthew H T,etal. Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand[J]. Oecologia, 2005, 144(2): 233-244.
[32]程一松, 胡春勝, 郝二波, 等. 氮素脅迫下的冬小麥高光譜特征提取與分析[J]. 資源科學(xué), 2003, 25(1): 86-93.
Cheng Y S, Hu C S, Hao E B,etal. Analysis and extraction of hyperspectral information feature of winter wheat under nitrogen stress condition[J]. Resources Science, 2003, 25(1): 86-93.
[33]王珂, 沈掌泉, 王人潮. 不同鉀營(yíng)養(yǎng)水平的水稻冠層和葉片光譜特征研究初報(bào)[J]. 科技通報(bào), 1997, 13(4): 211-214.
Wang K, Shen Z Q, Wang R C. Study on rice canopy and leaf spectral characteristics under different levels of potassium nutrition[J]. Bulletin of Science and Technology, 1997, 13(4): 211-214.
[34]王磊, 白由路, 楊俐蘋. 春玉米磷素營(yíng)養(yǎng)的光譜響應(yīng)及診斷[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(5): 802-808.
Wang L, Bai Y L, Yang L P. Spectral response and diagnosis of phosphorus nutrition in corn[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 802-808.
[35]張俊華, 張佳寶, 欽繩武. 不同施肥長(zhǎng)期定位試驗(yàn)地夏玉米冠層光譜特征研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(4): 874-879.
Zhang J H, Zhang J B, Qin S W. Spectral reflectance characteristics of summer maize under long-term fertilization[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 874-879.
[36]王磊, 白由路. 不同鉀素處理春玉米葉片營(yíng)養(yǎng)元素含量變化及其光譜響應(yīng)[J]. 遙感學(xué)報(bào), 2007, 11(5): 641-647.
Wang L, Bai Y L. Nutrients change and spectral response of spring corn leaf for varying amounts of potassium fertilization[J]. Journal of Remote Sensing, 2007, 11(5): 641-647.
Leaf spectral characteristics of ‘Yarkent’ almond and its sensitivity to N, P, K at different growth periods in Xinjiang
ZHUANG Hong-mei1,2, LU Chun-sheng1,2*, GONG Peng1,2, XU Ye-ting1,2, XIE Hui1,2, FAN Ding-yu1,2
(1InstituteofHorticulturalCrops,XinjiangAcademyofAgriculturalSciences,Urumqi,Xinjiang830091China; 2ScientificObservingandExperimentalStationofPomology(Xinjiang),MinistryofAgriculture,YechengCounty,Xinjiang844900,China)
【Objectives】 The sensitive period of leaf spectral index was studied by analyzing the leaf spectral reflectance in the response to nitrogen (N),phosphorus (P) and potassium (K) fertilizer at different growing stages of ‘Yarkent’ almond in Shache of Xinjiang aiming to provide a non-invasive,simple and rapid nutrition diagnosis of N,P,K. 【Methods】 Using “3414” fertilizer experiment and ‘Yarkent’ almond as tested material,the leaf spectral reflectance was measured using Unispec-SC spectrometer at fruiting,expanding,stone hardening and maturing stages of almond tree under different N,P,K fertilizer levels. 【Results】 The fluctuation of leaf spectral reflectance of ‘Yarkent’ almond depended on the wavelengths at all the growing stages,and the least variation was in the range of visible wavelength. The leaf spectral reflectance was generally in the order of stone hardening stage > fruiting stage > expanding stage > maturing stage. The leaf spectrum indexes (ND705) of ‘Yarkent’ almond was significantly (P<0.05) and extremely significantly (P<0.01) different among different N,P,K fertilizer levels at all growing stages. The spectral sensitive band of foliar N concentration was 815-894 nm,375-398 nm,608-616 nm and 429-437 nm at fruiting stage,expanding stage,stone hardening stage and maturing stage,respectively. The spectral sensitive band of foliar P concentration was 766-802 nm,1023-1063 nm,708-713 nm and 1130 nm at above 4 stages. For foliar K concentration,the spectral sensitive band was 815-894 nm,345-368 nm and 475-491 nm at fruiting stage,expanding stage and maturing stage,respectively.【Conclusions】 The sensitive periods for leaf spectral nutrition diagnosis of N, P and K in ‘Yarkent’ almond are at mature stage and stone hardening stage. The spectral sensitive bands for N are 815-894 nm,375-398 nm,608-616 nm and 429-437 nm at fruiting stage, expanding stage, stone hardening stage and maturing stage, respectively; those for P are 766-802 nm, 1023-1063 nm, 708-713 nm and 1130 nm; and those for K are 815-894 nm,345-368 nm and 475-491 nm at fruiting stage,expanding stage and maturing stage,respectively.
‘Yarkent’ almond; nitrogen,phosphorus,potassium; leaf spectral reflectance; fruit growing stage;sensitive period
2015-03-02接受日期: 2015-07-07
自治區(qū)科技重大專項(xiàng)(201130102-2); 新疆維吾爾自治區(qū)科技計(jì)劃(201111121); 公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201003043)資助。
莊紅梅(1987—), 女,江蘇連云港人, 碩士, 助理研究員, 主要從事植物生理研究。 E-mail: zhuanghongmei86@163.com
E-mail: luchshxj@163.com
S664.9
A
1008-505X(2016)04-1079-12