張 晨,來世玉,高學(xué)平,劉漢安
(天津大學(xué)水利工程仿真與安全國家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
?
氣候變化對湖庫水環(huán)境的潛在影響研究進(jìn)展*
張晨,來世玉,高學(xué)平,劉漢安
(天津大學(xué)水利工程仿真與安全國家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
本文著重歸納氣候變化對湖庫熱力特性、冰期、溶解氧、營養(yǎng)鹽、浮游植物和水生植物等方面的影響規(guī)律,探討氣候變化對湖庫水環(huán)境潛在影響的區(qū)域差異,討論現(xiàn)有研究方法的優(yōu)缺點(diǎn)和發(fā)展前景. 研究表明,氣候變暖對湖庫物理過程的影響最為顯著;熱帶草原氣候和溫帶海洋性氣候?qū)τ跉夂蜃兣徒涤曜兓捻憫?yīng)較其他氣候類型突出;氣候變化對湖庫水環(huán)境的影響效果具有兩面性. 通過分析各氣候類型中氣候變暖對磷水平的潛在影響差異表明,亞熱帶季風(fēng)氣候的湖庫更可能受氣候變暖的影響趨于富營養(yǎng)狀態(tài). 在今后研究中,建議深入開展各氣候類型中區(qū)域性氣候變化對湖庫水環(huán)境影響的實(shí)例研究.
氣候變化;氣候類型;水環(huán)境;區(qū)域差異;湖泊;水庫;潛在影響
“氣候變化”是當(dāng)今各國學(xué)者研究的熱點(diǎn)問題. 政府間氣候變化專門委員會(huì)(IPCC)認(rèn)為人類活動(dòng)已經(jīng)且持續(xù)改變著地表和大氣組成,這些變化直接或間接地影響了地球能量平衡,進(jìn)而引起氣候變化[1],即人類活動(dòng)不可避免地引起了氣候變化[2]. 湖庫作為淡水生態(tài)系統(tǒng)的載體,被喻為氣候變化的崗哨,對氣候變化有指示、記錄和調(diào)節(jié)作用;另一方面,氣候變化直接和間接交互影響著湖庫水文、水環(huán)境和生態(tài)系統(tǒng)功能與服務(wù)[3]. 氣候變化引起流域徑流變化,改變湖庫水位和面積[4-5];氣候變暖影響湖庫熱力分層結(jié)構(gòu)和熱穩(wěn)定性,延長分層期,減弱對流混合[6-7];氣候變化引起溶解氧下降[5],強(qiáng)化溶解氧分層[8],加劇湖泊富營養(yǎng)化[9-10];氣候變化還改變浮游植物春季物候[11]、更易導(dǎo)致浮游植物繁生[12].
20世紀(jì)末,隨著人們對水域生態(tài)環(huán)境的關(guān)注不斷提高,科學(xué)家們將研究氣候變化的影響從水量延伸至水質(zhì)[13-14]. 我國開展此領(lǐng)域的研究工作晚于歐美發(fā)達(dá)國家約15~20年,主要側(cè)重于氣候變化對我國流域或局部地區(qū)水文水資源的影響及適應(yīng)對策方面[15-18],而對地表水環(huán)境質(zhì)量的潛在影響方面處于起步階段[9,19],除綜述外[20-23],已有一些實(shí)例研究[7,11]. 氣候變化已經(jīng)且持續(xù)影響著湖泊水環(huán)境[24],湖泊物理、化學(xué)和生物特性對氣候變化能做出迅速反應(yīng)[25],揭示氣候變化對湖庫水環(huán)境的影響機(jī)制是亟需解決的重要科學(xué)問題. 因此,本文重點(diǎn)綜述氣候變暖和降雨變化對湖庫水環(huán)境潛在影響方面的研究進(jìn)展及主要研究方法.
氣候變化的內(nèi)涵很豐富,包括氣候長期緩慢的變化、極端氣候事件、季節(jié)交替的年際差異等. 氣候變化對湖庫影響表現(xiàn)在氣候變暖、降雨和風(fēng)速等其他氣候要素變化對湖庫物理、化學(xué)和生物過程的直接和間接影響. 氣候變暖通過改變湖庫熱力和溶解氧分層(直接影響)進(jìn)而影響湖庫生物過程和生態(tài)系統(tǒng)結(jié)構(gòu)與功能(間接影響)[23];降雨變化通過改變流域徑流量影響湖庫水位和入湖物質(zhì)負(fù)荷進(jìn)而影響湖庫化學(xué)和生物過程;風(fēng)速變化通過改變湖庫垂向擾動(dòng)速度和物質(zhì)通量進(jìn)而影響湖庫化學(xué)和生物過程. 同時(shí),水庫相對于自然湖泊,受運(yùn)行調(diào)度等人為因素的干擾更大,兩者在氣候變化的影響機(jī)制上可能存在一定差別.
1.1 氣候變暖對湖庫熱力特性和冰期等物理過程的影響
全球氣候變暖已是不爭的事實(shí),氣候變暖影響著湖庫熱力分層結(jié)構(gòu)、分層期和熱穩(wěn)定性等熱力特性,引起水流垂向?qū)α骰旌系母淖? 位于東非大裂谷地區(qū)的Tanganyika湖是世界第二古老湖和深水湖,近100 a內(nèi)氣候變暖引起上層水體溫度升高(約每0.1℃/(10 a)),導(dǎo)致該湖底層與表層密度差顯著升高,阻滯了水體垂向混合,減小混合層和溫躍層深度,熱穩(wěn)定性增加了近1倍[26-27]. 研究表明在Zurich湖[8]、流溪河水庫[19]和Shimajigawa水庫[28]的熱力特性也有著相似的響應(yīng)變化. 氣候變暖對熱力特性的影響一般性規(guī)律表現(xiàn)為,氣候變暖使湖庫的表層變溫層和底層滯溫層溫度均升高,冬春溫度升高提前使得分層提前發(fā)生,但往往前者增溫幅度較后者大,延緩了秋冬分層期的結(jié)束,熱穩(wěn)定性增加,溫躍層深度顯著降低. 但也有相反的觀測結(jié)論,如非洲的Victoria湖[29]和Kariba湖[30],氣候變暖引起的底層溫度增幅高于表層,減弱了熱力分層和熱穩(wěn)定性;溫躍層深度變化受風(fēng)速[31]、透明度[32]等其他因素影響,如Shimajigawa水庫溫躍層深度反而增加[28].
氣候變暖引起湖庫冰期改變. 冬季冰蓋時(shí)形成穩(wěn)定的垂向水溫和水下光照,而氣候變暖引起冰期縮短[33-34]、冰層厚度減少[35],透光系數(shù)改變[36],如韓國Paldang湖破冰提前[37].
1.2 氣候變化對湖庫溶解氧和營養(yǎng)鹽等化學(xué)過程的影響
氣候變暖和降雨減少均引起湖庫溶解氧降低. 一方面,伴隨著氣候變暖引起的熱力分層加強(qiáng),含氧層深度隨之降低[8],減弱的水體垂向混合使得滯溫層中有機(jī)物濃度較高,耗氧加快,形成厭氧條件[28]. 2006年夏季,由于長時(shí)間的熱力分層,德國Müggelsee湖曾持續(xù)9 d滯溫層溶解氧濃度小于5 mg/L[6]. 在我國千島湖[38]相應(yīng)的研究也得到相同規(guī)律. 值得注意的是,氣候變暖也有可能利于表層溶解氧穿透至湖底,補(bǔ)償?shù)撞咳毖鮗29]. 另一方面,大氣環(huán)流的變化引起降雨減少進(jìn)而影響湖庫溶解氧濃度. 研究發(fā)現(xiàn),地中海湖庫受厄爾尼諾南方濤動(dòng)(ENSO)的影響,降雨和徑流減少與溶解氧降低有著顯著的一致性[5].
氣候變化影響湖庫營養(yǎng)鹽濃度和營養(yǎng)狀況. 氣候變暖強(qiáng)化了湖泊熱力分層,底層更易形成厭氧條件,促進(jìn)位于水-土界面沉積物中營養(yǎng)鹽釋放[19,28],表層水體營養(yǎng)鹽濃度提高[6],加速水體富營養(yǎng)化[9],如Müggelsee湖和瀘沽湖的觀測分析結(jié)果已證實(shí)[6,9]. 降雨變化也會(huì)影響湖庫營養(yǎng)負(fù)荷,可能引起營養(yǎng)鹽濃度提高[39-40],如石頭口門水庫[41]夏季增大的徑流量對總磷濃度的貢獻(xiàn)較大. 然而,不同區(qū)域?qū)τ诮涤甑捻憫?yīng)過程可能不盡相同. 在地中海氣候區(qū),模擬研究表明未來夏季不斷升高的氣溫將導(dǎo)致Pareja水庫徑流減少,水位降低,營養(yǎng)鹽濃度和營養(yǎng)水平提高[39].
1.3 氣候變化對湖庫浮游植物和水生植物等生物過程的影響
氣候變化影響湖庫浮游植物的群落結(jié)構(gòu)、春季物候和初級生產(chǎn)力,鄧建明等[22]詳細(xì)地歸納了相關(guān)研究成果. 即,在全球變暖的大背景下,淡水湖泊中浮游植物群落結(jié)構(gòu)正朝著藍(lán)藻占優(yōu)勢的方向發(fā)展;氣溫升高、分層期提前、冰期縮短均造成浮游植物春季物候提前;在營養(yǎng)鹽充足的湖泊,氣候變暖通過延長生長季節(jié)使得初級生產(chǎn)力提高,而在貧營養(yǎng)湖泊(如Tanganyika湖[26])初級生產(chǎn)力受其影響反而降低. 例如,德國Saidenbach水庫[42],氣候變暖(暖冬和春季的延長)使熱力分層提前發(fā)生,浮游植物物候提前,硅藻提前達(dá)到峰值,水庫營養(yǎng)水平提高約20%. 另有一些相反的研究結(jié)論,在英國Windermere湖[43]和Loch Leven湖[44],濕潤的冬季延緩了春季藻類生長,春季升高的溫度使水蚤密度增加,從而降低葉綠素濃度.
相比浮游植物,氣候變化對大型水生植物(如沉水植物)的影響表現(xiàn)得并不顯著. 早期的一些研究發(fā)現(xiàn),水溫升高可能影響水生植物群落的物種組成、提高生產(chǎn)力、加快生命周期[45-46],但其驅(qū)動(dòng)力可能是熱分層流而非氣候變暖[47]. 僅有少量研究證實(shí),生長季節(jié)初期的氣溫升高使水生植物生物量顯著增加[48]. Mckee等[47]利用桶式實(shí)驗(yàn)裝置模擬得到了沉水植物對氣候變暖的響應(yīng)較小,持續(xù)升溫改變物種比例,適應(yīng)性沉水植物生長率和豐度提高的結(jié)論. 有學(xué)者[49-50]認(rèn)為大型水生植物對溫度升高的響應(yīng)較浮游植物小,隨著氣候變暖浮游植物春季物候提前,先于其他水生植物,消耗水體中大量的營養(yǎng)鹽,可能使水生植物占優(yōu)勢的清水穩(wěn)態(tài)趨向藻型濁水穩(wěn)態(tài)發(fā)展.
2.1 不同氣候類型湖庫水環(huán)境的響應(yīng)差異案例
前文分析中發(fā)現(xiàn),湖庫的熱穩(wěn)定性、溫躍層深度、滯溫層溶解氧、浮游植物春季物候等對氣候變化的響應(yīng)因區(qū)域不同而有所差異. 已有研究實(shí)例中,除熱帶雨林氣候類型鮮有報(bào)道外,其余10種氣候類型中均有代表性湖庫的相關(guān)研究成果. 各氣候類型湖庫水環(huán)境潛在氣候影響要素作用過程和效果見表1.
熱帶草原、亞熱帶季風(fēng)、3種溫帶氣候和地中海氣候的湖庫水環(huán)境對氣候變暖有著相似的響應(yīng). 氣候變暖影響深水湖庫熱力分層結(jié)構(gòu)[26-27],引起混合層和含氧層深度變化[8],厭氧條件下底部沉積物中營養(yǎng)鹽釋放[19,28],表層水體營養(yǎng)鹽濃度提高,致使浮游植物繁生[12,28],加速富營養(yǎng)化趨勢[9];對于淺水湖庫的影響更為突出[10,51],分層期延長[6],滯溫層溶解氧下降,營養(yǎng)水平提高,更易誘發(fā)水華現(xiàn)象[11]. 有研究表明,氣候變暖更易促進(jìn)溫帶湖庫富營養(yǎng)化趨勢,威脅清水穩(wěn)態(tài)[52].
降雨變化對熱帶沙漠、熱帶季風(fēng)、3種溫帶氣候、地中海氣候和寒帶氣候的湖庫水環(huán)境也造成一定影響. 降雨減少影響水體自凈作用[53],引起湖庫萎縮[4]、溶解氧濃度降低[5];季節(jié)性降雨變化影響湖庫營養(yǎng)負(fù)荷來源[40];氣候暖干化、干旱頻發(fā)加速湖泊衰老[54]. 同時(shí),氣溫和降雨變化的綜合作用也可能增加湖庫非點(diǎn)源污染負(fù)荷量[41],引起營養(yǎng)鹽濃度升高[39]或咸化[55]. 此外,風(fēng)速變化影響湖庫污染物的再懸浮[26],日照變化也會(huì)影響湖庫水生植物的生長[47],極端氣候如持續(xù)攀升的歷史高溫[19,26]、頻發(fā)的洪澇或干旱[56]、增加的臺(tái)風(fēng)強(qiáng)度[57]等都有可能造成湖庫水環(huán)境的惡化.
一般認(rèn)為氣候變化對湖泊水環(huán)境造成負(fù)面影響,但是氣溫和季節(jié)性降雨變化也會(huì)有積極的一面,氣候變化對湖庫水環(huán)境的影響效果具有兩面性. 如溫帶海洋性氣候中Windermere湖[43],濕潤的冬季降低葉綠素濃度,延緩春季藻類生長;暖春也增加Loch Leven湖的水蚤密度,降低葉綠素濃度,有利于水質(zhì)保持[44]. 同樣,高原山地氣候中一些湖泊受氣候變化的影響變得更為清澈[32].
統(tǒng)計(jì)分析上述實(shí)例和IPCC AR5 Regional Aspects報(bào)告[58]中的部分實(shí)例研究成果,不同氣候類型湖庫水環(huán)境對氣候變化的響應(yīng)存在一定區(qū)域差異(圖1). 總體而言,湖庫水環(huán)境對于氣候變暖的響應(yīng)較降雨變化和其他氣候因素突出,其中氣候變暖對湖庫物理過程的影響最為顯著,表現(xiàn)在湖庫熱力特性的變化;熱帶草原氣候和溫帶海洋性氣候?qū)τ跉夂蜃兣徒涤曜兓捻憫?yīng)較其他氣候類型突出. 可能的原因是,近赤道的熱帶草原氣候干、熱、雨三季的交替變化,溫帶海洋性氣候區(qū)氣溫變幅相對較大(約1.25~1.50℃,GISS 1901-2012[1]);湖庫形態(tài)相對集中,如熱帶草原氣候中較典型的深水湖及溫帶海洋性氣候中分布較多的淺水湖庫,客觀上又促進(jìn)了此響應(yīng)表現(xiàn).
2.2 不同氣候類型中氣候變暖和湖庫總磷關(guān)系差異分析
由于氣候變暖是較突出的影響因素,而磷被認(rèn)為是湖泊富營養(yǎng)化的主要限制因子,因此以氣候變暖和總磷為例,探討各氣候類型中氣候變暖和湖庫總磷濃度的差異(圖2). 結(jié)果表明,在所選取分析的湖泊中,熱帶草原氣候的湖泊溫度升幅較小,平均氣溫升幅為0.183℃/(10 a),總磷濃度小于10 μg/L;亞熱帶季風(fēng)氣候的湖泊溫度升幅較大,平均氣溫升幅為0.565℃/(10 a),總磷濃度相對較高,為6~130 μg/L;溫帶季風(fēng)氣候、溫帶海洋性氣候和地中海氣候的湖庫氣溫升幅平均約為0.45℃/(10 a),總磷濃度處于5~80 μg/L;溫帶大陸性氣候由于橫跨亞歐及美洲大陸,氣溫變幅差異較大,氣溫升幅為0.064~0.37℃/(10 a),總磷濃度為8~90 μg/L(圖2). 由此,亞熱帶季風(fēng)氣候的湖庫更易受氣候變暖的影響趨于富營養(yǎng)化,而溫帶季風(fēng)、大陸性氣候中的湖庫在氣候變暖的驅(qū)動(dòng)下存在向富營養(yǎng)狀態(tài)發(fā)展的潛在風(fēng)險(xiǎn).
表1 不同氣候類型湖庫水環(huán)境潛在氣候影響要素作用過程和效果
-表示未見正面或負(fù)面效果.
圖1 不同氣候類型湖庫水環(huán)境的響應(yīng)差異Fig.1 The differences of climate-related responses to water environment of lakes and reservoirs in climate zones
圖2 氣溫升幅對總磷濃度的潛在影響(①M(fèi)urry湖[70],②Jackfish湖[70],③Rainbow湖[71],④Tanganyika湖[72],⑤Ohrid湖[73],⑥Malawi湖[74],⑦Neuchatel湖[75-76],⑧Kivu湖[77-78],⑨Biwa湖[79],⑩瀘沽昆明北前湖[82-83],Annecy湖[76],于橋水梅梁太湖[88])Fig.2 The potential impact of global warming on total phosphorus concentration
研究氣候變化對湖庫水環(huán)境影響的方法包括長期監(jiān)測、數(shù)理統(tǒng)計(jì)、數(shù)值模擬和控制實(shí)驗(yàn)方法.
長期監(jiān)測是獲取數(shù)據(jù)最直接的方式. 研究中所用歷史數(shù)據(jù)的時(shí)間尺度長達(dá)近百年(Pipit湖[32]、瀘沽湖[9]、Tanganyika湖[26-27]等)或50 a左右(流溪河水庫[19]、Sau水庫[5]等),短則20~30 a(Müggelsee湖[6]等). 除此之外,還可采用衛(wèi)星遙感反演[89]、分子化學(xué)[90]等新技術(shù)方法獲得. 氣候變化對湖庫水環(huán)境的潛在影響可在30 a或更長時(shí)間尺度有所表現(xiàn).
數(shù)理統(tǒng)計(jì)方法通常是利用實(shí)測數(shù)據(jù)對湖庫的特性要素與氣候要素建立關(guān)系,采用統(tǒng)計(jì)學(xué)方法分析變化規(guī)律,從而揭示氣候變化對湖庫水環(huán)境的影響及作用過程[8,19,26,91]. 該方法較為直觀、理論性強(qiáng)、應(yīng)用廣泛,但研究過程中需要系統(tǒng)的數(shù)據(jù)積累,且不易獲取. 對于國內(nèi)一些重點(diǎn)湖庫,在水質(zhì)數(shù)據(jù)整編和管理上仍需完善.
利用數(shù)學(xué)模型研究氣候變化對湖庫水環(huán)境的影響是一種高效、有前景的方法. 此類方法的研究模式可歸納為三步:先利用大氣環(huán)流模型(GCMs)輸出研究區(qū)域的氣候變化情景[14,28,92-93];再將其作為邊界條件輸入至水文模型[18,39-40]、水動(dòng)力模型[19]、水質(zhì)模型[65,94]、水生態(tài)模型[51,95]進(jìn)行模擬;最后通過原值比較對氣候變化引起的水環(huán)境變化進(jìn)行定量評價(jià)[19,39,55,92]. 其優(yōu)點(diǎn)為,氣候情景易于假定,可預(yù)測未來氣候變化引起的水環(huán)境變化趨勢[14,55,65];模擬過程中可綜合考慮土地利用[18,40,92]、水庫運(yùn)行方式[19,94]等人為因素的影響. 然而,模擬研究中存在3點(diǎn)突出不足:①由于GCMs輸出結(jié)果尺度較大,采用降尺度技術(shù)[28,93]以滿足流域水文模型的需求,但降尺度仍難以滿足水質(zhì)或水生態(tài)模型進(jìn)行精細(xì)模擬. 研究中必須先借助水文模型進(jìn)行產(chǎn)匯流或污染負(fù)荷的計(jì)算,而后再進(jìn)行水質(zhì)模擬[65];或者忽略前兩步計(jì)算,簡化氣候因素變化條件,直接進(jìn)行水質(zhì)或水生態(tài)模擬[51,95]. ②氣候變化情景的不確定性[19]、模型參數(shù)的不確定性[96]、模型誤差引起的預(yù)測結(jié)果的不確定性[28]仍需更深入的研究. ③模擬可能發(fā)生的極端氣候?qū)焖h(huán)境造成的影響程度鮮有報(bào)道.
采用控制實(shí)驗(yàn)?zāi)M的方法也可研究氣候要素變化對水質(zhì)的影響及其機(jī)制,但氣候要素在實(shí)驗(yàn)中再現(xiàn)和控制難度較大,且考慮的氣候要素往往較為單一,研究成果相對較少[47,97-98].
通過對比各氣候類型中氣候要素的影響作用過程,分析氣候變化對湖庫水環(huán)境潛在影響的區(qū)域差異. 研究表明,氣候變暖對湖庫物理過程的影響最為顯著;熱帶草原氣候和溫帶海洋性氣候?qū)τ跉夂蜃兣徒涤曜兓捻憫?yīng)較其他氣候類型突出. 亞熱帶季風(fēng)氣候的湖庫更易受氣候變暖的影響趨于富營養(yǎng)化,而溫帶季風(fēng)、大陸性氣候中的湖庫在氣候變暖的驅(qū)動(dòng)下存在向富營養(yǎng)狀態(tài)發(fā)展的潛在風(fēng)險(xiǎn). 氣候變化對湖庫水環(huán)境的影響效果具有兩面性.
我國所處溫帶大陸性、溫帶季風(fēng)、亞熱帶季風(fēng)、高原山地、熱帶季風(fēng)氣候,各氣候類型中氣溫、降雨、風(fēng)速等要素變化特征不同,建議深入開展區(qū)域性氣候變化對湖庫水環(huán)境影響的實(shí)例研究.
[1]IPCC. Climate change 2013: The physical science basis, technical summary. Cambridge: Cambridge University Press, 2013.
[2]Whitehead PG, Wilby RL, Battarbee RWetal. A review of the potential impacts of climate change on surface water quality.HydrologicalSciencesJournal-JournaldesSciencesHydrologiques, 2009, 54(1): 101-123.
[3]Adrian R, O’Reilly CM, Zagarese Hetal. Lakes as sentinels of climate change.LimnologyandOceanography, 2009, 54(6): 2283-2297.
[4]Van Der Kamp G, Keir D, Evans MS. Long-term water level changes in closed-basin lakes of the Canadian prairies.CanadianWaterResourcesJournal, 2008, 33(1): 23-38.
[5]Marce R, Rodriguez MA, Garcia JCetal. El Nino Southern Oscillation and climate trends impact reservoir water quality.GlobalChangeBiology, 2010, 16(10): 2857-2865.
[6]Wilhelm S, Adrian R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton.FreshwaterBiology, 2008, 53(2): 226-237.
[7]Zhang YL, Wu ZX, Liu MLetal. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China.LimnologyandOceanography, 2014, 59(4): 1193-1202.
[8]Livingstone DM. Impact of secular climate change on the thermal structure of a large temperate central European lake.ClimaticChange, 2003, 57(1/2): 205-225.
[9]Guo XC, Potito AP, Luo Letal. Twentieth century human and climate impacts on a large mountain lake in southwest China.Hydrobiologia, 2013, 718(1): 189-206.
[10]Mooij WM, Hülsmann S, De Senerpont Domis LNetal. The impact of climate change on lakes in the Netherlands: a review.AquaticEcology, 2005, 39(4): 381-400.
[11]Deng JM, Qin BQ, Paerl HWetal. Earlier and warmer springs increase cyanobacterial (Microcystisspp. ) blooms in subtropical Lake Taihu, China.FreshwaterBiology, 2014, 59(5): 1076-1085.
[12]Rühland K, Paterson AM, Smol JP. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes.GlobalChangeBiology, 2008, 14(11): 2740-2754.
[13]Cooney CM. EPA’s 1999 budget request highlights climate change, water quality programs.EnvironmentalScience&Technology, 1998, 32(7): 170A.
[14]Mimikou MA, Baltas E, Varanou Eetal. Regional impacts of climate change on water resources quantity and quality indicators.JournalofHydrology, 2000, 234(1/2): 95-109.
[15]Liu Chunzhen. Potential impact of climate change on hydrology and water resources in China.AdvancesinWaterScience, 1997, 8(3): 220-225(in Chinese with English abstract). [劉春蓁. 氣候變化對我國水文水資源的可能影響. 水科學(xué)進(jìn)展, 1997, 8(3): 220-225.]
[16]Wang Shunjiu. Impacts of global climate change on hydrology and water resources.AdvancesinClimateChangeResearch, 2006, 2(5): 223-227(in Chinese with English abstract). [王順久. 全球氣候變化對水文與水資源的影響. 氣候變化研究進(jìn)展, 2006, 2(5): 223-227.]
[17]Zhang Jianyun. Impacts of climate change on water resources in China and its relevant scientific problem to be further studied.ChinaWaterResources, 2008, 2: 14-18(in Chinese with English abstract). DOI 10. 3969/j.issn.1000-1123.2008.02.014. [張建云. 氣候變化對水的影響研究及其科學(xué)問題. 中國水利, 2008, 2: 14-18.]
[18]Li Z, Liu WZ, Zhang XCetal. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China.JournalofHydrology, 2009, 377(1/2): 35-42.
[19]Wang S, Qian X, Han BPetal. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.WaterResearch, 2012, 46(8): 2591-2604.
[20]Hao Xiuping, Xia Jun, Wang Rui. Influenceof climate change on surface water environment.Hydrology, 2010, 30(1): 67-72(in Chinese with English abstract). [郝秀平, 夏軍, 王蕊. 氣候變化對地表水環(huán)境的影響研究與展望. 水文, 2010, 30(1): 67-72.]
[21]Xia Xinghui, Wu Qiong, Mou Xinli. Advances in impact of climate change on surface water quality.AdvancesinWaterScience, 2012, 23(1): 124-133(in Chinese with English abstract). DOI 32.1309.P.20120104.2014.012. [夏星輝, 吳瓊, 牟新利. 全球氣候變化對地表水環(huán)境質(zhì)量影響研究進(jìn)展. 水科學(xué)進(jìn)展, 2012, 23(1): 124-133.]
[22]Deng Jianming, Qin Boqiang. A review on studies of effect of climate change on phytoplankton in freshwater systems.JLakeSci, 2015, 27(1): 1-10(in Chinese with English abstract). DOI 10.18307/2015.0101. [鄧建明, 秦伯強(qiáng). 全球變暖對淡水湖泊浮游植物影響研究進(jìn)展. 湖泊科學(xué), 2015, 27(1): 1-10.]
[23]Zhang Yunlin. Effect of climate warming on lake thermal and dissolved oxygen stratifications: A review.AdvancesinWaterScience, 2015, 26(1): 130-139(in Chinese with English abstract). DOI 10.14042/j.cnki.32.1309.2015.01.017. [張運(yùn)林. 氣候變暖對湖泊熱力及溶解氧分層影響研究進(jìn)展. 水科學(xué)進(jìn)展, 2015, 26(1): 130-139.]
[24]Kundzewicz ZW, Krysanova V. Climate change and stream water quality in the multi-factor context.ClimaticChange, 2010, 103(3/4): 353-362.
[25]ACIA. Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge: Cambridge University Press, 2004.
[26]O’Reilly CM, Alin SR, Plisnier PDetal. Climate change decreases aquatic ecosystem productivity in Lake Tanganyika, Africa.Nature, 2003, 424(6950): 766-768.
[27]Verburg P, Hecky RE, Kling H. Ecological consequences of a century of warming in Lake Tanganyika.Science, 2003, 301(5632): 505-507.
[28]Komatsu E, Fukushima T, Harasawa H. A modeling approach to forecast the effect of long-term climate change on lake water quality.EcologicalModelling, 2007, 209(2/3/4): 351-366.
[29]Marshall B, Ezekiel C, Gichuki Jetal. Has climate change disrupted stratification patterns in Lake Victoria, East Africa?AfricanJournalofAquaticScience, 2013, 38(3): 249-253.
[30]Mahere T, Mtsambiwa M, Chifamba Petal. Climate change impact on the limnology of Lake Kariba, Zambia-Zimbabwe.AfricanJournalofAquaticScience, 2014, 39(2): 215-221.
[31]Arvola L, George G, Livingstone DMetal. The impact of the changing climate on the thermal characteristics of lakes. In: George G ed. The impact of climate change on European lakes. Berlin: Springer, 2010: 85-101.
[32]Parker BR, Vinebrooke RD, Schindler DW. Recent climate extremes alter alpine lake ecosystems.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2008, 105(35): 12927-12931.
[33]Weyhenmeyer GA, Meili M, Livingstone DM. Nonlinear temperature response of lake ice breakup.GeophysicakResearchLetters, 2004, 31(7): L07203. DOI 10.1029/2004GL019530.
[34]Adrian R, Walz N, Hintze Tetal. Effects of ice duraiton on plankton succession during spring in a shallow ploymictic lake.FreshwaterBiology, 1999, 41(3): 621-634.
[35]Todd MC, Mackay AW. Large-scale climatic controls onLake Baikal ice cover.JournalofClimate, 2003, 16(19): 3186-3199.
[36]Wright RT. Dynamics of a phytoplankton community in an ice-covered lake.LimnologyandOceanography, 1964, 9(2): 163-178.
[37]Park HK, Cho KH, Won DHetal. Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea.ClimaticChange, 2013, 120(1/2): 477-489.
[38]Zhang YL, Wu ZX, Liu MLetal. Dissolved oxygen stratification and response to thermal structure and long-term climate changes in a large and deep subtropical reservoir (Lake Qiandaohu, China).WaterResearch, 2015, 75: 249-258.
[39]Molina-Navarro E, Trolle D, Martinez-Perez Setal. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios.JournalofHydrology, 2014, 509: 354-366.
[40]Tu J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA.JournalofHydrology, 2009, 379(3/4): 268-283.
[41]Zhang L, Lu WX, An YLetal. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment.EnvironmentalMonitoringandAssessment, 2012, 184(1): 581-594.
[42]Horn H, Paul L, Horn Wetal. Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters?FreshwaterBiology, 2011, 56(12): 2483-2499.
[43]Geroge DG, Maberly SC, Hewitt DP. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District.FreshwaterBiology, 2004, 49(6): 760-774.
[44]Carvalho L, Miller C, Spears BMetal. Water quality of Loch Leven: responses to enrichment, restoration and climate change.Hydrobiologia, 2012, 681(1): 35-47.
[45]Haag RW, Gorham PR. Effects of thermal effluent on standing crop and net production ofElodeacanadensisand other submerged macrophytes in Lake Wabamun, Akverta.JournalofAppliedEcology, 1977, 14(3): 835-851.
[46]Taylor BR, Helwig J. Submergent macrophytes in a cooling pond in Alberta, Canada.AquaticBotany, 1995, 51(1/2): 243-257.
[47]Mckee D, Hatton K, Eaton JWetal. Effects of simulated climate warming on macrophytes in freshwater microcosm communities.AquaticBotany, 2002, 74(1): 71-83.
[48]Rooney N, Kalff J. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry.AquaticBotany, 2000, 68(4): 321-335.
[49]Asaeda T, Trung VK, Manatunge Jetal. Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts.EcologicalEngineering, 2001, 16(3): 341-357.
[50]Hargeby A, Blindow I, Hansson LA. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions.ArchivfürHydrobiologie, 2004, 161(4): 433-454.
[51]Schep SA, Heerdt GNJT, Janse JHetal. Possible effects of climate change on ecological functioning of shallow lakes, Lake Loenderveen as a case study.AnnalsofWarsawUniversityofLifeSciencesSGGWLandReclamation, 2007, 38(1): 95-104.
[52]Meerhoff M, Clemente JM, De Mello FTetal. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes?GlobalChangeBiology, 2007, 13(9): 1888-1897.
[53]Pham SV, Leavitt PR, Mcgowan Setal. Spatial variability of climate and land-use effects on lakes of the northern Great Plains.LimnologyandOceanography, 2008, 53(2): 728-742.
[54]Chuai X, Chen X, Yang Letal. Effects of climatic changes and anthropogenic activities on lake eutrophication in different ecoregions.InternationalJournalofEnvironmentalScienceandTechnology, 2012, 9(3): 503-514.
[55]Bonte M, Zwolsman JJG. Climate change induced salinisation of artificial lakes in the Netherlands and consequences for drinking water production.WaterResearch, 2008, 44(15): 4411-4424.
[56]Roshier DA, Whetton PH, Allan RJetal. Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate.AustralEcology, 2001, 26(4): 371-384.
[57]Fan CW. Particles dynamics in a deep reservoir triggered by typhoons.JournalofHydrology, 2011, 406(1/2): 82-87.
[58]IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Cambridge: Cambridge University Press, 2014.
[59]Ndebele-Murisa MR. Ananalysis of primary and secondary production in Lake Kariba in a changing climate(Dissertation). Bellville: University of the Western Cape, 2011: 181 .
[60]Olaka LA, Odada EO, Trauth MHetal. The sensitivity of East African rift lakes to climate fluctuations.JournalofPaleolimnology, 2010, 44(2): 629-644.
[61]Arias ME, Cochrane TA, Piman Tetal. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin.JournalofEnvironmentalManagement, 2012, 112: 53-66.
[62]Gui Zhifan, Xue Bin, Yao Shuchunetal. Responses of lakes in the Songnen Plain to climate change.JLakeSci, 2010, 22(6): 852-861(in Chinese with English abstract). DOI 10.18307/2010.0607. [桂智凡, 薛濱, 姚書春等. 東北松嫩平原區(qū)湖泊對氣候變化響應(yīng)的初步研究. 湖泊科學(xué), 2010, 22(6): 852-861.]
[63]North RL, Khan NH, Ahsan Metal. Relationship between water quality parameters and bacterial indicators in a large prairie reservoir: Lake Diefenbaker, Saskatchewan, Canada.CanadianJournalofMicrobiology, 2014, 60(4): 243-249.
[64]Trumpickas J, Shuter BJ, Minns CK. Forecasting impacts of climate change on Great Lakes surface water temperatures.JournalofGreatLakesResearch, 2009, 35: 454-463.
[65]Samal NR, Matonse AH, Mukundan Retal. Modelling potential effects of climate change on winter turbidity loading in the Ashokan Reservoir, NY.HydrologicalProcesses, 2013, 27(21): 3061-3074.
[66]Mooij WM, Janse JH, De Senerpont Domis LNetal. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake.Hydrobiologia, 2007, 584(1): 443-454.
[67]Jeppesen E, Kronvang B, Olesen JEetal. Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation.Hydrobiologia, 2011, 663(1): 1-21.
[68]Christoffersen KS, Amsinck SL, Landkildehus Fetal. Lake flora and fauna in relation to ice-melt, water temperature and chemistry at Zackenberg.AdvancesinEcologicalResearch, 2008, 40: 371-389.
[69]Hodgson DA, Roberts D, McMinn Aetal. Recent rapid salinity rise in three East Antarctic lakes.JournalofPaleolimnology, 2006, 36: 385-406.
[70]Sereda J, Bogard M, Hudson Jetal. Climate warming and the onset of salinization: rapid changes in the limnology of two northern plains lakes.Limnologica-EcologyandManagementofInlandWaters, 2011, 41(1): 1-9.
[71]Moser KA, Smol JP, MacDonald GMetal. 19th century eutrophication of a remote boreal lake: a consequence of climate warming?JournalofPaleolimnology, 2002, 28(2): 269-281.
[72]Corman JR, McIntyre PB, Kuboja Betal. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa.LimnologyandOceanography, 2010, 55(1): 214-224.
[73]Matzinger A, Spirkovski Z, Patceva Setal. Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming.JournalofGreatLakesResearch, 2006, 32(1): 158-179.
[74]Vollmer MK, Bootsma HA, Hecky REetal. Deep-water warming trend in Lake Malawi, East Africa.LimnologyandOceanography, 2005, 50(2): 727-732.
[75]Massol F, David P, Gerdeaux Detal. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes.JournalofAnimalEcology, 2007, 76(3): 538-551.
[76]Berthon V, Alric B, Rimet Fetal. Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans.FreshwaterBiology, 2014, 59(8): 1755-1767.
[77]Darchambeau F, Sarmento H, Descy JP. Primary production in a tropical large lake: The role of phytoplankton composition.ScienceoftheTotalEnvironment, 2014, 473: 178-188.
[78]Houghton JT ed. In climate change 2001: the scientific basis, contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2001.
[79]Hsieh CH, Ishikawa K, Sakai Yetal. Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa.AquaticSciences, 2010, 72(4): 467-483.
[80]Chen Chuanhong. Algal records in sediment of Lugu Lake and its response to climate change over the last 200 years[Dissertation]. Wuhan: Central China Normal University, 2012(in Chinese with English abstract). [陳傳紅. 近200年瀘沽湖藻類沉積記錄及其對氣候變化的響應(yīng)[學(xué)位論文]. 武漢: 華中師范大學(xué), 2012.]
[81]Wu Q, Xia XH, Li XHetal. Impacts of meteorological variations on urban lake water quality: a sensitivity analysis for 12 urban lakes with different trophic states.AquaticSciences, 2014, 76(3): 339-351.
[82]Dobiesz NE, Lester NP. Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002.JournalofGreatLakesResearch, 2009, 35(3): 371-384.
[83]Nicholls KH, Hopkins GJ, Standke SJetal. Trends in total phosphorus in Canadian near-shore waters of the Laurentian Great Lakes: 1976-1999.JournalofGreatLakesResearch, 2001, 27(4): 402-422.
[84]Salmaso N. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations.FreshwaterBiology, 2010, 55(4): 825-846.
[85]?zkan K, Jeppesen E, Johansson LSetal. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment.FreshwaterBiology, 2010, 55(2): 463-475.
[86]Chen YY, Zhang C, Gao XPetal. Long-term variations of water quality in a reservoir in China.WaterScienceandTechnology, 2012, 65(8): 1454-1460.
[87]Zhang C, Lai SY, Gao XPetal. Potential impacts of climate change on water quality in a shallow reservoir in China.EnvironmentalScienceandPollutionResearch, 2015, 22, 14971-14982.
[88]Ye C, Shen Z, Zhang Tetal. Long-term joint effect of nutrients and temperature increase on algal growth in Lake Taihu, China.JournalofEnvironmentalSciences, 2011, 23(2): 222-227.
[89]Latifovic R, Pouliot D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record.RemoteSensingofEnvironment, 2007, 106(4): 492-507.
[90]Pu Yang, Zhang Hucai, Lei Guoliangetal. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3.ScienceChina:SeriesD:EarthSciences, 2010, 40(5): 624-631(in Chinese with English abstract). DOI 10. 1007/s11430-010-0075-2. [蒲陽, 張虎才, 雷國良等. 青藏高原東北部柴達(dá)木盆地古湖泊沉積物正構(gòu)烷烴記錄的MIS3晚期氣候變化. 中國科學(xué): D輯: 地球科學(xué), 2010, 40(5): 624-631.]
[91]Zhao Huiying, Li Chengcai, Zhao Hengheetal. The climate change and its effect on the water environment in the Hulun Lake wetland.JournalofGlaciologyandGeocryology, 2007, 29(5): 795-801(in Chinese with English abstract). [趙慧穎, 李成才, 趙恒和等. 呼倫湖濕地氣候變化及其對水環(huán)境的影響. 冰川凍土, 2007, 29(5): 795-801]
[92]Chang HJ. Water quality impacts of climate and land use changes in southeastern Pennsylvania.ProfessionalGeographer, 2004, 56(2): 240-257.
[93]Shiono T, Ogawa S, Miyamoto Tetal. Expected impacts of climate change on rainfall erosivity of farmlands in Japan.EcologicalEngineering, 2013, 61: 678-689.
[94]Dai LQ, Dai HC, Jiang DG. Temporal and spatial variation of thermal structure in Three Gorges Reservoir: A simulation approach.JournalofFoodAgriculture&Environment, 2012, 10(2): 1174-1178.
[95]Naithani J, Plisnier PD, Deleersnijder E. Possible effects of global climate change on the ecosystem of Lake Tanganyika.Hydrobiologia, 2011, 671(1): 147-163.
[96]Shen ZY, Chen L, Chen T. The influence of parameter distribution uncertainty on hydrological and sediment modeling: a case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China.StochasticEnvironmentalResearchandRiskAssessment, 2013, 27(1): 235-251.
[97]Liboriussen L, Landkildehus F, Meerhoff Metal. Global warming: Design of a flow-through shallow lake mesocosm climate experiment.LimnologyandOceanography:Methods, 2005, 3: 1-9.
[98]Gao Xueping, Zhao Yaonan, Chen Hong. Similarity theory of water temperature test model for selective withdrawal from reservoirs.JournalofHydraulicEngineering, 2009, 40(11): 1374-1380(in Chinese with English abstract). DOI 10.13243/j.cnki.slxb.2009.11.011. [高學(xué)平, 趙耀南, 陳弘. 水庫分層取水水溫模型試驗(yàn)的相似理論. 水利學(xué)報(bào), 2009, 40(11): 1374-1380.]
A review of the potential impacts of climate change on water environment in lakes and reservoirs
ZHANG Chen, LAI Shiyu, GAO Xueping & LIU Han’an
(StateKeyLaboratoryofHydraulicEngineeringSimulationandSafety,TianjinUniversity,Tianjin300072,P.R.China)
The objective of the study is to review the research advances in potential impacts of climate change on water environment in lakes and reservoirs. The paper generalizes the effect of climate change on thermal stratification, ice duration, dissolved oxygen, nutrients, phytoplankton, and structure and function of ecosystem in lakes and reservoirs, as well as differences of climate-related responses to water environment are influenced in lakes and reservoirs. The advantages, disadvantages and development of methods in existing studies are discussed. The processes of potential impacts of climate change on water environment of lakes and reservoirs in climate zones are also discussed. It is significant impact of global warming on physical processes in lakes. The responses to global warming and change of rainfall in savannah climate and temperate maritime climate are higher than other climate zones. There are negative and positive impacts of climate change on water environment. The potential impacts of global warming on total phosphorus in each climate zones are analyzed. The result shows that lakes are tend to be eutrophic due to global warming in subtropical monsoon climate. Considering the spatial variations of climatic factors, regional impacts of climate change of different climate zones on water environment in lakes and reservoirs as the perspective on the subject is provided.
Climate change; climate zone; water environment; differences in regions; lakes; reservoirs; potential impacts
*國家自然科學(xué)基金項(xiàng)目(50909070)、國家自然科學(xué)基金創(chuàng)新研究群體科學(xué)基金項(xiàng)目(51321065)和天津市自然科學(xué)基金項(xiàng)目(13JCQNJC09200)聯(lián)合資助. 2015-05-05收稿;2015-11-18收修改稿. 張晨(1981~),男,副教授;E-mail: emil@tju.edu.cn.