米瑋潔,鄒 怡,李 明,陳明秀,董方勇
(水利部中國科學院水工程生態(tài)研究所水利部水工程生態(tài)效應與生態(tài)修復重點實驗室,武漢 430079)
?
三峽水庫消落區(qū)典型草本植物氮、磷養(yǎng)分計量特征*
米瑋潔,鄒怡,李明,陳明秀,董方勇**
(水利部中國科學院水工程生態(tài)研究所水利部水工程生態(tài)效應與生態(tài)修復重點實驗室,武漢 430079)
為明確消落區(qū)土壤養(yǎng)分對植物生長的影響,通過室內栽培試驗,研究三峽庫區(qū)秭歸消落區(qū)土壤3種氮磷水平下4種草本植物—鬼針草(Bidenspilosa)、蒼耳(Xanthiumsibiricum)、水蓼(Polygonumhydropiper)、藜(Chenopodiumalbum)長勢及氮、磷計量特征. 結果表明,消落區(qū)土壤中生長的植物氮含量為7.98~19.4 mg/g,磷含量為0.740~3.880 mg/g,氮磷比為3.48~13.70,判別植物生長受氮限制. 外源氮磷的添加促進植物氮、磷含量明顯升高,但氮磷比沒有明顯變化;外源氮磷添加解除植物受氮的限制作用. 4種植物對消落區(qū)土壤低氮環(huán)境具有一定的適應能力. 比較消落區(qū)土壤中4種植物長勢,鬼針草生物量、相對生長率、根莖生物量比最高,氮磷養(yǎng)分豐富對鬼針草生長促進作用最明顯,表明鬼針草更易于在氮、磷貧乏的三峽庫區(qū)消落區(qū)形成優(yōu)勢群落.
消落區(qū);氮;磷;氮磷比;氮限制;根莖比;三峽水庫
水庫消落區(qū)是指水庫調度引起水位變動,使水陸銜接地帶的土地被周期性淹沒和出露而形成的干濕交替地帶,它表現(xiàn)出一定的生態(tài)脆弱性. 水庫消落區(qū)往往存在植被破壞、生物多樣性下降、小氣候惡化、河床及河岸遭受侵蝕等生態(tài)環(huán)境問題[1-3]. 從2003年三峽庫區(qū)完成135 m蓄水目標,到2010年三峽大壩壩前水位達175 m,落差達30 m的水庫消落區(qū)全部形成. 三峽消落區(qū)維管束植物以草本植物為主,且以一年生草本植物居多[4]. 從2001年開始,國內開展一系列三峽消落區(qū)植被群落調查工作,研究三峽庫區(qū)消落區(qū)植被的恢復、生長與結構特征、演替過程[5-13]. 消落區(qū)淹水時間、土壤濕度和土壤質地是影響植物群落組成和空間分布的主要因子[14]. 三峽消落區(qū)不同高程受淹時間由短到長,環(huán)境濕度梯度由干燥到濕潤,消落區(qū)土壤呈現(xiàn)明顯的分層結構,植被也呈現(xiàn)明顯的分層結構[5-7, 15]. 植物生長過程中,土壤氮磷養(yǎng)分水平及限制作用對植物生長及種間競爭具有重要影響[16-17],進而改變植物群落組成及多樣性[18],引起植物群落發(fā)生演替[19]. 因此,消落區(qū)土壤養(yǎng)分供應影響消落區(qū)植物的生長、種群結構及穩(wěn)定性.
植物營養(yǎng)元素化學特征與環(huán)境的關系,反映了植物對環(huán)境的適應能力. 植物氮磷生態(tài)化學計量特征是植物群落結構和功能的一種內在調控機制[20],是揭示植物養(yǎng)分限制狀況及其適應策略的重要手段. 近年來生態(tài)化學計量學理論在植物方面的研究與應用主要側重于:1)植物生長、群落特征與生態(tài)化學計量特征的關系;包括植物不同器官[21]、不同生長期[22-23]的生態(tài)化學計量特征變化;植物物種多樣性[24]、群落演替[25-26]與生態(tài)化學計量的關系. 2)環(huán)境與植物生態(tài)化學計量特征的相互作用:包括土壤[27-28]、施肥[29-30]、放牧[31]等環(huán)境因素對植物生態(tài)化學計量特征的影響. 也開始關注濕地、河岸帶/湖濱帶植物的生態(tài)化學計量特征[32],主要研究了山地沼澤濕地[33]、湖濱帶[34]、河口[35]、潮灘地[36]、灘涂濕地[37]土壤與植物的生態(tài)化學計量學特征,但有關消落區(qū)植物的養(yǎng)分計量特征、消落區(qū)自然恢復的草本植物群落與消落區(qū)土壤養(yǎng)分水平相互作用的研究還很少. 植物營養(yǎng)計量學為消落區(qū)草本植物生長及競爭關系研究提供了一個新的途徑,為揭示三峽庫區(qū)消落區(qū)植物群落變化趨勢并為庫區(qū)生態(tài)保護與重建提供科學依據(jù).
為了明確消落區(qū)植物對氮磷養(yǎng)分的吸收利用特點,本文以三峽庫區(qū)消落區(qū)天然草本植物群落中的常見種(鬼針草(Bidenspilosa)、蒼耳(Xanthiumsibiricum)、水蓼(Polygonumhydropiper)、藜(Chenopodiumalbum))為研究對象,在人工控制氮磷營養(yǎng)水平的條件下,分析植物在不同養(yǎng)分條件下的氮磷化學計量特征,比較4種植物的氮磷吸收特征與生長特征,以期揭示植物的養(yǎng)分利用狀況,判斷植物生長限制因子和限制程度等,以便探討其在消落區(qū)具有區(qū)域性特點生長的養(yǎng)分特征. 旨在研究三峽庫區(qū)消落區(qū)土壤氮磷養(yǎng)分對草本植物生長的影響,為消落區(qū)草本植物生長與群落演替提供理論基礎.
1.1 材料
供試土壤:取自三峽庫區(qū)緩坡消落區(qū)秭歸縣九曲垴渡口(30°53′N, 110°53′E;海拔160 m). 樣地鄰近區(qū)域年均氣溫18℃,年均降雨量1100 mm,坡度36°,母巖為花崗巖,土壤類型為黃壤土,土層厚度40 cm左右,植被為人工馬尾松(Pinusmassoniana)林. 土壤取回晾干后過3 mm篩,混勻,測定土壤的pH值、有機質含量及氮磷含量(表1).
表1 三峽庫區(qū)秭歸消落區(qū)供試土壤基本理化特征
供試植物:根據(jù)2009年5-9月在三峽水庫消落區(qū)出露期間對庫區(qū)典型干流消落區(qū)和庫灣消落區(qū)植被進行的調查,選擇優(yōu)勢植物鬼針草、蒼耳、水蓼、藜作為研究對象. 植物幼苗取自三峽庫區(qū)緩坡消落區(qū)興山縣香溪河流域消落區(qū)(昭君鎮(zhèn)昭君村, 31°15′ N, 110°44′ E;海拔166 m;峽口鎮(zhèn)黃家溝,31°10′N, 110°46′E;海拔162 m). 取回實驗室后,洗去根系上的土壤,選取長勢、生物量稍一致的幼苗,種在裝有消落區(qū)土壤的盆缽中.
1.2 實驗設置
2010年6-9月在三峽大學化學與生命科學學院溫室大棚進行消落區(qū)植物栽培實驗. 根據(jù)草本植物盆栽實驗研究[38],本文設置3個施肥梯度:N0P0(0 g N/kg土、0 g P2O5/kg土)、N1P1(0.2 g N/kg土、0.2 g P2O5/kg土)、N2P2(0.5 g N/kg土、0.4 g P2O5/kg土). 氮肥選用(NH4)2SO4、磷肥選用Ca(H2PO4)2·H2O. 將固體肥料與土壤拌勻后,裝入2 L(盆口直徑15 cm)的塑料桶,每個處理9個重復. 2010年6月11日種植植物幼苗,每桶種一株株高稍一致、重量2.5~3.0 g的植物幼苗,每種植物種27盆. 植物生長過程中用量筒添加蒸餾水補充水分. 分別于7月6日、7月29日、8月15日取樣,每次取樣每個處理3個重復,分別測定植物生物量及氮磷含量.
1.3 測定指標與方法
風干土壤樣品、烘干植物樣品粉碎后過0.149 mm篩,用于測定分析[39]:土壤有機質含量采用重鉻酸鉀容量法測定;土壤pH值采用玻璃電極法測定;土壤全氮含量采用K2SO4-CuSO4-Se蒸餾-半微量凱氏法測定;土壤有效氮含量采用堿解擴散法測定;土壤有效磷含量采用0.5 mol/L NaHCO3浸提-鉬銻抗比色法測定. 植物樣品用H2SO4-H2O2消解后,植物氮含量采用凱氏定氮法測定,植物磷含量采用鉬銻抗比色法測定.
圖1 三峽水庫消落區(qū)土壤中植物的生長特征Fig.1 Plant growth in soil of water-level-fluctuation zone of Three Gorges Reservoir
1.4 數(shù)據(jù)處理
使用SPSS 13.0軟件進行數(shù)據(jù)處理、統(tǒng)計分析:采用單因素方差分析(One-way ANOVA)比較消落區(qū)不同植物種類長勢、氮磷計量特征的差異;采用單變量多因素方差分析(GLM Univariate)植物種類、采樣時間、氮磷水平對植物長勢、氮磷計量特征的影響. 方差分析過程中,首先進行方差齊性檢驗;方差齊性,選擇S-N-K進行多重比較;方差非齊性,選擇Tamhane’s T2進行多重比較.
圖2 三峽水庫不同氮磷水平消落區(qū)土壤中植物的生長特征(A、B、C表示同一植物不同氮、磷水平差異顯著(P<0.05),下圖同)Fig.2 Plant growth in soil with different N & P levels of water-level-fluctuation zone of Three Gorges Reservoir
2.1 消落區(qū)植物的生長特征及對土壤氮磷水平的響應
消落區(qū)土壤(N0P0水平)中鬼針草、蒼耳、水蓼、藜均長勢良好. 4種植物的生物量差異明顯(P<0.01):鬼針草生物量最高,其次為水蓼、蒼耳,藜生物量最低;不同采樣時間植物生物量也表現(xiàn)出明顯差異(P<0.01):隨著生長,植物生物量明顯增加;其中鬼針草生物量增加最明顯,其次是水蓼(圖1). 4種植物相對生長率差異顯著(P<0.01):鬼針草相對生長率最高,其次為水蓼、蒼耳,藜相對生長率最低;不同采樣時間植物相對生長率差異不明顯(P=0.935)(圖1). 4種植物根莖生物量比差異明顯(P<0.01):鬼針草根莖生物量比最高,其次為水蓼,蒼耳、藜根莖生物量比較低;不同采樣時間植物根莖生物量比差異不明顯(P=0.520)(圖1).
比較不同土壤氮磷水平(N0P0、N1P1和N2P2)中消落區(qū)植物的長勢差異(圖2):與N0P0處理相比,N1P1處理中除蒼耳生物量(P=0.404)、根莖生物量比(P=0.122)沒有明顯變化外,其余植物生物量、相對生長率顯著增加(P<0.01),根莖生物量比顯著降低(P<0.01). 與N1P1處理相比,N2P2處理中除鬼針草相對生長率顯著增加(P<0.01)外,其余植物生物量(P=0.501)、相對生長率(P=0.367)、根莖生物量比(P=0.480)均沒有顯著差異. 4種植物相比,植物生物量、相對生長率差異顯著(P<0.01),其中,鬼針草生物量、相對生長率最高,其次為蒼耳、水蓼,藜生物量、相對生長率最低;4種植物根莖生物量比沒有顯著差異(P=0.179).
2.2 消落區(qū)植物氮磷計量特征及對土壤氮磷水平的響應
比較消落區(qū)土壤(N0P0水平)中4種植物的氮磷含量及氮磷比(圖3):消落區(qū)土壤中,植物氮含量范圍為7.98~19.35 mg/g,4種植物氮含量沒有明顯差異(P=0.185). 隨著生長,植物氮含量明顯下降(P<0.01),其中,藜氮含量變化最大,鬼針草氮含量變化最小. 植物磷含量范圍為0.74~3.88 mg/g,4種植物磷含量差異顯著(P<0.01),蒼耳磷含量最高,其次為鬼針草、藜,水蓼磷含量最低. 隨著生長,植物磷含量顯著下降(P<0.01),其中,蒼耳磷含量變化最大,鬼針草磷含量變化最小. 植物氮磷比范圍為3.48~13.73,4種植物氮磷比差異顯著(P<0.01):水蓼氮磷比最高,其次為藜,蒼耳、鬼針草氮磷比較低. 隨著植物生長,植物氮磷比明顯增加(P<0.01),其中鬼針草氮磷比增加最明顯(圖3).
比較不同土壤氮磷水平(N0P0、N1P1和N2P2)中消落區(qū)植物的氮磷含量、氮磷比(圖4):與N0P0處理相比,N1P1處理中消落區(qū)植物氮、磷含量顯著增加(P<0.01);氮磷比除水蓼顯著降低(P<0.01)外,其余植物均沒有表現(xiàn)出顯著差異(PBid=0.359,PXan=0.106,PChe=0.056). 與N1P1處理相比,N2P2處理中鬼針草氮含量顯著增加(P<0.01),水蓼氮含量顯著降低(P<0.01),蒼耳、藜氮含量均沒有顯著差異(PXan=0.665,PChe=0.404). 除鬼針草磷含量沒有顯著變化(P=0.436)外,其余植物磷含量均顯著降低(P<0.01). 除蒼耳氮磷比顯著增加(P<0.01)外,其余植物氮磷比均沒有明顯變化(PBid=0.093,PPol=0.938,PChe=0.195). 4種植物相比,植物氮含量、磷含量、氮磷比均差異顯著(P<0.01),其中,蒼耳氮含量最低,水蓼磷含量最低,水蓼氮磷比最高.
3.1 消落區(qū)植物生長的限制性因子
三峽庫區(qū)消落區(qū)土壤受水位漲落的影響,土壤物理性狀發(fā)生改變,土壤養(yǎng)分含量總體呈下降趨勢[40]. 郭勁松等調查三峽庫區(qū)巫山-重慶主城區(qū)段消落區(qū)土壤,認為三峽消落區(qū)有機質、TN含量處于偏低水平[41]. 將本次取樣的消落區(qū)土壤氮磷含量與2008年整個消落區(qū)土壤氮磷含量[42]相比,本次取樣消落區(qū)土壤的氮磷含量處于較低水平. 與蓄水前三峽水庫秭歸段庫岸土壤養(yǎng)分特征[43]相比,蓄水后秭歸消落區(qū)土壤氮磷含量明顯下降. 這可能與消落區(qū)淹水-出露過程有關,消落區(qū)土壤經淹水-出露過程后,土壤中氮磷水平明顯降低[44]. 此外,植物生長也會對消落區(qū)土壤養(yǎng)分產生影響. Ye等研究發(fā)現(xiàn)三峽庫區(qū)消落區(qū)植被短期恢復-淹水過程中,土壤無機氮含量明顯下降,土壤有機碳以及碳氮比也發(fā)生明顯變化[45].
三峽庫區(qū)秭歸消落區(qū)土壤中生長的鬼針草、蒼耳、水蓼、藜氮含量為7.98~19.35 mg/g(<20 mg/g),磷含量為0.74~3.88 mg/g,氮磷比為3.48~13.73(<14). 利用氮磷比作為植物氮磷限制因子的指示,根據(jù)Aerts & Chapin[46]和Ellison[47]給出的臨界值作為氮磷限制作用的判斷標準,三峽庫區(qū)秭歸消落區(qū)土壤中4種植物的生長處于氮限制狀態(tài). 與其他消落區(qū)/河岸帶草本植物氮磷含量特征[48]相比,本研究中植物的氮磷含量及氮磷比范圍較相近,而且都處于氮限制狀態(tài),這可能與淹水-退水過程中,土壤中氮含量下降比磷含量更為明顯有關[44]. 消落區(qū)土壤氮磷添加后,植物氮磷含量也明顯增加,氮含量>20 mg/g,磷含量>1 mg/g. 根據(jù)Aerts & Chapin[46]和Ellison[47]給出的臨界值判斷,此時植物不再受氮限制.
圖3 三峽水庫消落區(qū)土壤中植物的氮磷計量特征Fig.3 N & P stoichiometry characteristics of plant growing in soil of water-level-fluctuation zone of Three Gorges Reservoir
圖4 三峽水庫不同氮磷水平消落區(qū)土壤中植物的氮磷計量特征Fig.4 N & P stoichiometry characteristics of plant growing in soil with different N & P levels of water-level-fluctuation zone of Three Gorges Reservoir
3.2 消落區(qū)植物生長的養(yǎng)分利用策略
根據(jù)Tilman的競爭資源比理論:在較長的時間里,營養(yǎng)元素含量降低的物種較適于在元素匱乏的地區(qū)生長,氮磷含量降低的植物在N-限制或P-限制的環(huán)境下會成為優(yōu)勢物種[49]. 一般來說,低氮含量、低N∶P比的植物適應氮限制類型的土壤. 李小峰等通過研究百花湖消落帶植物養(yǎng)分元素特征,也認為禾本科、蓼科、菊科植物中的營養(yǎng)元素含量較低,又具有一定的耐水淹性,適宜在消落區(qū)水淹時間較長且土壤中氮磷營養(yǎng)元素含量較低的特殊環(huán)境下生長[50]. 本研究中,消落區(qū)土壤中鬼針草、蒼耳、水蓼、藜氮磷含量均較低,而且隨著植物生長氮磷含量表現(xiàn)出明顯的下降趨勢,氮磷比呈增加趨勢,這是消落區(qū)4種優(yōu)勢草本植物對消落區(qū)土壤低氮環(huán)境的適應,通過降低磷吸收,增加氮磷比,緩解氮限制作用.
在三峽庫區(qū)秭歸消落區(qū)土壤中,雖然判斷鬼針草、蒼耳、水蓼、藜均處于氮限制,但這4種植物長勢良好,其中鬼針草長勢最好,表現(xiàn)為鬼針草生物量最高、相對生長率最高,根莖生物量比也最高. 在生長過程中,鬼針草向根系分配的生物量比例明顯高于其他3種植物,這可能是鬼針草在氮限制的消落區(qū)土壤中長勢最好的原因之一. 植物生長過程中根莖生物量比變化是對環(huán)境養(yǎng)分的一種適應策略. 例如,環(huán)境低氮水平時,植物會增加吸收器官的生物量分配,有利于養(yǎng)分吸收;環(huán)境高氮水平時,植物將更多的生物量投入同化器官,有利于碳積累[51]. 氮限制時,植物根系分配的生物量越多,表明其對氮的競爭作用越強[18]. 因此,三峽庫區(qū)消落區(qū)植物在氮限制條件下,鬼針草根系生長的能力更強,向根系分配更多生物量,進而促進鬼針草對氮的吸收.
外源養(yǎng)分豐富會促進植物生長,增加植物株高、葉片或莖條數(shù)、生物量,降低植物根系生物量比[51-52]. 本研究中土壤氮磷添加促使植物生物量、相對生長率明顯增加,根莖生物量比明顯降低. 因此,土壤氮磷豐富對消落區(qū)植物生長的影響表現(xiàn)在:1)促進植物生長、生物量的累積,2)減少植物生物量向根系分配. 當?shù)夭辉偈侵参锷L的限制因子時,植物會分配更多的生物量到碳同化器官,促進地上部分生長,使總生物量升高,有助于提高植株的競爭能力[18],養(yǎng)分增加對植物生長的促進效應越強則植物在競爭中往往處于優(yōu)勢. 本研究中,土壤氮磷養(yǎng)分增加后,鬼針草生物量、相對生長率均最高,表明相較于其他植物而言,鬼針草對養(yǎng)分利用更具有優(yōu)勢,養(yǎng)分豐富對鬼針草生長的促進作用更明顯.
消落區(qū)土壤氮磷豐富明顯促進消落區(qū)植物氮磷含量增加,但植物氮磷比沒有明顯變化,這是植物養(yǎng)分計量內穩(wěn)性的一種表現(xiàn). 消落區(qū)土壤中,植物氮磷比范圍為4.95~15.60;土壤氮磷含量增加后,植物氮磷比范圍為4.47~11.50. 因此,即使土壤中氮磷添加后,促進植物體內氮磷含量增加,但是由于植物自身的內穩(wěn)性調節(jié),使得氮磷比保持在一定范圍內.
綜上,三峽庫區(qū)秭歸消落區(qū)土壤氮限制條件下,這4種優(yōu)勢植物對土壤低氮緩解具有一定的適應能力. 相較之下,鬼針草在消落區(qū)土壤中長勢最好,具有更高的根莖生物量比;而且當土壤氮磷養(yǎng)分添加后,對鬼針草生長促進作用最明顯. 因此,與蒼耳、水蓼、藜相比,鬼針草對消落區(qū)土壤氮磷養(yǎng)分利用能力更強,在三峽庫區(qū)消落區(qū)更容易成為優(yōu)勢種.
[1]Fan Xiaohua, Xie Deti, Wei Chaofu. Study on countermeasures for ecological environmental protection and utilization of riparian zone of Three Gorge Reservoir.JournalofSoilandWaterConservation, 2006, 20(2): 165-169(in Chinese with English abstract). [范小華, 謝德體, 魏朝富. 三峽水庫消落區(qū)生態(tài)環(huán)境保護與利用對策研究. 水土保持學報, 2006, 20(2): 165-169.]
[2]Su Weici, Zhao Chunyong, Yang Hua. Evaluation on natural conditions of water-level-fluctuating zone(WLFZ) in Three-Gorge Reservoir.ScientiaGeographicaSinica, 2009, 29(2): 268-272(in Chinese with English abstract). [蘇維詞, 趙純勇, 楊華. 三峽庫區(qū)消落區(qū)自然條件及其開發(fā)利用評價——以重慶庫區(qū)為例. 地理科學, 2009, 29(2): 268-272.]
[3]Liu Weiwei, Wang Jie, Wang Yongetal. The differences of plant community diversity among the different altitudes in the water-level-fluctuating zone of the Three Gorges Reservoir.ActaEcologicaSinica, 2012, 32(17): 5454-5466(in Chinese with English abstract). DOI 10.5846/stxb201102240211. [劉維暐, 王杰, 王勇等. 三峽水庫消落區(qū)不同海拔高度的植物群落多樣性差異. 生態(tài)學報, 2012, 32(17): 5454-5466.]
[4]Liu Weiwei, Yang Fan, Wang Jieetal. Plant species dynamic distribution in the water-level-fluctuating zone of the Main Stream and Bay of the Three Gorges Reservoir.PlantScienceJournal, 2011, 29(3): 296-306(in Chinese with English abstract). DOI 10.3724/SP.J.1142.2011.30296. [劉維暐, 楊帆, 王杰等. 三峽水庫干流和庫灣消落區(qū)植被物種動態(tài)分布研究. 植物科學學報, 2011, 29(3): 296-306.]
[5]Wang Yong, Li Enhua, Wu Jinqing. A preliminary study on the vascular plant flora of the water-level-fluctuating zone in the Three-Gorge Reservoir area.JournalofWuhanBotanicalResearch, 2002, 20(4): 265-274(in Chinese with English abstract). [王勇, 厲恩華, 吳金清. 三峽庫區(qū)消漲帶維管植物區(qū)系的初步研究. 武漢植物學研究, 2002, 20(4): 265-274.]
[6]Wang Yong, Wu Jinqing, Huang Hongwenetal. Quantitative analysis of plant communities in water-level-fluctuation zone within Three Gorges Reservoir area of Changjiang River.JournalofWuhanBotanicalResearch, 2004, 22(4): 307-314(in Chinese with English abstract). [王勇, 吳金清, 黃宏文等. 三峽庫區(qū)消漲帶植物群落的數(shù)量分析. 武漢植物學研究, 2004, 22(4): 307-314.]
[7]Feng Yilong, Xian Xudong, Wang Haiyang. Distribution patterns of plant communities in the riparian zones in Chongqing and forecasting of the characteristics of their succession after inundation.JournalofSouthwestChinaNormalUniversity(NaturalScience), 2007, 32(5): 112-117(in Chinese with English abstract). [馮義龍, 先旭東, 王海洋. 重慶市區(qū)消落帶植物群落分布特點及淹水后演替特點預測. 西南師范大學學報: 自然科學版, 2007, 32(5): 112-117.]
[8]Yang Chaodong, Zhang Xia, Xiang Jiayun. Plant communities and distribution patterns in riparian zones of Three Gorge Reservoir area.JournalofAnhuiAgricultralScience, 2008, 36(31): 13795-13796, 13866(in Chinese with English abstract). [楊朝東, 張霞, 向家云. 三峽庫區(qū)消落帶植物群落及分布特點的調查. 安徽農業(yè)科學, 2008, 36(31): 13795-13796, 13866.]
[9]Wang Qiang, Yuan Xingzhong, Liu Hongetal. Plant communities in newly created wetlands in water-level fluctuation zone of Three-Gorges Reservoir after flooding to 156m height.ChineseJournalofEcology, 2009, 28(11): 2183-2188(in Chinese with English abstract). [王強, 袁興中, 劉紅等. 三峽水庫156m蓄水后消落帶新生濕地植物群落. 生態(tài)學雜志, 2009, 28(11): 2183-2188.]
[10]Xia Zhiyong. The distributing characters of plant species and plant community diversity in the water-level-fluctuating zone of the Three Gorges Reservoir [Dissertation]. Chongqing: Southwest University, 2011(in Chinese with English abstract). [夏智勇. 重慶三峽水庫消落帶植物分布特征與群落物種多樣性研究[學位論文]. 重慶:西南大學, 2011.]
[11]Zhang Zhiyong, Liu Mingqin, Zheng Zhiweietal. Plant diversity in water-level-fluctuation zone of Xiaojiang watershed in Three Gorges Reservoir.JournalofHydroecology, 2011, 32(3): 38-42(in Chinese with English abstract). [張志永, 劉明芹, 鄭志偉等. 三峽水庫小江流域消落區(qū)的植物多樣性研究. 水生態(tài)學雜志, 2011, 32(3): 38-42.]
[12]Li Bo, Xiong Sen, Huang Yazhouetal. Changing patterns of plant communities in the drawdown zone of Baijia Creek under the influence of Three Gorges Reservoir impoundment.JournalofChongqingNormalUniversity(NaturalScience), 2012, 29(3): 70-74(in Chinese with English abstract). DOI 10.11721/cqnuj20120314. [李波, 熊森, 黃亞洲等. 三峽水庫蓄水對白夾溪消落區(qū)的植物群落格局的影響. 重慶師范大學學報: 自然科學版, 2012, 29(3): 70-74.]
[13]Lei Bo, Wang Yechun, You Yongfeietal. Diversity and structure of herbaceous plant community in typical water-level-fluctuation zone with different spacing elevations in Three Gorges Reservoir.JLakeSci, 2014, 26(4): 600-606(in Chinese with English abstract). DOI 10.18307/2014.0415. [雷波, 王業(yè)春, 由永飛等. 三峽水庫不同間距高程消落帶草本植物群落物種多樣性與結構特征. 湖泊科學, 2014, 26(4): 600-606.]
[14]Sun Rong. Study on riparian plant of mountain river—Pengxi River of Three Gorges Reservoir area as a case study[Dissertation]. Chongqing: Chongqing University, 2010(in Chinese with English abstract). [孫榮. 山地河流河岸植被生態(tài)學研究——以三峽庫區(qū)澎溪河為例[學位論文]. 重慶:重慶大學, 2010.]
[15]Wang Yechun, Lei Bo, Zhang Sheng. Differences in vegetation and soil characteristics at different water-level altitudes in the drawdown areas of Three Gorges Reservoir area.JLakeSci, 2012, 24(2): 206-212(in Chinese with English abstract). DOI 10.18307/2012.0206. [王業(yè)春, 雷波, 張晟. 三峽庫區(qū)消落帶不同水位高程植被和土壤特征差異. 湖泊科學, 2012, 24(2): 206-212.]
[16]Zhao Congjiao, Deng Zifa, Zhou Changfangetal. Effects of nitrogen availability and competition on leaf characteristics ofSpartinaalternifloraandPhragmitesaustralis.ChineseJournalofPlantEcology, 2008, 32(2): 392-401(in Chinese with English abstract). DOI 10.3773/j.issn.1005-264x.2008.02.017. [趙聰蛟, 鄧自發(fā), 周長芳等. 氮水平和競爭對互花米草與蘆葦葉特征的影響. 植物生態(tài)學報, 2008, 32(2): 392-401.]
[17]Venterink HO, Güsewell S. Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation.FunctionalEcology, 2010, 24(4): 877-886.
[18]Tian Yaohua, Feng Yulong, Liu Chao. Effects of nitrogen fertilization and planting density onAgeratinaadenophoragrowth and its competitive traits.ChineseJournalofEcology, 2009, 28(4): 577-588(in Chinese with English abstract). [田耀華, 馮玉龍, 劉潮. 氮肥和種植密度對紫莖澤蘭生長和競爭的影響. 生態(tài)學雜志, 2009, 28(4): 577-588.]
[19]Portielje R, Roijackers RMM. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input.AquaticBotany, 1995, 50: 127-140.
[20]Yu Q, Chen Q, Elser JJetal. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability.EcologyLetters, 2010, 13: 1390-1399.
[21]Zhao Yafang, Xu Fuli, Wang Weilingetal. Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles ofLarixprincipis-rupprechtii.ChineseBulletinofBotany, 2014, 49(5): 560-568(in Chinese with English abstract). DOI 10.3724/SP.J.1259.2014.00560. [趙亞芳, 徐福利, 王渭玲等. 華北落葉松根莖葉碳氮磷含量及其化學計量學特征的季節(jié)變化. 植物學報, 2014, 49(5): 560-568.]
[22]Xiao Yao, Tao Ye, Zhang Yuanming. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China.ChineseJournalofPlantEcology, 2014, 38(9): 929-940(in Chinese with English abstract). DOI 10.3724/SP.J.1258.2014.00087. [肖遙, 陶冶, 張元明. 古爾班通古特沙漠4種荒漠草本植物不同生長期的生物量分配與葉片化學計量特征. 植物生態(tài)學報, 2014, 38(9): 929-940.]
[23]Yang Mei, Wang Changquan, Yuan Dagangetal. C, N, P stoichiometry traits of different flue-cured tobacco organs at different growth stages.ChineseJournalofEco-Agriculture, 2015, 23(6): 686-693(in Chinese with English abstract). DOI 10.13930/j.cnki.cjea.141289. [楊梅, 王昌全, 袁大剛等. 不同生長期烤煙各器官C、N、P生態(tài)化學計量學特征. 中國生態(tài)農業(yè)學報, 2015, 23(6): 686-693.]
[24]Chen Junqiang, Zhang Rui, Hou Yaochenetal. Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow.ChineseJournalofPlantEcology, 2013, 37(11): 979-987(in Chinese with English abstract). DOI 10.3724/SP.J.1258.2013.00101. [陳軍強, 張蕊, 侯堯宸等. 亞高山草甸植物群落物種多樣性與群落C、N、P生態(tài)化學計量的關系. 植物生態(tài)學報, 2013, 37(11): 979-987.]
[25]Yan Bangguo, He Guangxiong, Li Jichaoetal. Changes of plant leaf N, P, and K concentrations and species dominance in an arid-hot valley after ecosystem restoration.ChineseJournalofAppliedEcology, 2013, 23(4): 956-960(in Chinese with English abstract). [閆幫國, 何光熊, 李紀潮等. 生態(tài)系統(tǒng)恢復后干熱河谷植物葉片N、P、K含量及物種優(yōu)勢度的變化. 應用生態(tài)學報, 2013, 23(4): 956-960.]
[26]Lin Li, Li Yikang, Zhang Faweietal. Soil nitrogen and phosphorus stiochiometry in a degradation series ofKobresiahumulismeadows in the Tibetan Plateau.ActaEcologicaSinica, 2013, 33(17): 5245-5251(in Chinese with English abstract). DOI 10.5846/stxb201205310797. [林麗, 李以康, 張法偉等. 高寒矮嵩草群落退化演替系列氮磷生態(tài)化學計量學特征. 生態(tài)學報, 2013, 33(17): 5245-5251.]
[27]Yang Jiajia, Zhang Xiangru, Ma Lushaetal. Ecological stoichiometric relationships between components ofRobiniapseudoacaciaforest in Loess Plateau.ActaPedologicaSinica, 2014, 51(1): 133-142(in Chinese with English abstract). DOI 10.11766/trxb201211280492. [楊佳佳, 張向茹, 馬露莎等. 黃土高原刺槐林不同組分生態(tài)化學計量關系研究. 土壤學報, 2014, 51(1): 133-142.]
[28]Li Congjuan, Lei Jiaqiang, Xu Xinwenetal. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert.ActaEcologicaSinica, 2013, 33(18): 5760-5767(in Chinese with English abstract). DOI 10.5846/stxb201304300872. [李從娟, 雷加強, 徐新文等. 塔克拉瑪干沙漠腹地人工植被及土壤CNP的化學計量特征. 生態(tài)學報, 2013, 33(18): 5760-5767.]
[29]Lin Xinjian, Wang Fei, Wang Changfangetal. Effects of long-term fertilization on weed community characteristics and carbon, nitrogen and phosphorus stoichiometry during winter-spring season in yellow-clay paddy fields of South China.ChineseJournalofEco-Agriculture, 2012, 20(5): 573-577(in Chinese with English abstract). DOI 10.3724/SP.J.1011.2012.00573. [林新堅, 王飛, 王長方等. 長期施肥對南方黃泥田冬春季雜草群落及其C、N、P化學計量的影響. 中國生態(tài)農業(yè)學報, 2012, 20(5): 573-577.]
[30]Bin Zhenjun, Wang Jingjing, Zhang Wenpengetal. Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China.ChineseJournalofPlantEcology, 2014, 38(3): 231-237(in Chinese with English abstract). DOI 10.3724/SP.J.1258.2014.00020. [賓振均, 王靜靜, 張文鵬等. 氮肥添加對青藏高原高寒草甸6個群落優(yōu)勢種生態(tài)化學計量學特征的影響. 植物生態(tài)學報, 2014, 38(3): 231-237.]
[31]Ding Xiaohui, Gong Li, Wang Dongboetal. Grazing effects on eco-stoichiometry of plant and soil in Hulunbeir, Inner Mogolia.ActaEcologicaSinica, 2012, 32(15): 4722-4730(in Chinese with English abstract). DOI 10.5846/stxb201104200523. [丁小慧, 宮立, 王東波等. 放牧對呼倫貝爾草地植物和土壤生態(tài)化學計量學特征的影響. 生態(tài)學報, 2012, 32(15): 4722-4730.]
[32]Hu Weifang, Zhang Wenlong, Zhang Linhaietal. Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China.ChineseJournalofPlantEcology, 2014, 38(10): 1041-1052(in Chinese with English abstract). DOI 10.3724/SP.J.1258.2014.00098. [胡偉芳, 章文龍, 張林海等. 中國主要濕地植被氮和磷生態(tài)化學計量學特征. 植物生態(tài)學報, 2014, 38(10): 1041-1052.]
[33]Xiao Ye, Shang Lina, Huang Zhigangetal. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in mountain swamps of Eastern Jilin Province.ScientiaGeographicaSinica, 2014, 34(8): 994-1001(in Chinese with English abstract). [肖燁, 商麗娜, 黃志剛等. 吉林東部山地沼澤濕地土壤碳氮磷含量及其生態(tài)化學計量學特征. 地理科學, 2014, 34(8): 994-1001.]
[34]Bao Han, Qing Hua, Wang Lixinetal. A study on ecological stoichiometry of plant on lakeside zone of Lake Wuliangsuhai.JournalofInnerMongoliaUniversity(NaturalScienceEdition), 2014, 45(4): 404-409(in Chinese with English abstract). DOI 10.13484/j.nmgdxxbzk.20140412. [包菡, 清華, 王立新等. 烏梁素海湖濱帶植物生態(tài)化學計量學研究. 內蒙古大學學報: 自然科學版, 2014, 45(4): 404-409.]
[35]Wang Weiqi, Wang Chun, Zeng Congshengetal. Soil carbon, nitrogen and phosphorus ecological stoichiometry ofPhragmitesaustraliswetlands in different reaches in Minjiang River estuary.ActaEcologicaSinica, 2012, 32(13): 4087-4093(in Chinese with English abstract). DOI 10.5846/stxb201106160817. [王維奇, 王純, 曾從盛等. 閩江河口不同河段蘆葦濕地土壤碳氮磷生態(tài)化學計量學特征. 生態(tài)學報, 2012, 32(13): 4087-4093.]
[36]Liu Wenlong, Xie Wenxia, Zhao Quanshengetal. Spatial distribution and ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in soil inPhragmitesaustralistidal flat of Jiaozhou Bay.WetlandScience, 2014, 12(3): 362-368(in Chinese with English abstract). DOI 10.13248/j.cnki.wetlansci.2014.03.014. [劉文龍, 謝文霞, 趙全升等. 膠州灣蘆葦潮灘土壤碳、氮和磷分布及生態(tài)化學計量學特征. 濕地科學, 2014, 12(3): 362-368.]
[37]Han Hua, Wang Haobin, Yu Huaguangetal. Ecological stoichiometry of carbon, nitrogen and phosphorus ofPhragmitesaustralispopulation under soil salinity gradients in Chongming wetlands.ResourcesandEnvironmentintheYangtzeBasin, 2015, 24(5): 817-823(in Chinese with English abstract). DOI 10.11870/cjlyzyyhj201505014. [韓華, 王昊彬, 余華光等. 崇明灘涂濕地不同鹽度梯度下蘆葦種群及土壤的生態(tài)化學計量學特征. 長江流域資源與環(huán)境, 2015, 24(5): 817-823.]
[38]Liu Dahui. Study on the effects of mineral nutrition and its mechanism in the growth, secondary metabolism and quality of the medicinal plantChrysanthemummorifolium(Ramat.) [Dissertation]. Wuhan: Huazhong Agricultural University, 2007(in Chinese with English abstract). [劉大會. 礦質營養(yǎng)對藥用菊花生長、次生代謝和品質的影響及其作用機理研究[學位論文]. 武漢:華中農業(yè)大學, 2007.]
[39]Soil chemistry specialty committee of Soil Science Society of China ed. Conventional method of soil and agricultural chemistry analysis. Beijing: Science Press, 1983(in Chinese). [中國土壤學會農業(yè)化學專業(yè)委員會編. 土壤農業(yè)化學常規(guī)分析方法. 北京:科學出版社, 1983.]
[40]Kang Yi. The research of soil physical and chemical properties and vegetations dynamics changes in Three Gorges Reservoir hydro-fluctuation belt [Dissertation]. Beijing: Chinese Academy of Forestry, 2010(in Chinese with English abstract). [康義. 三峽庫區(qū)消落帶土壤理化性質和植被動態(tài)變化研究[學位論文]. 北京:中國林業(yè)科學研究院, 2010.]
[41]Guo Jinsong, Huang Xuanmin, Zhang Binetal. Distribution characteristics of organic matter and total nitrogen in the soils of water-level-fluctuating zone of Three Gorges Reservoir area.JLakeSci, 2012, 24(2): 213-219(in Chinese with English abstract). DOI 10.18307/2012.0207. [郭勁松, 黃軒民, 張彬等. 三峽庫區(qū)消落帶土壤有機質和全氮含量分布特征. 湖泊科學, 2012, 24(2): 213-219.]
[42]He Yang. Investigation of soil nitrogen and phosphorus in water fluctuation zone in central distract of Three Gorges Reservoir area and analysis of its release potential [Dissertation]. Chongqing: Chongqing University, 2009(in Chinese with English abstract). [賀陽. 三峽庫區(qū)腹心地帶消落區(qū)土壤氮磷含量調查及其釋放潛力分析[學位論文]. 重慶:重慶大學, 2009.]
[43]Ye Chen, Cheng Xiaoli, Zhang Quanfa. Characteristics of soil nutrient distribution in the water-level-fluctuation zone in the Three Gorges Reservoir, China.ChineseJournalofSoilScience, 2011, 42(6): 1404-1410(in Chinese with English abstract). [葉琛, 程曉莉, 張全發(fā). 三峽庫區(qū)消落區(qū)蓄水前土壤養(yǎng)分分布特征. 土壤通報, 2011, 42(6): 1404-1410.]
[44]Guo Quanshui, Kang Yi, Zhao Yujuanetal. Changes in the contents of N, P, K, pH and organic matter of the soil which experienced the hydro-fluctuation in the Three Gorges Reservoir.ScientiaSilvaeSinicae, 2013, 48(3): 7-10(in Chinese with English abstract). DOI 10.11707/j.1001-7488.10120302. [郭泉水, 康義, 趙玉娟等. 三峽庫區(qū)消落帶土壤氮磷鉀、pH值和有機質變化. 林業(yè)科學, 2013, 48(3): 7-10.]
[45]Ye C, Cheng X, Zhang Yetal. Soil nitrogen dynamics following short-term revegetation in the water level fluctuation zone of the Three Gorges Reservoir, China.EcologicalEngineering, 2012, 38: 37-44.
[46]Aerts R, Chapin III FS. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.AdvancesinEcologicalResearch, 1999, 30: 1-67.
[47]Ellison AM. Nutrient limitation and stoichiometry of carnivorous plants.PlantBiology, 2006, 8: 740-747.[48]Yu Shuai, Chen Wei, He Xingyuanetal. Nitrogen and phosphorus contents of six herb species in riparian zone of Hunhe River, Northeast China.ChineseJournalofEcology, 2012, 31(11): 2775-2780(in Chinese with English abstract). [于帥, 陳瑋, 何興元等. 渾河河岸帶六種草本植物氮、磷含量特征. 生態(tài)學雜志, 2012, 31(11): 2775-2780.]
[49]Tilman D. Resource competition and community structure. Princeton: Princeton University Press, 1982: 139-177.
[50]Li Xiaofeng, Li Qiuhua, Qin Haolietal. Distribution characteristics of N, P and K contents in 30 common plants from the hydro-fluctuation belt of Baihua Reservoir.ActaScientiaeCircumstantiae, 2013, 33(4): 1089-1097(in Chinese with English abstract). DOI 10.13671/j.hjkxxb.2013.04.033. [李小峰, 李秋華, 秦好麗等. 百花湖消落帶常見植物氮磷鉀營養(yǎng)元素含量分布特征研究. 環(huán)境科學學報, 2013, 33(4): 1089-1097.]
[51]Wang Manlian, Feng Yulong. Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis inAgeratinaadenophoraandChromoleanaodorata.ChineseJournalofPlantEcology, 2005, 29(5): 697-705(in Chinese with English abstract). DOI 10.17521/cjpe.2005.0093. [王滿蓮, 馮玉龍. 紫莖澤蘭和飛機草的形態(tài)、生物量分配和光合特性對氮營養(yǎng)的響應. 植物生態(tài)學報, 2005, 29(5): 697-705.]
[52]Marler RJ, Stormberg JC, Patten DT. Growth response ofPopulusfremontii,Salixgooddingii, andTamarixramosissimaseedlings under different nitrogen and phosphorus concentrations.JournalofAridEnvironments, 2001, 49: 133-146.
Nitrogen and phosphorus stoichiometry characteristics of typical herb plants in the water-fluctuation-zone of Three Gorges Reservoir
MI Weijie, ZOU Yi, LI Ming, CHEN Mingxiu & DONG Fangyong**
(KeyLaboratoryofEcologicalImpactsofHydraulic-ProjectsandRestorationofAquaticEcosystemofMinistryofWaterResources,InstituteofHydroecology,MinistryofWaterResourcesandChineseAcademyofSciences,Wuhan430079,P.R.China)
Nitrogen (N) and phosphorus (P) availability limit plant growth in most terrestrial ecosystems. Plastic responses of plants to N and P supply cause variation in biomass and N/P ratios, associated with differences in root allocation, nutrient uptake, biomass turnover and reproductive output. We investigated the growth characteristics and nutrients acquirement of four dominant herb plant species (Bidenspilosa,Xanthiumsibiricum,Polygonumhydropiper, andChenopodiumalbum) sampled from Zigui water-fluctuation-zone of Three Gorges Reservoir by pots cultivation at three N and P levels. In the process of plant growth, we determined plant biomass and nutrient contents of plant tissues. N contents of plant growing in soil ranged in 7.98-19.4 mg/g, and P, ranged in 0.740-3.880 mg/g, and N/P, ranged in 3.48-13.70, which indicated that plants were under N limitation. After N & P supply, N and P contents increased significantly, and plant growth were not limited by N. By comparing the growth characteristics of 4 plant species in soil, the following results were obtained.B.pilosahad significant higher biomass, relative growth rate and root/shoot biomass ratio. After N & P supply,B.pilosagrowth were promoted significantly.B.pilosawould be dominant community in soil of poor nutrient level in water-fluctuation-zone of Three Gorges Reservoir.
Water-fluctuation-zone; nitrogen; phosphorus; N/P ratio; nitrogen limitation; root/shoot biomass ratio; Three Gorges Reservoir
*國家水體污染控制與治理科技重大專項(2009ZX07104-003-04)資助.2015-06-18收稿;2015-10-26收修改稿.米瑋潔(1980~),女,博士,助理研究員;E-mail: miweijie@mail.ihe.ac.cn.
**通信作者;E-mail: dfy1008@mail.ihe.ac.cn.