張曉龍,張振華,宋海星,余佳玲,官春云
(1湖南農(nóng)業(yè)大學資源環(huán)境學院/南方糧油作物協(xié)同創(chuàng)新中心/土壤肥料資源高效利用國家工程實驗室/農(nóng)田污染控制與農(nóng)業(yè)資源利用湖南省重點實驗室/植物營養(yǎng)湖南省普通高等學校重點實驗室,長沙 410128;2國家油料改良中心湖南分中心,長沙 410128)
不同氮效率油菜品種碳素累積轉(zhuǎn)運差異及其對油分形成的影響
張曉龍1,張振華1,宋海星1,余佳玲1,官春云2
(1湖南農(nóng)業(yè)大學資源環(huán)境學院/南方糧油作物協(xié)同創(chuàng)新中心/土壤肥料資源高效利用國家工程實驗室/農(nóng)田污染控制與農(nóng)業(yè)資源利用湖南省重點實驗室/植物營養(yǎng)湖南省普通高等學校重點實驗室,長沙 410128;2國家油料改良中心湖南分中心,長沙 410128)
【目的】研究不同氮效率油菜品種碳素累積轉(zhuǎn)運差異,為揭示氮高效品種協(xié)調(diào)籽粒碳氮代謝矛盾、促進油分形成的機理提供理論依據(jù)?!痉椒ā坎捎猛僚嘣囼?,以不同氮效率油菜品種為供試材料,在正常供氮和氮脅迫條件下,研究不同生育期(抽薹期、開花期、角果發(fā)育期和收獲期)碳素累積與器官分布的差異,并用13C標記技術(shù)測定營養(yǎng)器官碳素向生殖器官的再分配比例與再分配量,分析碳素累積轉(zhuǎn)運對籽粒產(chǎn)量形成與油分累積的影響?!窘Y(jié)果】氮高效品種的籽粒油分含量略高于氮低效品種,但2種供氮水平下品種間差異均未達到顯著水平,而油分產(chǎn)量氮高效品種顯著高于氮低效品種;與氮脅迫處理相比,正常供氮處理的油分含量略有降低,但油分產(chǎn)量顯著增加。植株碳素累積量各生育期都表現(xiàn)為氮高效品種略高于氮低效品種,但品種間差異也均未達到顯著水平;同一品種不同供氮水平處理之間的碳素累積量差異較大,正常供氮處理顯著高于氮脅迫處理。不同氮效率油菜品種器官碳素分配比例存在差異,氮高效品種抽薹期和開花期葉片和根的碳素分配比例以及角果發(fā)育期和收獲期角果與籽粒的碳素分配比例均大于氮低效品種,而全生育期莖中碳分配比例以及角果發(fā)育期和收獲期根中的碳素分配比例卻小于氮低效品種。與氮脅迫處理相比,正常供氮處理的抽薹期和開花期葉中碳素分配增多、根中碳素分配減少,收獲期籽粒的碳素分配也是正常供氮處理高于氮脅迫處理。隨著生殖生長進程,營養(yǎng)器官碳素向生殖器官的再分配比例和量逐漸增加,品種間差異也逐漸加大。開花期向花的再分配比例和量,氮脅迫條件下氮高效品種低于氮低效品種,正常供氮條件下則相反,但2種氮水平下的品種間差異均不顯著;角果發(fā)育期向角果的再分配比例和量以及收獲期向籽粒的再分配比例和量,2個氮水平均表現(xiàn)為氮高效品種高于氮低效品種,但只有正常供氮條件下差異顯著;收獲期向角果皮的再分配比例和量,氮脅迫條件下氮高效品種低于氮低效品種,正常供氮條件下則相反,但只有氮脅迫條件下差異顯著。油菜收獲時50%以上抽薹期累積碳素已離開營養(yǎng)器官,抽薹期累積的碳素減少比例與向生殖器官轉(zhuǎn)運再分配的碳素比例具有相同的處理間變化趨勢,但由于碳水化合物的呼吸消耗,碳素減少比例遠大于碳素轉(zhuǎn)運再分配比例。【結(jié)論】不同氮效率油菜品種各生育期碳素累積量并沒有明顯差異,但是氮高效品種生長后期有更多的營養(yǎng)器官碳素向生殖器官尤其是向籽粒轉(zhuǎn)運,這是氮高效品種籽粒形成過程中爭取更多碳源,緩解碳氮代謝矛盾,促進油分形成的重要機理之一。
油菜;碳素累積;碳素轉(zhuǎn)運;油分形成;氮效率(1College of Resources and Environmental Sciences, Hunan Agricultural University/ Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China/National Engineering Laboratory of Soil and Fertilizer Resources Efficient Utilization/ Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use/Hunan Provincial Key Laboratory of Plant Nutrition in Common University, Changsha 410128;2National Center of Oilseed Crops Improvement, Hunan Branch, Changsha 410128)
【研究意義】油菜是需氮量多、籽粒油分與蛋白質(zhì)含量之間矛盾比較突出的作物,加強氮素營養(yǎng),可提高油菜產(chǎn)量,但也會因蛋白質(zhì)累積增多而降低油分含量。因此,在提高油菜氮素利用效率的同時,合理調(diào)節(jié)碳氮代謝,對協(xié)調(diào)籽粒油分與蛋白質(zhì)含量的矛盾具有重要的意義?!厩叭搜芯窟M展】籽粒中的碳素,一方面來自生殖器官本身的光合作用,另一方面來自營養(yǎng)器官碳素的再分配,促進作物生長后期碳素的再分配,可協(xié)調(diào)碳氮代謝對碳骨架的競爭,從而實現(xiàn)作物產(chǎn)量與品質(zhì)雙贏。目前,不同栽培措施對作物生長后期碳素轉(zhuǎn)運再分配的影響以及產(chǎn)量對其的響應(yīng)方面有較多研究報道[1-3],并提出了水稻碳素再分配模型[4],碳素再分配在保障逆境條件下作物穩(wěn)產(chǎn)的作用也得到了證實[5-6]。但是,碳素再分配對籽粒品質(zhì)的影響或?qū)徑猱a(chǎn)量與品質(zhì)之間矛盾的貢獻方面僅有少量研究報道。BENDEVIS等[7]研究表明,碳氮化合物的累積與再分配有利于提高藜麥產(chǎn)量和改善品質(zhì)。CLAUDIA等[8]指出小麥生長后期促進營養(yǎng)器官碳水化合物向籽粒的再分配,可在增加產(chǎn)量的同時不降低籽粒蛋白質(zhì)含量;高蛋白小麥品種花后碳水化合物的轉(zhuǎn)運量高于低蛋白品種[9]。【本研究切入點】ZHANG等[10]研究表明與低氮效率油菜品種相比,高氮效率油菜品種雖然生長后期氮素再利用能力強、籽粒氮素累積量高,但籽粒油分含量并沒有下降反而還高,說明氮高效油菜品種籽粒形成過程的碳骨架來源相對充足,而其中除了氮高效油菜品種角果發(fā)育期具有更強的光合能力之外,是否還存在更高的碳水化合物再分配機理,目前尚不清楚?!緮M解決的關(guān)鍵問題】本文采用13C標記技術(shù),研究不同氮效率油菜品種生長后期碳素轉(zhuǎn)運再分配差異及其對油分累積的影響,以期揭示高氮效率油菜品種協(xié)調(diào)籽粒油分與蛋白質(zhì)含量之間矛盾的生理機制,為實現(xiàn)油菜的優(yōu)質(zhì)高產(chǎn)提供重要參考。
1.1試驗材料
供試油菜品種為課題組經(jīng)過大田試驗篩選出的相對氮高效品種27號和相對氮低效品種6號[11-12],分別用H和L表示。其中,氮效率指單位介質(zhì)氮素所形成的產(chǎn)量,篩選時以參比品種的生育期相近為前提,按以下公式進行計算,氮效率=產(chǎn)量/介質(zhì)氮素(包括肥料氮素和土壤氮素)[13]。2個油菜品種的籽粒產(chǎn)量及氮素吸收利用特性見表1所示。
表1 2個油菜品種的籽粒產(chǎn)量及氮素利用特性比較Table 1 Comparison of grain yield and nitrogen utilization characteristics of two Brassica napus
供試土壤為河流沖積物發(fā)育的河潮土,其化學性質(zhì)為有機質(zhì)22.14 g·kg-1、全氮1.42 g·kg-1、堿解氮105.31 mg·kg-1、全磷1.03 g·kg-1、速效磷49.71 mg·kg-1、全鉀19.93 g·kg-1和速效鉀137.02 mg·kg-1,pH5.13。供試肥料為氮肥用尿素(含氮46%),磷肥用過磷酸鈣(含P2O512%),鉀肥用氯化鉀(含K2O 60%),硼肥施用硼砂(含硼11%)。用豐度為99%的13CO2氣體(上海上化院天樂實業(yè)有限公司提供)進行13C標記。
1.2試驗設(shè)計
用高25.7 cm,內(nèi)徑19.2 cm白色瓷缽,裝土6.25 kg,進行土培試驗,于2014年9月至2015年5月期間,在湖南農(nóng)業(yè)大學農(nóng)業(yè)資源與環(huán)境試驗基地玻璃頂網(wǎng)室進行。采用育苗移栽方法,2014年9月24日播種、10月24日移栽,每缽一株,于2015年5月10日收獲。
試驗設(shè)品種和氮素供應(yīng)兩水平兩因子,品種選氮低效品種和氮高效品種,氮素供應(yīng)水平設(shè)正常供氮和氮脅迫2個水平,共4個處理,即氮低效品種氮脅迫處理(L)、氮高效品種氮脅迫處理(H)、氮低效品種正常供氮處理(L-N)和氮高效品種正常供氮處理(H-N),每個處理布置20缽,共80缽。正常供氮處理施肥量為0.2 g N·kg-1土、0.1 g P2O5·kg-1土、0.15 g K2O·kg-1土、2.0 mg B·kg-1土,氮脅迫處理除不施氮肥外,其他肥料用量與正常供氮處理一致,所有肥料均作底肥一次施入。
1.3植株13C標記
13C標記過程在可密閉的塑料棚進行,塑料棚長14 m、寬4 m、高1.5 m。油菜抽薹初期(2月7—10日)將盆缽移到塑料大棚內(nèi),棚內(nèi)每天釋放1.5 L豐度為99%的13CO2氣體,氣體釋放時間為9:00—15:00,大棚封閉時間為9:00—17:00,連續(xù)標記4 d,標記結(jié)束后放回玻璃頂網(wǎng)室繼續(xù)培養(yǎng)。
1.4取樣與測定方法
分別于標記結(jié)束后2 d(2月12日)、開花期(3月12日)、角果發(fā)育期(4月15日)和收獲期(5月10日)采5株全株樣品,具體方法是:先把地上部分刈割下來,然后往盆缽里加滿水浸泡約3 h,待土泡軟之后連根帶土整體倒出,用自來水沖洗泥土,隨著泥土沖走和根系裸露量增多,水龍頭開啟度逐漸減小,以免沖走小細根,泥土沖先干凈后帶回實驗室進一步清洗干凈。從13C標記結(jié)束開始收集落葉,為防止植株間落葉的混雜,將盆缽放進在直徑1 m、高0.18 m的塑料大盆中,每天收集1次。將樣品洗凈后按器官分裝,烘干后測定干重,粉碎過篩后用Vario PYRO cube元素分析儀(Elemental公司)測定各器官碳素含量和13C豐度。
1.5數(shù)據(jù)計算與處理
用Microsoft Excel 2007整理試驗數(shù)據(jù),不同處理間差異采用DPS軟件進行差異性檢驗。碳素累積量、碳素轉(zhuǎn)運比例與轉(zhuǎn)運量按以下公式進行計算:
某器官碳素累積量=該器官碳素含量×該器官干物質(zhì)累積量;
某器官13C累積量=碳素累積量×該器官13C豐度;
營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運比例=(生殖器官13C累積量/標記2 d后植株13C累積量)×100%;
營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運量=標記2 d后植株碳素累積量×營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運比例;
營養(yǎng)器官中抽薹期累積碳素的減少比例=(標記2 d后植株13C累積量-收獲期根、莖、老葉13C累積量)/標記2 d后植株13C累積量。
2.1不同氮效率油菜品種油分累積差異
不同氮效率油菜品種在不同供氮水平條件下籽粒油分含量和油分產(chǎn)量分析(圖1)表明,在氮脅迫條件下,氮低效品種和氮高效品種的油分含量分別為43.2%和44.1%,在正常供氮條件下,氮低效品種和氮高效品種的油分含量分別為40.5%和41.4%;而上述4個處理的油分產(chǎn)量依次為4.3、6.1、7.1和9.5 g/株。即無論供氮水平如何,氮高效品種的籽粒油分含量略高于氮低效品種,但差異未達到顯著水平。但是,由于氮高效品種的籽粒產(chǎn)量顯著高于氮低效品種,其油分產(chǎn)量卻顯著高于氮低效品種。與氮脅迫處理相比,正常供氮處理的2個油菜品種油分含量均有所下降,但差異不顯著,而油分產(chǎn)量則顯著增加,這也是因為正常供氮處理的籽粒產(chǎn)量顯著高于氮脅迫處理所致。
圖1 油分含量和油分產(chǎn)量Fig. 1 Oil contents and yields
2.2不同氮效率油菜品種碳素累積與分配差異
碳素是油分形成的重要物質(zhì)基礎(chǔ)。各生育期植株碳素累積量的測定結(jié)果(圖2)表明,雖然各生育期都表現(xiàn)為氮高效品種略高于氮低效品種,但品種間的差異較小。而同一品種不同供氮水平之間的差異較大,正常供氮處理顯著高于氮脅迫處理。
不同氮效率油菜品種各器官碳素分配略有不同(圖3)。與氮低效品種相比,氮高效品種抽薹期和開花期葉片和根中碳素分配較多,莖中碳素分配較少;角果發(fā)育期角果和葉中碳素分配較多,莖和根中碳素分配較少;收獲期籽粒中碳素分配較多,也是莖和根中碳素分配較少,2種供氮水平下的變化趨勢類似。說明氮高效品種抽薹期和開花期吸收器官(根系)和同化器官(葉片)中的碳素分配以及角果發(fā)育期和收獲期生殖器官中的碳素分配有一定優(yōu)勢。
Fig. 2 Carbon accumulation amount in plant圖2 植株碳素累積量
圖3 各器官碳素累積量占植株總碳素累積量的比例Fig. 3 Carbon allocation proportion in plant organs
比較2種氮水平下碳素分配的差異表明,氮脅迫條件下抽薹期和開花期根中的分配有較大優(yōu)勢,但生育后期該優(yōu)勢減弱,這主要是因為氮脅迫處理促進根系生長,但又引起生長后期根系早衰,而生長前期的根系生長以減少地上部生長為代價,具體表現(xiàn)為抽薹期和開花期葉片以及收獲期籽粒中的碳素分配減少。
2.3不同氮效率油菜品種生長后期碳素轉(zhuǎn)運再分配差異
油菜生長后期營養(yǎng)器官碳素向生殖器官轉(zhuǎn)運再分配比例(表2)的測定結(jié)果表明,開花期的再分配比例施氮條件下氮高效品種略高于氮低效品種,氮脅迫條件下正好相反,但品種間差異2種氮水平下均未達到顯著水平。角果發(fā)育期的再分配比例以及收獲期向籽粒的再分配比例,2種氮水平下均表現(xiàn)為氮高效品種高于氮低效品種;角果發(fā)育期向角果的轉(zhuǎn)運再分配比例,氮高效品種比氮低效品種高出52.3%(正常供氮處理)和25.1%(氮脅迫處理);收獲期向籽粒轉(zhuǎn)運再分配的碳素比例,氮高效品種比氮低效品種高出107.9%(正常供氮處理)和31.3%(氮脅迫處理),但只有正常供氮條件下差異達到了顯著水平。試驗還表明,收獲期向角果皮的轉(zhuǎn)運再分配比例,正常供氮條件下品種間差異較小,而在氮脅迫條件下氮高效品種明顯低于氮低效品種,說明,在氮脅迫導致碳素累積量下降的情況下,氮高效品種盡可能將有限的碳素分配到籽粒,這無疑是有利于油分的累積。
表2 營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運比例Table 2 Redistribution proportion of C from vegetative organs to reproductive organs (%)
轉(zhuǎn)運再分配量(表3)的變化趨勢與轉(zhuǎn)運比例基本一致,角果發(fā)育期向角果的碳素再分配量,氮高效品種比氮低效品種高出50.7%(正常供氮處理)和31.4%(氮脅迫處理);收獲期向籽粒的碳素再分配量,氮高效品種比氮低效品種高出75.1%(正常供氮處理)和23.6%(氮脅迫處理)。試驗還表明,收獲期再分配到生殖器官的總碳中籽粒碳所占的比例,在正常供氮條件下氮高效品種和氮低效品種分別為74.6%和61.1%,在氮脅迫條件下對應(yīng)值分別為85.0%和66.7%,即無論供氮水平如何氮高效品種向籽粒再分配的碳明顯多于氮低效品種,而向角果皮再分配的碳則相反,可見,氮高效品種為籽粒油分形成,提供更好的碳物質(zhì)基礎(chǔ)。
2.4抽薹期營養(yǎng)器官中累積碳素的減少比例
表3 營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運量Table 3 Redistribution amount of C from vegetative organs to reproductive organs (g)
隨著生育期進程,生長前期累積在營養(yǎng)器官中的碳素逐漸減少,其主要去向有二:一是參與呼吸作用后以CO2的形式散失到空氣中;二是向生殖器官轉(zhuǎn)運再分配。通過對營養(yǎng)器官中抽薹期累積的碳素的測定,計算營養(yǎng)器官中抽薹期累積的碳素減少比例結(jié)果表明(圖4),在正常供氮處理的氮高效品種中最高,為74.3%,在正常供氮處理的氮低效品種中最低,為54.2%,2種供氮水平下均表現(xiàn)為氮高效品種大于氮低效品種,但只有在正常供氮條件下的品種間差異達到了顯著水平,與碳素轉(zhuǎn)運再分配的變化趨勢一致。
圖4 抽薹期營養(yǎng)器官中累積碳素的減少比例Fig. 4 Reduction proportion of C accumulation during bolting stage in vegetativeorgans
植株體內(nèi)的碳素累積直接影響作物產(chǎn)量與品質(zhì)的形成。由于植物體內(nèi)各種代謝、尤其是碳氮代謝之間存在碳骨架競爭,導致了糧油作物產(chǎn)量與品質(zhì)之間的矛盾。即作物開花后仍維持較高的植株氮素水平雖然有利用于籽粒蛋白質(zhì)含量的提高,但易造成貪青晚熟而減產(chǎn)[14]。而對油菜來說,較好的氮素營養(yǎng)雖可提高籽粒產(chǎn)量和蛋白質(zhì)含量,但也減少籽粒油分含量。這說明加強作物生長后期的氮素營養(yǎng)以后,生殖器官本身光合速率提高所增多的碳素,往往不足以彌補其含氮物質(zhì)增多所增加的碳素需求。因此,協(xié)調(diào)碳氮代謝之間的關(guān)系,實現(xiàn)作物的高產(chǎn)優(yōu)質(zhì)是農(nóng)業(yè)科學家一直關(guān)注的問題。在此方面,小麥、玉米、水稻等禾谷類作物的研究領(lǐng)先于其他作物,研究工作主要集中在如何提高光合速率合成更多碳水化合物以及促進生長后期營養(yǎng)器官碳素(或干物質(zhì))向生殖器官的轉(zhuǎn)運再分配[15-17]等方面,而作物不同氮效率品種之間的碳素累積再分配差異及其對品質(zhì)的影響方面研究報道很少。
目前,有關(guān)氮效率的內(nèi)涵并沒有統(tǒng)一的定義,但是在不同作物品種氮效率差異的機理研究方面,多數(shù)采用MOLL等[13]的方法評價氮效率,即氮效率指單位介質(zhì)氮素(肥料氮素+土壤氮素)所形成的產(chǎn)量[18-21]。本試驗供試材料的篩選過程中,分別用以下2種方法表示土壤氮素供應(yīng)量:一是播種前土壤速效氮和油菜生長季內(nèi)土壤有機氮礦化量加和;二是不施氮區(qū)植株氮素吸收量和收獲后土壤速效氮加和,發(fā)現(xiàn)2種表示方法的氮效率評價結(jié)果一致。該評價指標的優(yōu)點是可將氮效率解析為氮素吸收效率和氮素利用效率(氮效率=氮素吸收效率×氮素利用效率),前者指植株吸收的氮素占氮素供應(yīng)量之比[氮素吸收效率=(植株氮素累積量/介質(zhì)氮素)×100%],后者則指植株吸收的單位氮素所形成的產(chǎn)量(氮素利用效率=產(chǎn)量/植株氮素累積量)。但在實際操作過程中,因難以準確計算土壤氮素供應(yīng)量的具體值,在同一土壤條件和施氮量一致的情況下,一般用產(chǎn)量和植株氮素累積量表示氮效率和氮素吸收效率[22-23]。因此,該評價指標可確定氮效率差異中氮素吸收效率和氮素利用效率的各自貢獻,將復雜的氮效率性狀分解為更小的單位性狀,以便進一步分析氮效率特異性指標。本試驗的2個供試品種在等氮水平下產(chǎn)量差異顯著,在氮脅迫條件下氮素吸收量差異顯著,在正常供氮條件下氮素利用效率差異顯著,說明不同供氮水平下氮素吸收效率和氮素利用效率對氮效率差異的貢獻有所不同,氮脅迫條件下氮素吸收效率的貢獻較大,正常供氮條件下氮素利用效率的貢獻較大[14]。但是,氮收獲指數(shù)的品種間差異并沒有因供氮水平不同而發(fā)生變化,氮高效品種的氮收獲指數(shù)2個供氮水平下均顯著高于氮低效品種,即無論供氮水平如何氮高效品種都有更多的氮素分配到籽粒中。有趣的是,本試驗中氮高效品種的籽粒油分含量并沒有因籽粒氮素的增加而降低,說明氮高效油菜品種籽粒形成過程中有更充足的碳素來源。已經(jīng)證明,角果發(fā)育期角果本身的光合狀況對籽粒產(chǎn)量、含油量及脂肪酸組成有顯著影響[24-25],那么氮高效品種除角果本身具有更強的光合能力之外,還有沒有其他碳素來源優(yōu)勢呢?本試驗數(shù)據(jù)顯示,2個油菜品種生長前期的碳素總累積量差異不大,但生長后期營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運再分配氮高效品種有明顯優(yōu)勢,這為協(xié)調(diào)碳氮代謝對碳骨架的競爭、緩解籽粒油分與蛋白質(zhì)含量的矛盾提供了物質(zhì)基礎(chǔ)。另有研究證明,油菜前期吸收的氮、磷、鉀等養(yǎng)分對后期籽粒的充實至關(guān)重要[26],且氮高效品種在生長后期氮素轉(zhuǎn)運再利用方面具有明顯優(yōu)勢[27]??梢酝茢?,生長后期的碳素轉(zhuǎn)運再利用對油菜籽粒形成期間更好地發(fā)揮氮、磷、鉀等礦質(zhì)養(yǎng)分的作用,提高養(yǎng)分利用效率具有重要意義。本試驗還表明,在氮脅迫導致碳素總累積量以及轉(zhuǎn)運再分配量減少的情況下,氮高效品種顯著降低向角果皮的碳素再分配,可見,氮高效品種的碳素再分配優(yōu)勢不僅在碳素再分配比例和量方面,還體現(xiàn)在可及時根據(jù)碳源情況調(diào)節(jié)碳素再分配方向,以滿足籽粒形成過程的碳素需求。這是氮高效品種在高效吸收利用氮素的同時不降低籽粒油分含量,并協(xié)同產(chǎn)量優(yōu)勢效應(yīng)顯著提高油分產(chǎn)量的重要機理之一。以上研究為實現(xiàn)油菜籽粒油分和蛋白質(zhì)含量的雙贏提供了理論依據(jù),也為加強氮素營養(yǎng),提高氮收獲指數(shù)和氮素利用效率,實現(xiàn)作物高產(chǎn)優(yōu)質(zhì)[7-8]的生產(chǎn)實踐提供了佐證。
由于生長后期再分配到籽粒中的碳素來自營養(yǎng)器官,因此,收獲期營養(yǎng)器官碳素的減少情況可為不同氮效率油菜品種之間的碳素再分配差異提供旁證。本試驗中抽薹期累積的碳素減少比例與向生殖器官再分配的碳素比例有相同的變化規(guī)律,只是因為呼吸作用釋放的CO2較多,向生殖器官再分配的比例遠小于營養(yǎng)器官碳素的減少比例。
4.1油菜生長后期營養(yǎng)器官碳素向生殖器官的轉(zhuǎn)運再分配比例和量,氮高效品種均高于氮低效品種,正常供氮水平下差異顯著。這是氮高效品種籽粒形成過程中爭取更多碳源,促進油分形成的重要機理之一。
4.2氮高效品種的植株碳素累積量略高于氮低效品種,生長前期葉片和根的碳素分配比例以及生長后期角果與籽粒的碳素分配比例也較高。
4.3營養(yǎng)器官中抽薹期累積碳素的減少比例與生長后期向生殖器官轉(zhuǎn)運再分配碳素的變化趨勢一致。
References
[1] 許育彬, 沈玉芳, 李世清. CO2濃度升高和施氮對冬小麥花前貯存碳氮轉(zhuǎn)運的影響. 作物學報, 2011, 37(8): 1465-1474.
XU Y B, SHEN Y F, LI S Q. Effect of elevated CO2concentration and nitrogen application on trans-location of dry matter and nitrogen restored before anthesis in Winter wheat. Acta Agronomica Sinica,2011, 37(8): 1465-1474. (in Chinese)
[2] 易鎮(zhèn)邪, 陳平平, 屠乃美, 王璞. 包膜尿素與普通尿素對夏玉米碳氮代謝的影響. 湖南農(nóng)業(yè)大學學報(自然科學版), 2011, 37(3): 225-232.
YI Z X, CHEN P P, TU N M, WANG P. Effect of coated and uncoated normal urea on carbon and nitrogen metabolism in summer maize. Journal of Hunan Agricultural University (Natural Sciences), 2011,37(3): 225-232. (in Chinese)
[3] 田青蘭, 劉波, 鐘曉媛, 趙敏, 孫紅, 任萬軍. 不同播栽方式下雜交秈稻非結(jié)構(gòu)性碳水化合物與枝梗和穎花形成及產(chǎn)量性狀的關(guān)系.中國農(nóng)業(yè)科學, 2016, 49(1): 35-53.
TIAN Q L, LIU B, ZHONG X Y, ZHAO M, SUN H, REN W J. Relationship of NSC with the formation of branches and spikelets and the yield traits of Indica hybrid rice in different planting methods. Scientia Agricultura Sinica, 2016, 49(1): 25-33. (in Chinese)
[4] TOMMASO S, SIMONE B, ROBERTO C. A model to simulate the dynamics of carbohydrate remobilization during rice grain filling. Ecological Modelling, 2016, 320: 366-371.
[5] 潘俊峰, 李國輝, 崔克輝. 水稻莖鞘非結(jié)構(gòu)性碳水化合物再分配及其在穩(wěn)產(chǎn)和抗逆中的作用. 中國水稻科學, 2014, 28(4): 335-342.
PAN J F, LI G H, CUI K H. Re-partitioning of non-structural carbohydrates in rice stems and their roles in yield stability and stress tolerance. Journal of Rice Science, 2014, 28(4): 335-342. (in Chinese)
[6] CLAUDIA T, GUILLERMO B, GABRIEL E, HERMINDA R. ABA action on the production and redistribution of field-grown maize carbohydrates in semiarid regions. Journal of Plant Growth Regulation, 2012, 67: 27-34.
[7] BENDEVIS M A, SUN Y, ROSENQVIST E, SHABALA S, LIU F,JACOBSEN S E. Photoperiodic effects on short-pulse 14C assimilation and overallcarbon and nitrogen allocation patterns in contrasting quinoacultivars. Environmental and Experimental Botany,2014, 104: 9-15.
[8] CLAUDIA T, ANA C C, HERMINDA R, CARLOS C, RUBE′N B. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. Journal of Plant Growth Regulation, 2007, 26: 285-289.
[9] 楊鐵鋼, 戴廷波, 曹衛(wèi)星. 施氮水平對不同品質(zhì)類型小麥花后碳氮同化和轉(zhuǎn)運的影響. 南京農(nóng)業(yè)大學學報, 2008, 31(2): 6-10.
YANG T G, DAI T B, CAO W X. Effects of nitrogen rates on assimilation and translocation of carbon and nitrogen after anthesis in two wheat cultivars. Journal of Nanjing Agricultural University, 2008,31(2): 6-10. (in Chinese)
[10] ZHANG Z H, SONG H X, LIU Q, RONG X M, PENG J W, XIE G X,ZHANG Y P, CHEN L R, GUAN C Y, GU J D. Responses of seed yield and quality to nitrogen application levels in two oilseed rape(Brassica napus L.) varieties differing in nitrogen efficiency. Plant Production Science, 2012, 15(4): 265-269.
[11] HAN Y L, SONG H X, LIAO Q, YU Y, JIAN S F, LEPO J E, LIU Q,RONG X M, TIAN C, ZENG J, GUAN C Y, ISMAIL A M, ZHANG Z H. Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiology,2016, 170(3): 1684-1698.
[12] HAN Y L, LIU Q, GU J D, GONG J M, GUAN C Y, LEPO J E,RONG X R, SONG H X, ZHANG Z H. V-ATPase and V-PPase at the tonoplast affect NO3- content in Brassica napus by controlling distribution of NO3- between the cytoplasm and vacuole. Journal of Plant Growth Regulation, 2015, 34: 22-34.
[13] MOLL R H, KAMPRATH E J, JACKSON W A. Analysis and interpretation of factors which contribution efficiency of nitrogen utilization. Agronomy Journal, 1982, 74: 562-568.
[14] ACRECHEE M M, SLAFER G A. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. Journal of Agricultural Science, 2009, 147(6): 657-667.
[15] 張法全, 王小燕, 于振文, 王西芝, 白洪立. 公頃產(chǎn)10000 kg小麥氮素和干物質(zhì)積累與分配特性. 作物學報, 2009, 35(6): 1086-1096.
ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agronomic Sinica, 2009, 35(6): 1086-1096. (in Chinese)
[16] 呂麗華, 陶洪斌, 王璞, 趙明, 趙久然, 魯來清. 施氮量對夏玉米碳、氮代謝和氮利用效率的影響. 植物營養(yǎng)與肥料學報, 2008,14(4): 630-637.
Lü L H, TAO H B, WANG P, ZHAO M, ZHAO J R, LU L Q. The effect of nitrogen application rate on carbon and nitrogen metabolism and nitrogen use efficiency of summer maize. Plant Nutrition and Fertilizer Science, 2008, 14(4): 630-637. (in Chinese)
[17] 李敏, 張洪程, 楊雄, 葛夢婕, 馬群, 魏海燕, 戴其根, 霍中洋, 許軻. 水稻高產(chǎn)氮高效型品種的物質(zhì)積累與轉(zhuǎn)運特性. 作物學報,2013, 39(1): 101-109.
LI M, ZHANG H C, YANG X, GE M J, MA Q, WEI H Y, DAI Q G,HUO Z Y, XU K. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency. Acta Agronomica Sinica, 2013, 39(1): 101-109. (in Chinese)
[18] ALLEN G G, ASHOK K S, DOUGLAS G M. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 2004, 9(12): 597-605.
[19] SVE?NJAK Z, RENGEL Z. Canola cultivars differ in Nitrogen utilization efficiency at vegetative stage. Field Crops Research, 2006,97(2): 221-226.
[20] 趙春波, 宋述堯, 趙靖, 張雪梅, 張越, 張松婷. 北方地區(qū)不同黃瓜品種氮素吸收與利用效率的差異. 中國農(nóng)業(yè)科學, 2015, 48(8): 1569-1578.
ZHAO C B, SONG S Y, ZHAO J, ZHANG X M, ZHANG Y, ZHANG S T. Variation in Nitrogen uptake and utilization efficiency of different cucumber varieties in Northern China. Scientia Agricultura Sinica,2015, 48(8): 1569-1578. (in Chinese)
[21] ANDREAS S, WOLFGANG F, BENJAMIN W, ROD J S. Complementary diversity for nitrogen uptake and utilisation efficiency reveals broad potential for increased sustainability of oilseed rape production. Plant and Soil, 2016, 400 (1/2): 245-262.
[22] 劉強, 宋海星, 榮湘民, 彭建偉, 謝桂先, 張玉平. 不同品種油菜籽粒產(chǎn)量及氮效率差異研究. 植物營養(yǎng)與肥料學報, 2009, 15(4): 898-903.
LIU Q, SONG H X, RONG X M, PENG J W, XIE G X, ZHANG Y P. Studys on oilseed yield and nitrogen efficiency in different cultivars of oilseed rape (Brassica napus). Plant Nutrition and Fertilizer Science,2009, 15(4): 898-903. (in Chinese)
[23] 姜琳琳, 韓立思, 韓曉日, 戰(zhàn)秀梅, 左仁輝, 吳正超, 袁程. 氮素對玉米幼苗生長、根系形態(tài)及氮素吸收利用效率的影響. 植物營養(yǎng)與肥料學報, 2011, 17(1): 247-253.
JIANG L L, HAN L S, HAN X R, ZHAN X M, ZUO R H, WU Z C,YUAN C. Effects of nitrogen on growth, root morphological traits,nitrogen uptake and utilization efficiency of maize seedlings. Plant Nutrition and Fertilizer Science, 2011, 17(1): 247-253. (in Chinese)
[24] LI J, ZHANG C L, MA N, YU L P, CHAO Y, LI L. Effects of ABA on photosynthetic characteristics of pods and yield of Brassica napus. Agricultural Science & Technology, 2012, 13(4): 760-762, 903.
[25] 王春麗, 海江波, 田建華, 楊建利, 趙曉光. 油菜終花后角果和葉片光合對籽粒產(chǎn)量和品質(zhì)的影響. 西北植物學報, 2014, 34(8): 1620-1626.
WANG C L, HAI J B, TIAN J H, YANG J L, ZHAO X G. Infiluence of silique and photosynthesis on yield and quality of oilseed rape(Brassica napus L.) after flowering. Acta Botanica Borealioccidentalia Sinica, 2014, 34(8): 1620-1626. (in Chinese)
[26] 劉曉偉, 魯劍巍, 李小坤, 卜容燕, 劉波. 冬油菜葉片的干物質(zhì)及養(yǎng)分積累與轉(zhuǎn)移特性研究. 植物營養(yǎng)與肥料學報, 2011, 17(4): 956-963.
LIU X W, LU J W, LI X K, PU R Y, LIU B. Studies on characteristics of dry matter and nutrient accumulation and transportation in leaves of winter oilseed rape. Plant Nutrition and Fertilizer Science, 2011,17(4): 956-963. (in Chinese)
[27] ZHANG Z H, SONG H X, LIU Q, RONG X M, PENG J W, XIE G X,ZHANG Y P, GUAN C Y. Distribution characters of absorption nitrogen in oilseed rape(Brassica napus L.) at different growth stages. Journal of Plant Nutrition, 2014, 37: 1648-1660.
(責任編輯楊鑫浩,李莉)
Differences in Carbon Accumulation and Transport in Brassica napus with Different Nitrogen Use Efficiency and Its Effects on Oil Formation
ZHANG Xiao-long1, ZHANG Zhen-hua1, SONG Hai-xing1, YU Jia-ling1, GUAN Chun-yun2
【Objective】The differences in carbon (C) accumulation and transport in Brassica napus with different nitrogen use efficiencies (NUE), were studied in order to supply a theoretical basis for elucidating the mechanism of high NUE genotypes in coordinating the contradiction between C and N metabolism and promoting oil formation.【Method】A soil culture experiment was conducted to study the differences of C accumulation and distribution in different organs of B. napus with different NUE at different growth stages (stem elongation stage, flowering stage, silique stage and harvest stage) under normal- and limited-N conditions, and using13C isotope labeling to determine the C redistribution proportion and amount from vegetative organs to reproductive organs,analyze the contribution of C accumulation and transport to grain yield and oil accumulation.【Result】No significant differences in grain oil content between high- and low-NUE genotypes under the normal and limited-N application levels were observed, but the oil yield of high-NUE genotype was significantly higher than that of low-NUE genotype. Compared with limited-N, oil content was slightly decreased, but oil production was increased significantly under normal-N. There was no differences in C accumulation amount between high- and low-NUE genotypes, while the differences in C accumulation amount at different N application levels was significant, C accumulation amount of normal -N was significantly higher than that of limited-N. C allocation proportion in plant organs between high- and low-NUE genotypes was different, C allocation proportion in roots and leaves of high-NUE genotype was higher than that of low-NUE genotype at stem elongation stage and flowering stage, and C allocation proportion in silique and grain of high-NUE genotype was higher than that of low-NUE genotype at silique stage and harvest stage. While, C allocation proportion in stem of high-NUE genotype was lower than that of low-NUE genotype at the whole growth stage, and C allocation proportion in stem and root of high-NUE genotype was lower than that of low-NUE genotype at the whole growth stage. Compared with limited-N,C allocation proportion in leaves was increased at stem elongation stage and flowering stage under normal-N, while C allocation proportion in root was decreased. In addition, C allocation proportion in grain at harvest stage under normal-N was higher than what was observed in limited-N. As the development of plant growth stages, C distribution proportion and amount from vegetative organs to reproductive organs was gradually increased, the differences between genotypes were increased. Redistribution proportion and amount of C from vegetative organs to silique at silique stage and redistribution proportion and amount of C from vegetative organs to grain at harvest stage in high-NUE genotype was higher than that in low-NUE genotype, the significant different was occurred under normal-N. Redistribution proportion and amount of C in silique of high-NUE genotype was lower than that in low-NUE genotype under limited-N, and reversed results was observed under normal-N, the significant difference was occurred under limited-N. The 50% or more of C accumulation at stem elongation stage was left from vegetative organs, which was corresponding with redistribution proportion into reproductive organs, but C reduction proportion was significantly higher than C re-distribution proportion, which was because of the carbohydrate respiration consumption. 【Conclusion】 There was no significant difference in C accumulation between high- and low-NUE B. napus genotypes at different growth stages. However, higher proportion of C was redistributed from vegetative organs to reproductive organs in high-NUE genotype than that in low-NUE genotype at later growth stages. This is one of the important mechanisms for high-NUE genotype possesses with higher C source to relieve the contradictions between C and N, and promote oil formation during the process of grain formation.
Brassica napus; carbon accumulation; carbon transport; oil formation; nitrogen use efficiency
2016-01-25;接受日期:2016-05-23
國家自然科學基金(31372130,31101596)、國家“十二五”科技支撐計劃(2012BAD15BO4,2014BAC09B01-01)
聯(lián)系方式:張曉龍,E-mail:zhangxl0702@163.com。通信作者宋海星,E-mail:shx723@163.com。通信作者張振華,E-mail:zhzh1468@163.com