杜志明, 張英豪, 韓志躍, 姚謙
(北京理工大學(xué) 爆炸科學(xué)與技術(shù)國家重點實驗室,北京 100081)
?
三唑類富氮化合物的研究進展
杜志明, 張英豪, 韓志躍, 姚謙
(北京理工大學(xué) 爆炸科學(xué)與技術(shù)國家重點實驗室,北京 100081)
含能材料的研究已進入富氮化合物階段. 在富氮化合物的母體結(jié)構(gòu)中,三唑母體含氮量較高,且三唑分子結(jié)構(gòu)中存在較多的氮氫元素,使得分子內(nèi)及分子間易形成氫鍵,提高了化合物的穩(wěn)定性. 論文綜述了近年來國內(nèi)外對氨基三唑、硝基三唑、疊氮三唑和偶聯(lián)三唑的合成、表征以及性能方面的研究進展. 最后對三唑含能化合物的發(fā)展趨勢和應(yīng)用前景做了期許和展望,提出在理論探討、簡易合成路線和新結(jié)構(gòu)的三唑化合物3個方面是今后研究的方向. 這對三唑類化合物在含能材料領(lǐng)域的推廣和應(yīng)用非常必要.
三唑;富氮化合物;含能材料
含能材料經(jīng)歷了從傳統(tǒng)的普通炸藥到含能多硝基化合物,現(xiàn)在已進入富氮化合物階段[1]. 富氮化合物的分子結(jié)構(gòu)中存在大量的N—N健、C—N鍵以及環(huán)張力,因此它們具有高的正生成焓,分子中的高氮、低碳含量使其容易達(dá)到氧平衡,且富氮化合物比一般的物質(zhì)單位質(zhì)量的產(chǎn)氣量高. 富氮化合物通常具有高含氮量、高密度、高的正生成焓、燃燒產(chǎn)物全部為無毒氣體等優(yōu)點,在含能材料領(lǐng)域具有良好的應(yīng)用前景[2-6]. 富氮化合物因其獨特的性能,將有望在高能鈍感炸藥[7]、推進劑的固體燃料[8]、無煙煙火劑[9-10]、氣體發(fā)生劑[11-12]、無焰低溫滅火劑和低特征信號推進劑[13-14]等領(lǐng)域得到應(yīng)用. 目前已經(jīng)作為快速產(chǎn)氣劑在飛機駕駛員座椅彈射、各種救生筏、石油天然氣輸送管道緊急關(guān)閘系統(tǒng)、鐵路的緊急制動系統(tǒng)、民航應(yīng)急安全滑梯、火星探測、汽車安全氣囊中等得到了應(yīng)用[15].
富氮化合物的結(jié)構(gòu)單元以五元環(huán)的唑類和呋咱類及六元環(huán)的嗪類為主,在富氮化合物的母體結(jié)構(gòu)中,三唑母體含氮量較高,且三唑分子結(jié)構(gòu)中存在較多氮氫元素,使得分子內(nèi)及分子間易形成氫鍵,提高了化合物的熔點. 又由于三唑環(huán)的鍵長和鍵角進一步平均化,其環(huán)張力相對較小;但三唑類化合物的共軛體系中,氮原子的孤對電子參與共軛,整個分子的方向性增加,分子的熱穩(wěn)定性增強,有可能作為很好的含能材料或其中間體. 此外,將含氮基團像氨基、硝基及疊氮基等基團引入三唑環(huán)分子中,不僅能提高其含氮量,而且還能提高分子的能量密度同時增加了其化學(xué)反應(yīng)的位點. 因此,三唑類富氮化合物受到國內(nèi)外研究者的廣泛關(guān)注[16-19].
三唑是含氮量很高的一種結(jié)構(gòu)單元,是含3個氮原子的五元雜環(huán)化合物,其環(huán)骨架為平面結(jié)構(gòu),具有芳香性,含氮量60.6%. 由于三唑環(huán)中氮原子的相對位置及N—取代的位置不同,有1H-1, 2, 4-三唑、1H-1, 2, 3-三唑、4H-1,2,3-三唑和4H-1,2,4-三唑4種形式的衍生物,三唑環(huán)骨架C和N原子的H被含氮的基團所取代即得氨基三唑、硝基三唑、疊氮三唑和偶氮三唑等含能中間體或配體,如圖1所示.
合成三唑類富氮化合物作為含能材料或中間體引起了人們強烈的興趣,其研究主要集中在1H-1,2,4-三唑和4H-1,2,3-三唑體系.
1.1 氨基三唑
氨基中的氮原子具有電負(fù)性,配合分子中其他含有電負(fù)性原子的基團如硝基等,有利于含能化合物形成分子內(nèi)以及分子間氫鍵,進一步提高含能化合物的穩(wěn)定性,降低其對物理刺激(熱、撞擊、摩擦等)的敏感程度,同時氫鍵有利于分子間的堆積,可以有效提高化合物的密度,而密度是決定含能化合物性能的重要物理指標(biāo),另外,在三唑環(huán)上引入氨基還可以使化合物的熔點降低,生成焓增加. 因而,研究高氮雜環(huán)的氨基化反應(yīng),對于改善高氮化合物的性能具有重要意義. 此外,氨基取代的氮雜環(huán)化合物也是引入含能基團,構(gòu)建具有生物活性化合物的良好中間體.
1967年,Hauptmann S等[20]以2-R-乙二醛雙腙為原料(R=對氯苯基,對溴苯基和對甲氧苯基),在HgO和MnO2作用下環(huán)化合成1-氨基-4-R-1,2,3-三唑.
2005年,Kaplan等[21]報道了制備1-氨基-1, 2, 3-三唑的改進方法,以乙二醛、水合肼為原料,經(jīng)中間體乙二醛雙腙的環(huán)化合成. 此方法原料易得,步驟簡單. 合成路線如圖2所示.
由于 1, 2, 4-三唑環(huán)上N—H鍵具有良好的化學(xué)反應(yīng)活性,因而氨基化反應(yīng)可以利用氨基化試劑如羥胺—O—磺酸(HOSA)[22],2,4-二硝基苯基羥胺(DNPA)[23-24],通過親電取代反應(yīng)發(fā)生(圖3). 與三唑環(huán)氮原子的氨基化不同,三唑環(huán)上C—NH2的引入一般需要通過含有氨基的底物的環(huán)化反應(yīng)實現(xiàn),例如,3,4,5-三氨基-1,2,4-三唑[25].
1.2 硝基三唑
三唑環(huán)上的硝基化,一方面可以利用C—H、N—H的活性,利用硝酸乙酯、硝硫混酸等硝化劑對C—NH2進行直接的硝化,另一方面,可以依靠C—NH2、N—NH2的活性,通過氧化或者重氮化的方法引入硝基.
1979年,俄羅斯科學(xué)院澤林斯基研究所的Pevzner等[26]首次成功對 1,2,4-三唑進行硝化,利用四氟硼酸硝(NO2BF4)對1,2,4-三唑進行硝化、重排,得到了3-硝基-1,2,4-三唑(NTA),如圖4所示.
1979年,Pevzner等[27]以1H-1,2,4-三唑為母體合成了5-氨基-3-硝基-1H-1,2,4-三唑 (ANTA),其后Lee等[28]對該方法進行了改進,將總收率從20%提高至50%. ANTA具有較高的密度和生成焓,同時具有良好的熱穩(wěn)定性,能量水平與TATB相當(dāng),是一種很有價值的含能材料. 隨后,Naud等[29]采用酸性高錳酸鉀對ANTA進行氧化偶合,得到了具有偶氮鍵的硝基三唑衍生物,能量水平得到了進一步提高,同時也提高了氧平衡水平和密度.
但是,使用同樣的硝化體系對3-硝基-1,2,4-三唑進行硝化的嘗試中,反應(yīng)并未成功,僅得到了微量的3,5-二硝基-1,2,4-三唑化合物(DNTA). 隨后,Pevzner等[30]以3-乙酰氨基-1,2,4-三唑為底物,利用硝酸乙酸酐,通過硝化、水解首次合成5-氨基-3-硝基-1,2,4-三唑(ANTA),但是產(chǎn)率較低(22%). 這兩個反應(yīng)使三唑環(huán)通過直接硝化的方法引入硝基成為現(xiàn)實. 同時,研究發(fā)現(xiàn),1,2,4-三唑環(huán)的硝化反應(yīng)中,硝基的引入均首先發(fā)生在1號氮原子,通過N—H的活性,進而經(jīng)重排得到相應(yīng)的C-硝基產(chǎn)物.
Burchfield 等[31]首次報道了以3,5-二氨基-1,2,4-三唑為原料經(jīng)過重氮化反應(yīng)合成3,5-二硝基-1,2,4-三唑(DNTA),在此基礎(chǔ)上得到了3,5-二硝基-1,2,4-三唑的銀鹽、銨鹽等,反應(yīng)如圖5所示.
本文認(rèn)為,校園足球發(fā)展面臨的最大問題是動力機制。再優(yōu)良的師資,再充裕的場地,如果參與各方動力不足,都不會產(chǎn)生出濃郁的校園足球氛圍,培養(yǎng)不出優(yōu)秀的校園足球人才。退而言之,如果動力強勁,即便場地受限、師資短缺,基層學(xué)校和萬千家庭依然可能想方設(shè)法排除困難,探索出符合區(qū)域特點的差異化發(fā)展道路來。
1.3 疊氮三唑
三唑類高氮化合物自身包含了C—N鍵、N—N鍵等高焓化學(xué)鍵,如果再像其分子結(jié)構(gòu)中引入疊氮基,能量水平會進一步提高.
1968年,Denault G C等[39]首次報道了3-疊氮基-1,2,4-三唑的合成路線,該路線以鹽酸胍、水合肼和甲酸為原料,經(jīng)兩步反應(yīng)首先得到3-肼基-1,2,4-三唑鹽酸鹽,再與亞硝酸鈉和鹽酸反應(yīng)得到目標(biāo)化合物,收率為 81%,化學(xué)反應(yīng)式如圖7(a)所示. 此外,他還考察了疊氮基的引入對1,2,4-三唑骨架生成焓的影響,研究表明3-疊氮基-1,2,4-三唑的生成焓為458 kJ/mol,是1H-1,2,4-三唑生成焓(109 kJ/mol)的4倍多. 可見,將疊氮基引入1,2,4-三唑骨架結(jié)構(gòu)中,可以大幅度提高其分子的生成焓.
2004年,Kofman T P 等[40]采用另一條路線合成了3-疊氮基-1,2,4-三唑,該合成路線直接以3-氨基-1,2,4-三唑為原料,經(jīng)重氮化取代反應(yīng)得到3-疊氮基-1,2,4-三唑,化學(xué)反應(yīng)式如圖7(b)所示. 該合成路線反應(yīng)步驟簡單,收率可達(dá)80%.
1.4 偶聯(lián)三唑
表1中的數(shù)據(jù)表明,1H-1,2,4-三唑通過偶聯(lián)反應(yīng)可以構(gòu)建新的含能骨架,所得的含能化合物性質(zhì)改變明顯,特別是生成熱,其增幅遠(yuǎn)超過未偶聯(lián)前體(ANTA)生成熱的2倍.
表1 ANTA/DNAT/N-DNAT的性質(zhì)對比
SDCI是三唑偶聯(lián)另外一種常用的氧化試劑,例如1-氨基-1,2,3-三唑和4-氨基-1,2,4-三唑均是利用SDCI氧化的得到的偶氮三唑,如圖9所示.
2010年,李玉川等[50]首次通過SDCI氧化1-氨基-1,2,3-三唑合成了1,1′-偶氮-1,2,3-三唑,1,1′-偶氮-1,2,3-三唑具有N8結(jié)構(gòu),經(jīng)理論計算,它的密度達(dá)到了1.620 g/cm3,生成熱為962 kJ/mol. 與4,4′-偶氮-1,2,4-三唑相比,1,1′-偶氮-1,2,3-三唑具有更大的密度和生成熱,這是由于它具有更長的氮鏈結(jié)構(gòu).
三唑含能化合物有著高密度、高能量、高穩(wěn)定性等特點,可以作為很好的含能材料或其中間體,在低特征信號推進劑、高能添加劑、微推力系統(tǒng)用推進劑及氣體發(fā)生劑等領(lǐng)域都有著很好的應(yīng)用前景. 但目前在理論研究方面,相關(guān)的文獻(xiàn)報道較少,需要有新的簡易的合成路線及新的具有優(yōu)良性能化合物的合成顯示其應(yīng)用和發(fā)展?jié)摿?;合成研究方面,需要設(shè)計新的簡單的合成工藝,采用易得的原料. 合成穩(wěn)定性高、感度低的三唑類含能化合物并使其在實際中得到應(yīng)用,是一件很有意義的工作.
[1] Sivabalan R, Talawar M B,Senthilkumar N, et al. Studies on azotetrazolate based high nitrogen content high energy materials potential additives for rocket propellants[J]. Journal of Thermal Analysis and Calorimetry, 2004,78(8):781-792.
[2] Chavez D E,Hiskey M A,Gilardi R D. 3,3′-azobis(6-amino-1,2,4,5-tetrazine): a novel high-nitrogen energetic material[J]. Angewandte Chemie International Edition, 2000,39(10):1791-1793.
[3] Kerth J,L?bbecke S. Synthesis and characterization of 3,3′-azobis(6-amino-1,2,4,5-tetrazine)DAAT—a new promising nitrogen-rich compound[J]. Propellants. Explosives Pyrotechnics, 2002,27(3):111-118.
[4]Huynh Dr M H V, Hiskey Dr M A,Hartline E L, et al. Polyazido high-nitrogen compounds: hydrazo-and azo-1,3,5-triazine[J]. Angewandte Chemie International Edition, 2004,43(37):4924-4928.
[5] Zhou G, Zhang J L, Wong N B, et al. Computational studies on a kind of novel energetic materials tetrahedrane and nitro derivatives[J]. Journal of Molecular Structure Theochem, 2004,668(2-3):189-195.
[6] Neutz J, Grosshardt O, Schaufele S, et al. Synthesis, characterization and thermal behaviour of guanidinium-5-aminotetrazolate (GA)-a new nitrogen-rich compound[J]. Propellants Explosives Pyrotechnics, 2003,28(4):181-188.
[7] Klap?tke T M. New nitrogen-rich high explosives[J]. Structure and Bonding, 2007,125:85-121.
[8] Redecker K,Weuter W. Propellant for gas generators: USA, US 20030145923 A1 [P]. 2003-08-07.
[9] Ali A N, Son S F, Hiskey M A,et al. Novel high-nitrogen propellant use in solid fuel micropropulsion[J]. Journal of Propulsion and Power, 2004,20(1):120-126.
[10] Chavez D, Hiskey M, Naud D L. High-nitrogen fuels for low-smoke pyrotechnics[J]. Pyrotech, 1999,10:17-36.
[11] Hiskey M A, Chavez D E, Naud D L. Low-smoke pyrotechnic compositions: USA, US 6312537 B1[P]. 2001-11-06.
[12] Khandhadia P S, Burns S P. Thermally stable nonazide automotive airbag propellants: USA, US 6306232 B1[P]. 2001-10-23.
[13] Miller C G, Williams G K. Ammonium poly(c-vinyltetrazole) as a fuel, oxidizer selected from ammonium nitrate, alkali and alkaline earth metal nitrates and perchlorates, transitional metal nitrates; for automotive safty restraint systems; maximize gas combustion products and minimize solid combustion products; heat resistance: USA, US20090199937 A1[P]. 2009-08-13.
[14]Miller C G,Williams G K. Water-based synthesis of poly(tetrazoles): USA, US 20080099111 A1[P]. 2008-05-01.
[15] 王宏社,杜志明.富氮化合物研究進展[J].含能材料,2005,13(3):196-203.
Wang Hongshe, Du Zhiming. Progress in synthesis and properties of nitrogen-rich compounds[J]. Energetic Materials, 2005,13(3):196-203.(in Chinese)
[16] Xue H, Gao Y, Twamley B, et al. New energetic salts based on nitrogen-containing heterocycles[J]. Chenistry of Materials, 2005,17(1):191-198.
[17] Petrie M A,Sheehy J A,Boatz J A,et al. Novel high-energy density materials. Synthesis and characterization of triazidocarbenium dinitramide, perchlorate, and tetrafluoroborate[J]. Journal of the American Chemical Society, 1997,119(38):8802-8808.
[18] 馬海霞,宋紀(jì)榮,胡榮祖.3-硝基-1,2,3-三唑-5-酮及其鹽的研究進展[J].火炸藥學(xué)報,2006,29(6):9-15.
Ma Haixia, Song Jirong, Hu Rongzu. A review on 3-nitro-1,2,4-triazol-5-one and its salts[J]. Chinese Journal of Explosives & Propellants, 2006,29(6):9-15.(in Chinese)
[19] Sivabalan R, Anniyappan M, Pawar S J, et al. Synthesis, characterization and thermolysis studies on triazole and tetrazole based high nitrogen content high energy materials[J]. Journal of Hazardous Materials, 2006,137(2):672-680.
[20] Hauptmann S, Wilde H, Moser K. Synthese von 1-amino-4-aryl-1,2,3-triazolen aus a,a-dibromoarbony-lverbindungen [J]. Tetrahedron Letters, 1967,8(34):3295-3297.
[21] Kaplan G, Drake G, Tollison K,et al. Synthesis, characterization, and structural investigations of 1-amino-3-substituted-1, 2, 3-triazolium salts, and a new route to 1-substituted-1,2,3-triazoles [J]. Journal of Heterocyclic Chemistry, 2005,42(1):19-27.
[22] Salazar L, Espada M, Avendao C,et al. N-amination of 3-amino-1,2,4-triazole with hydroxylamine-O-sulfonic acid: synthesis of 1,5-diamino-1,2,4-triazole[J]. Journal of Heterocyclic Chemistry, 1990,27(4):1109-1110.
[23] Gerhard L, Wilhelm K. Synthesis of 1-amino-1H-1,2,4-triazoles [J]. Synthesis, 1989(4):269-272.
[24] Glushkov A I, Shitov O P, Tartakovsky V A. Synthesis of 1-amino-1,2,4-triazolium 4-nitroimides and their reactions with electrophiles [J]. Russian Chemical Bulletin, 2003,52(2):467-470.
[25] Child R G. New synthesis of 3,4,5-triamino-4H-1,2,4-triazole (guanazine) [J]. J Heterocycl Chem, 1965,2(1):98-99.
[26] Pevzner M S, Kulibabina T N, Ioffe S L,et al. Heterocyclic nitro compounds[J]. Chemistry of Heterocyclic Compounds, 1979,15(4):451-455.
[27] Pevzner M S, Kulibabina T N, Povarova N A,et al. Heterocyclic nitro compounds [J]. Chemistry of Heterocyclic Compounds, 1979,15(8):929-932.
[28] Lee K Y, Storm C B, Hiskey M A, et al. An improved synthesis of 5-amino-3-nitro-1H-1,2,4-triazole(ANTA), a useful intermediate for the preparation of insensitive high explosives [J]. Journal of Energetic Materials, 1991,9(5):415.
[29] Naud D L, Hiskey M A, Harry H H. Synthesis and explosive properties of 5,5′-dinitro-3,3′-azo-1H-1,2,4-triazole(DNAT) [J]. Journal of Energetic Materials, 2003,21(1):57-62.
[30] Pevzner M S, Kulibabina T N, Povarova N A, et al. Heterocyclic nitro compounds[J]. Chemistry of Heterocyclic Compoundsi, 1979,15(8):1132-1135.
[31] Bagal L I, Pevzner M S, Frolov A N. Heterocyclic nitro compounds [J]. Chemistry of Heterocyclic Compound, 1970,6(2):240-244.
[32] Xue Hong, Gao Ye, Twamley B A, et al. New energetic salts based on nitrogen-containing heterocycles[J]. Chenistry of Materials, 2005,17(1):191-198.
[33] Bichaya M, Fronabargerb J W, Gilardic R,et al. Selective nitrosation of guanazine: preparation of azidoaminotriazole and nitrosoguanazine anion-Cu(II) complexes [J]. Tetrahedron Lett, 2006,47(37):6663-6666.
[34] Kofman T P, Namestnikov V I. Synthesis of 3-azido-5-amino-1,2,4-triazole[J]. Russian Journal of Organic Chemistry, 2003,39(4):579-584.
[35] Cardillo1 P, Dellavedova1 M, Gigante1 L,et al. Synthesis, spectroscopic and thermal characterization of azido-1,2,4-triazoles: a class of heteroarenes with a high nitrogen content [J]. European Journal of Organic Chemistry, 2012,2012(6):1195-1201.
[36] Kofman T P, Krasnov K N. Reactions of 3-azido-1,2,4-triazole with electrophiles [J]. Russian Journal of Organic Chemistry, 2004,40(11):1651-1656.
[37] Kofman T P, Namestnikov V I. Synthesis of 3-azido-5-amino-1,2,4-triazole [J]. Russian Journal of Organic Chemistry, 2003,39(4):579-584.
[39] Denault G C, Marx P C, Takimoto H H. Energy of combustion and differential thermograms of organic azides[J]. Journal of Chemical and Engineering Data, 1968,13(4):514-516.
[40] Kofman T P, Krasnov K N. Reactions of 3-azido-1,2,4-triazole with electrophiles[J]. Russian Journal of Organic Chemistry, 2004,40(11):1651-1656.
[41] Lee K Y. Explosives, propellants: USA, US 4623409 A[P]. 1983-11-18.
[42] Kofman T P, Namestnikov V I. Synthesis of 3-azido-5-amino-1,2,4-triazole[J]. Russian Journal of Organic Chemistry, 2003,39(4):579-584.
[43] Dippold A, Klap?tke T M, Martin F A. Synthesis and characterization of bis(triaminoguanidinium)-5,5′-dinitrimino-3,3′-azo-1H-1,2,4-triazolate: a novel insensitive energetic material[J]. Zeitschrift Fur Anorganische UND Allgemeine Chemie, 2011,637(9):1181-1193.
[44] Naud D L, Hiskey M A, Harry H H. Synthesis and explosive properties of 5,5′-dinitro-3,3′-azo-1H-1,2,4-triazole (DNAT)[J]. Journal of Energetic Materials, 2003,21(1):57-62.
[45] 朱朝陽,曹一林,孫忠祥,等.5,5′-二硝基-3,3′-偶氮基-1-氫-1,2,4-三唑(DNAT)的合成和性能研究[J].固體火箭技術(shù),2008,31(2):501-503,520.
Zhu Chaoyang, Cao Yilin, Sun Zhongxiang,et al. Investigation on synthesis and properties of 5,5′-dinitro-3,3′-azo-1-hydro-1,2,4-triazole (DNAT) [J]. Journal of Solid Rocket Technology, 2008,31(2):502-503,520. (in Chinese)
[46] 賈思媛,王錫杰,王伯周,等.3,3′-二硝基-5,5′-偶氮-1H-1,2,4-三唑的合成與晶體結(jié)構(gòu)[J].火炸藥學(xué)報,2009,32(1):25-29.
Jia Siyuan, Wang Xijie, Wang Bozhou, et al. Synthesis and crystal structure of 3,3′-dinitro-5,5′-azo-1H-1,2,4-triazole(DNAT)[J]. Chinese Journal of Explosive & Propellants, 2009,32(1):25-29. (in Chinese)
[47] Kofman T P, Paketina E A. Oxidation of amino derivatives of 1,2,4-triazole[J]. Russian Journal of Organic Chemistry, 1997,33(8):1125-1132.
[48] Yin Peixiu, Cheng Jiankai, Li Zhaoji, et al. Ag(I)-mediated in situ dehydrogenative coupling of 3-amino-1,2,4-triazole into 3,3′-azobis (1, 2, 4-triazole) in Cd(II) coordination polymers [J]. Inorg Chem, 2009,48(23):10859-10861.
[50] Li Yuchuan, Qi Cai, Li Shenghua, et al. 1,1′-azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism[J]. Journal of the American Chemical Society, 2010,132(35):12172-12173.
(責(zé)任編輯:劉雨)
Research Progress on Triazole Nitogen-Rich Compounds
DU Zhi-ming, ZHANG Ying-hao, HAN Zhi-yue, YAO Qian
(State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
Research of energetic material has entered a stage of nitrogen-rich compound. In the matrix structure of nitrogen-rich compound, triazole matrix contains high nitrogen, and there are much nitrogen and hydrogen existing in triazole molecular structure, which make the intramolecular and intermolecular easy to form hydrogen bond. This improves the stability of the compound. The research progress of the synthesis, characterization and performance about amino triazole, nitro triazole and coupling triazole at home and abroad in recent years was reviewed. At last, the development trends and application prospects of triazole compounds were discussed and excepted. The deeper theory study, simple synthesis route and the new triazole compounds are the direction of future research. They are very necessary for triazole compounds in the promotion and application in the field of energetic material.
triazole; nitrogen-rich compound; energetic material
2014-12-15
杜志明(1962—),男,教授,博士生導(dǎo)師,E-mail:yanhuozu2013@gmail.com.
韓志躍(1984—),男,博士,講師,E-mail:hanzhiyue@bit.edu.cn.
TQ 174
A
1001-0645(2016)06-0551-07
10.15918/j.tbit1001-0645.2016.06.001