許飄勇
(福建省龍海市程溪中學(xué) 福建龍海 363112)
函數(shù)定義域的相關(guān)問(wèn)題
許飄勇
(福建省龍海市程溪中學(xué) 福建龍海 363112)
變量數(shù)學(xué)反映了運(yùn)動(dòng)變化的思想,它是近代數(shù)學(xué)的核心思想即函數(shù)的思想,那么自變量的范圍即整個(gè)函數(shù)的定義域就顯得至關(guān)重要了,因?yàn)樗茄芯恳磺泻瘮?shù)性質(zhì)的基礎(chǔ)。
函數(shù) 自變量 定義域
函數(shù)作為高中數(shù)學(xué)的主要知識(shí)之一,連接整個(gè)高中數(shù)學(xué)的始終,。在平時(shí)的教學(xué)中,應(yīng)注重函數(shù)的定義域的作用和影響,并且能夠培養(yǎng)學(xué)生嚴(yán)密的數(shù)學(xué)邏輯思維。
函數(shù)關(guān)系式包括定義域和對(duì)應(yīng)法則,所以在求函數(shù)的關(guān)系式時(shí)必須要考慮所求函數(shù)關(guān)系式的定義域,否則所求函數(shù)關(guān)系式可能是錯(cuò)誤。如:
例1:某一個(gè)近似等腰三角形的梯田周長(zhǎng)為40,其中底邊長(zhǎng)為y,腰長(zhǎng)為x,試寫(xiě)出該三角形的底邊長(zhǎng)y與腰長(zhǎng)x的函數(shù)關(guān)系式?
判斷函數(shù)的奇偶性,應(yīng)先考慮該函數(shù)的定義域區(qū)間是否關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),如果定義域區(qū)間是關(guān)于坐標(biāo)原點(diǎn)不成中心對(duì)稱(chēng),則函數(shù)就無(wú)奇偶性可談。否則要用奇偶性定義加以判斷。例2:判斷函數(shù)的奇偶性.
整個(gè)的解答過(guò)程體現(xiàn)了嚴(yán)密的數(shù)學(xué)邏輯思維。但是如果學(xué)生不注意函數(shù)定義域,那么判斷函數(shù)的奇偶性得出如下錯(cuò)誤結(jié)論:
函數(shù)單調(diào)性是指函數(shù)在給定的定義域區(qū)間上函數(shù)自變量增加時(shí),函數(shù)值隨著增減的情況,所以討論函數(shù)單調(diào)性必須在給定的定義域區(qū)間上進(jìn)行。如:
解:先求定義域:上是增函數(shù)。
函數(shù)的最值是指函數(shù)在給定的定義域區(qū)間上能否取到最大(?。┲档膯?wèn)題。如果不注意定義域,將會(huì)導(dǎo)致最值的錯(cuò)誤。如:
初看結(jié)論,本題似乎沒(méi)有最大值,只有最小值。產(chǎn)生這種錯(cuò)誤的根源在于學(xué)生是按照求二次函數(shù)最值的思路,而沒(méi)有注意到已知條件發(fā)生變化。這是思維呆板性的一種表現(xiàn),也說(shuō)明學(xué)生思維缺乏靈活性。這個(gè)例子說(shuō)明,在函數(shù)定義域受到限制時(shí),若能注意定義域的取值范圍對(duì)函數(shù)最值的影響,并在解題過(guò)程中加以注意,便體現(xiàn)出學(xué)生思維的靈活性。
函數(shù)的值域是該函數(shù)全體函數(shù)值的集合,當(dāng)定義域和對(duì)應(yīng)法則確定,函數(shù)值也隨之而定。因此在求函數(shù)值域時(shí),應(yīng)注意函數(shù)定義域。如:
以上例子說(shuō)明,變量的允許值范圍是何等的重要,若能發(fā)現(xiàn)變量隱含的取值范圍,精細(xì)地檢查解題思維的過(guò)程,就可以避免以上錯(cuò)誤結(jié)果的產(chǎn)生。也就是說(shuō),學(xué)生若能在解好題目后,檢驗(yàn)已經(jīng)得到的結(jié)果,善于找出和改正自己的錯(cuò)誤,善于精細(xì)地檢查思維過(guò)程,便體現(xiàn)出良好的思維批判性。
綜上所述,在求解函數(shù)函數(shù)關(guān)系式、單調(diào)性、奇偶性、最值(值域)等問(wèn)題中,若能精細(xì)地檢查思維過(guò)程,思辨函數(shù)定義域有無(wú)改變(指對(duì)定義域?yàn)镽來(lái)說(shuō)),對(duì)解題結(jié)果有無(wú)影響,就能提高學(xué)生質(zhì)疑辨析能力,有利于培養(yǎng)學(xué)生的思維品質(zhì),從而不斷提高學(xué)生思維能力,進(jìn)而有利于培養(yǎng)學(xué)生思維的創(chuàng)造性。