田 路,李 丹,敬 華,
(1.安徽醫(yī)科大學(xué)解放軍306醫(yī)院臨床學(xué)院,北京100101;2.解放軍306醫(yī)院醫(yī)學(xué)檢驗(yàn)科,北京100101)
糖代謝與骨代謝相互作用的研究進(jìn)展
田 路1,李 丹2,敬 華1,2
(1.安徽醫(yī)科大學(xué)解放軍306醫(yī)院臨床學(xué)院,北京100101;2.解放軍306醫(yī)院醫(yī)學(xué)檢驗(yàn)科,北京100101)
臨床上糖尿病患者骨折風(fēng)險(xiǎn)明顯升高,同時(shí)骨代謝異常的患者也往往伴隨葡萄糖不耐受和胰島素抵抗,近年來多方研究表明糖代謝與骨代謝之間存在復(fù)雜的相互作用,本文綜述了二者之間相互作用的研究現(xiàn)狀及相關(guān)進(jìn)展。
糖代謝; 骨代謝; 相互作用
糖尿病可引起多器官系統(tǒng)損害,導(dǎo)致眼、腎、神經(jīng)、心臟、血管病變等并發(fā)癥。新近研究表明,長期血糖水平增高對骨骼同樣產(chǎn)生重要影響,臨床上主要表現(xiàn)為糖尿病患者的骨折風(fēng)險(xiǎn)明顯高于非糖尿病患者,與此同時(shí),治療后糖耐量未獲糾正的糖尿病患者的骨折風(fēng)險(xiǎn)進(jìn)一步增加。反過來,骨骼可通過釋放生長因子等物質(zhì)調(diào)節(jié)其他器官組織對胰島素的敏感性,進(jìn)而參與機(jī)體糖代謝水平的調(diào)節(jié)。近年來,國內(nèi)外學(xué)者通過檢測骨量、骨密度以及各種糖代謝、骨代謝指標(biāo),提出了糖代謝與骨代謝之間可能存在著多重緊密聯(lián)系的假設(shè),本文對新近發(fā)現(xiàn)的糖代謝與骨代謝之間存在相互作用的研究進(jìn)行了綜述。
1 糖代謝對機(jī)體骨代謝水平的調(diào)節(jié)
1.1 糖尿病患者的骨折風(fēng)險(xiǎn)明顯增加
糖代謝對骨代謝的調(diào)節(jié)作用受到關(guān)注是從臨床上發(fā)現(xiàn)糖尿病患者的骨折風(fēng)險(xiǎn)明顯增加開始。Vestergard[1]在2007年首次將1型和2型糖尿病患者發(fā)生髖部骨折的相關(guān)報(bào)道進(jìn)行了系統(tǒng)評價(jià),得出兩類糖尿病患者的骨折風(fēng)險(xiǎn)均顯著高于同齡非糖尿病患者的結(jié)論。其中,1型糖尿病和2型糖尿病患者的骨折風(fēng)險(xiǎn)分別是非糖尿病患者的6.94倍和1.38倍,在已產(chǎn)生并發(fā)癥的糖尿病患者中骨折風(fēng)險(xiǎn)進(jìn)一步升高。除髖部骨折外,在包含其他部位骨折的研究中也存在相似的結(jié)論,Shah[2]報(bào)道在1型糖尿病患者中,發(fā)生骨折的風(fēng)險(xiǎn)是非糖尿病患者的3.16倍。這項(xiàng)包涵27300例的大樣本系統(tǒng)評價(jià)研究證實(shí)發(fā)生骨折最常見的部位是髖部和椎骨,且存在性別差異:女性和男性發(fā)生骨折的風(fēng)險(xiǎn)分別為非糖尿病患者的4倍和2倍。新發(fā)糖尿病患者的骨折風(fēng)險(xiǎn)也明顯升高,Rathmann[3]報(bào)道首次診斷2型糖尿病的患者在10年內(nèi)發(fā)生骨折的風(fēng)險(xiǎn)是非糖尿病患者的1.36倍,其中髖部、椎骨和上肢部位的骨折風(fēng)險(xiǎn)均明顯高于非糖尿病患者。
1.2 糖尿病患者骨折風(fēng)險(xiǎn)與骨密度的相關(guān)性
骨密度反映骨質(zhì)的疏松程度,其降低往往伴隨骨折風(fēng)險(xiǎn)的升高。自從人們發(fā)現(xiàn)糖尿病患者骨折風(fēng)險(xiǎn)明顯升高之后,骨密度相關(guān)檢查受到了臨床醫(yī)生的重視。骨密度是骨骼強(qiáng)度的重要指標(biāo),近年來雙能X線吸收測定法、定量CT法和超聲測定法被廣泛的應(yīng)用于評估骨骼礦物質(zhì)密度。1型糖尿病患者在青春期后半段與同齡人相比表現(xiàn)出-0.76±1.29年的骨齡推遲,而前者骨密度的降低表現(xiàn)為全身性的,包括髖骨、椎骨、股骨和前臂骨骼[4-5]。但相似研究在2型糖尿病患者中得到的結(jié)論尚有爭議,有學(xué)者通過雙能X線吸收測定法(DXA)和高分辨率外周骨定量CT(HR-pQCT)發(fā)現(xiàn),2型糖尿病患者與正常對照組的骨密度水平?jīng)]有明顯差異,僅在脛骨的皮質(zhì)區(qū)稍有減低的傾向[6],甚至有些學(xué)者發(fā)現(xiàn)2型糖尿病患者髖骨和椎骨的骨密度水平比正常人還高[1,7]。這種矛盾的現(xiàn)象可能與2型糖尿病患者骨骼微結(jié)構(gòu)產(chǎn)生改變有關(guān),盡管骨礦物質(zhì)數(shù)量上丟失不明顯,但骨骼在局部應(yīng)力下的質(zhì)量或強(qiáng)度已有所下降[8]。因此,盡快建立能夠反映骨骼的質(zhì)量和微結(jié)構(gòu)變化的檢測方法勢在必行。
1.3 糖尿病患者骨代謝指標(biāo)的改變
骨代謝指標(biāo)可以精細(xì)地反映體內(nèi)骨形成和骨吸收的穩(wěn)態(tài)變化。近年來骨代謝指標(biāo)從傳統(tǒng)的血清鈣、磷、堿性磷酸酶、抗酒石酸酸性磷酸酶等擴(kuò)展到總1型前膠原氨基端延長肽、β-膠原降解產(chǎn)物、N端骨鈣素中分子片段等活性分子,多項(xiàng)研究逐步揭示了糖尿病患者體內(nèi)骨代謝水平的細(xì)微改變。其中總1型前膠原氨基端延長肽和β-膠原特殊序列分別反映體內(nèi)成骨細(xì)胞和破骨細(xì)胞的功能。骨鈣素是骨基質(zhì)中最重要的一種特異性非膠原蛋白,其代謝產(chǎn)物N端骨鈣素中分子片段是骨鈣素的氨基端大片段,可靈敏反映各種骨代謝紊亂中的骨轉(zhuǎn)換率。Shu[6]報(bào)道2型糖尿病患者血清中總1型前膠原氨基端延長肽水平僅為非糖尿病患者的59.8%,而 N端骨鈣素中分子片段僅為非糖尿病患者的72.6%,說明2型糖尿病患者的骨形成處于較低水平。Starup-Linde[9]綜合評價(jià)了22篇相關(guān)研究的結(jié)論,發(fā)現(xiàn)糖尿病患者N端骨鈣素中分子片段水平與β-膠原降解產(chǎn)物水平與非糖尿病患者有顯著差異,而其他骨代謝標(biāo)志物的差異無統(tǒng)計(jì)學(xué)意義。多項(xiàng)研究表明糖尿病患者的傳統(tǒng)骨代謝生化標(biāo)志物如血鈣、磷、甲狀旁腺激素、骨堿性磷酸酶等與正常人相比并沒有表現(xiàn)出顯著差異,可能與個(gè)體異質(zhì)性有關(guān)[9]。相關(guān)性分析研究發(fā)現(xiàn),2型糖尿病患者骨鈣素水平與糖化血紅蛋白成負(fù)相關(guān),與胰島 B細(xì)胞功能指數(shù) HOMA-β成正相關(guān),進(jìn)一步證實(shí)糖尿病患者的骨代謝與糖代謝關(guān)系緊密[10-12]。
1.4 糖尿病影響骨代謝水平的分子機(jī)制
目前認(rèn)為糖尿病影響骨代謝水平的分子機(jī)制可能與晚期糖基化終產(chǎn)物和胰島素樣生長因子1有關(guān)。
晚期糖基化終產(chǎn)物是蛋白質(zhì)、脂質(zhì)等生物大分子在非酶條件下自發(fā)與葡萄糖或其他還原單糖反應(yīng)所生成的一組穩(wěn)定共價(jià)化合物,長期高糖狀態(tài)可以引起晚期糖基化終產(chǎn)物積聚在各個(gè)器官組織。戊糖素是晚期糖基化終產(chǎn)物的重要成員,積聚在骨基質(zhì)中的戊糖素與2型糖尿病發(fā)生椎骨骨折的風(fēng)險(xiǎn)明顯相關(guān),同時(shí)戊糖素還是1型糖尿病發(fā)生骨折的獨(dú)立危險(xiǎn)因素[13-15]。因此推測,糖基化終產(chǎn)物可以對骨骼產(chǎn)生破壞作用。晚期糖基化終產(chǎn)物過度表達(dá)引起的糖尿病性骨質(zhì)疏松癥主要表現(xiàn)在骨吸收的增加,而非骨密度降低,由此說明,晚期糖基化終產(chǎn)物與其受體的相互作用可通過增加骨吸收來影響骨量的變化,這可與多數(shù)2型糖尿病患者骨密度未發(fā)生明顯降低的結(jié)果互相印證[14]。
胰島素樣生長因子1是調(diào)節(jié)骨形成和骨轉(zhuǎn)換的重要的骨生長因子,其基因多態(tài)性與骨密度和骨折風(fēng)險(xiǎn)明顯相關(guān)[16-17]。研究表明,糖尿病患者胰島素樣生長因子1與胰島素樣生長因子結(jié)合蛋白水平與血糖受損程度和椎骨骨折的發(fā)生有關(guān)[18-19]。表明機(jī)體糖代謝異常影響骨代謝的機(jī)制可能由胰島素樣生長因子1及其結(jié)合蛋白共同參與完成。
2 骨代謝對機(jī)體糖代謝水平的調(diào)節(jié)
新近發(fā)現(xiàn)骨骼是一個(gè)內(nèi)分泌器官,而且臨床上糖代謝異常與骨代謝異常經(jīng)常合并發(fā)生,因此骨代謝對糖代謝的調(diào)節(jié)作用逐漸成為國內(nèi)外研究的熱點(diǎn)。2003年Harada等[20]首次報(bào)道成骨細(xì)胞和破骨細(xì)胞分泌的活性分子對其他器官同樣具有重要調(diào)節(jié)作用,隨后Lee等[21]在《細(xì)胞》雜志上發(fā)表論文,報(bào)道骨鈣素基因敲除的大鼠表現(xiàn)出β細(xì)胞減少、葡萄糖不耐受和胰島素抵抗,證實(shí)大鼠體內(nèi)骨代謝與糖代謝之間聯(lián)系緊密。動(dòng)物實(shí)驗(yàn)和人體細(xì)胞研究的結(jié)果均提示骨代謝的狀態(tài)可能通過某種骨代謝標(biāo)志物作用于外周器官或組織,影響外周器官和組織對胰島素的敏感性,進(jìn)而對糖代謝產(chǎn)生調(diào)節(jié)作用,但在體內(nèi)實(shí)驗(yàn)中尚未明確證實(shí)。目前認(rèn)為骨代謝調(diào)節(jié)機(jī)體糖代謝的具體環(huán)節(jié)可能主要與維生素D和骨鈣素有關(guān)。
2.1 維生素D參與機(jī)體糖代謝調(diào)節(jié)
維生素D是人體重要的微量營養(yǎng)素,其主要的生理作用是調(diào)節(jié)骨代謝和血清鈣的含量。維生素D不僅可以通過影響腸和腎臟對鈣、磷的吸收作用間接調(diào)節(jié)骨的形成,還能通過調(diào)節(jié)成骨細(xì)胞表面維生素D受體(VDR)的表達(dá)直接調(diào)控成骨細(xì)胞的分化和礦化[22]。
維生素D受體不僅表達(dá)在成骨細(xì)胞表面,它還廣泛存在于皮膚、免疫細(xì)胞、結(jié)腸、胰腺和脈管系統(tǒng),與靶器官或靶細(xì)胞的氧化損傷、炎癥狀態(tài)和慢性損傷有關(guān)[23]。胰島β細(xì)胞表面維生素D受體的基因多態(tài)性決定了維生素D水平對胰島β細(xì)胞作用的敏感性,進(jìn)而可通過調(diào)節(jié)胰島素分泌來影響糖尿病的發(fā)生發(fā)展[24-28]。同時(shí)有學(xué)者發(fā)現(xiàn),維生素D受體存在于免疫細(xì)胞如抗原提呈細(xì)胞和活化T細(xì)胞表面,由于免疫系統(tǒng)在1型糖尿病患者胰島β細(xì)胞的破壞中發(fā)揮了至關(guān)重要的作用,維生素D有可能直接通過自身免疫系統(tǒng)影響胰島β細(xì)胞的功能[29-31]。
動(dòng)物實(shí)驗(yàn)證明,對非肥胖性糖尿病大鼠的飲食中定期加入高劑量的維生素D可以阻止糖尿病的發(fā)生[32]。此結(jié)論在臨床研究中也獲得了支持,對維生素D缺乏的2型糖尿病患者聯(lián)合補(bǔ)充鈣和維生素D可以改善血糖和血脂狀況[33-34]。多項(xiàng)研究表明,單純用維生素D治療的2型糖尿病病人,糖化血紅蛋白含量明顯下降,而且治療后空腹血糖與體內(nèi)維生素D含量成明顯相關(guān),胰島素抵抗和全身炎癥狀態(tài)均有下降[35-37]。
維生素D對糖尿病的預(yù)后也有影響。動(dòng)物實(shí)驗(yàn)表明補(bǔ)充維生素D對大鼠糖尿病模型的視網(wǎng)膜病變具有一定的保護(hù)作用,這一作用可能是通過抑制視網(wǎng)膜上血管內(nèi)皮生長因子(VEGF)和轉(zhuǎn)化生長因子-β(TGF-β)的表達(dá)來實(shí)現(xiàn)的[38]。而2型糖尿病患者通過補(bǔ)充維生素D,不僅維生素D的狀態(tài)得到改善,TNF-α、IL-6、hsCRP、血清淀粉樣蛋白A(SAA)和IL-10等反應(yīng)炎癥狀態(tài)的因子也得以下降[39]。在不久的將來,補(bǔ)充維生素D或可成為改善糖尿病預(yù)后的重要治療手段。
2.2 骨鈣素參與機(jī)體糖代謝調(diào)節(jié)
骨鈣素是骨形成過程中由成骨細(xì)胞特異性合成的非膠原蛋白,是反映骨轉(zhuǎn)換率的一個(gè)指標(biāo)。人們首先在研究大鼠能量代謝的基因表達(dá)時(shí)發(fā)現(xiàn)自發(fā)型糖尿病大鼠的骨鈣素表達(dá)下降,同時(shí)胰島素受體表達(dá)下降[40]。進(jìn)一步研究表明敲除骨鈣素基因的小鼠表現(xiàn)出肥胖和糖耐量減低[21],由此說明骨鈣素可以促進(jìn)胰島素釋放、提高胰島素敏感性、促進(jìn)胰島細(xì)胞的增殖和分泌從而阻止實(shí)驗(yàn)動(dòng)物肥胖和糖尿病進(jìn)展。
骨鈣素參與調(diào)節(jié)機(jī)體糖代謝的具體過程可能有Esp基因參與其中。Esp基因是由成骨細(xì)胞和支持細(xì)胞表達(dá)的基因,它通過編碼受體樣蛋白質(zhì)酪氨酸磷酸酶(OST-PTP)來調(diào)控骨鈣素的羧化程度。研究發(fā)現(xiàn)敲除Esp基因的小鼠胰島β細(xì)胞增殖增加,胰島素釋放和敏感性增加,進(jìn)而引起高胰島素血癥和低血糖,由此說明,Esp基因編碼的OST-PTP可通過調(diào)控骨鈣素的羧化程度來影響糖代謝,提高胰島素的含量和敏感性。進(jìn)一步動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),局部破壞小鼠的成骨細(xì)胞同樣可以引起低胰島素血癥、高血糖、葡萄糖不耐受和胰島素抵抗[41]。而給小鼠補(bǔ)充骨鈣素后,葡萄糖不耐受獲得改善,并恢復(fù)到正常的血糖和胰島素水平,可見成骨細(xì)胞分泌的骨鈣素對維持葡萄糖穩(wěn)態(tài)至關(guān)重要。
目前骨鈣素調(diào)節(jié)糖代謝的具體分子機(jī)制尚未明確。有學(xué)者發(fā)現(xiàn)2型糖尿病患者血清骨鈣素含量與脂聯(lián)素呈明顯正相關(guān),進(jìn)而猜測,骨鈣素對血糖的調(diào)節(jié)可能是誘導(dǎo)分泌脂聯(lián)素來實(shí)現(xiàn)的[42]。也有學(xué)者認(rèn)為,在小鼠體內(nèi)未羧化的骨鈣素可以促進(jìn)胰高血糖素樣肽-1(GLP-1)從腸道釋放,而未羧化骨鈣素對胰島素釋放的刺激作用很大程度上受GLP-1調(diào)節(jié)[43]。還有學(xué)者認(rèn)為骨鈣素是通過NF-κB信號通路來減弱內(nèi)質(zhì)網(wǎng)應(yīng)激,修復(fù)受損的胰島素敏感性[44]。還有學(xué)者認(rèn)為骨鈣素是通過直接提高脂肪細(xì)胞和肌細(xì)胞的葡萄糖運(yùn)輸來提高胰島素的敏感性[45]。眾多機(jī)制中有關(guān)G蛋白偶聯(lián)受體C家族6組A(GPRC6A)的研究進(jìn)行的較為深入,認(rèn)為骨鈣素對糖代謝的調(diào)節(jié)過程中GPRC6A是關(guān)鍵環(huán)節(jié)[46-49]。GPRC6A是一種陽離子和氨基酸敏感受體,也是G蛋白偶聯(lián)受體,它表達(dá)于肝臟、骨骼肌、胰島β細(xì)胞等多種器官,敲除GPRC6A基因的小鼠可以表現(xiàn)與骨鈣素基因敲除小鼠同樣的癥狀,葡萄糖不耐受和胰島素抵抗,因此,或許骨鈣素是通過GPRC6A的作用來進(jìn)行血糖調(diào)節(jié)。但有學(xué)者認(rèn)為,由于物族差異,人體中骨鈣素對糖代謝的調(diào)節(jié)并沒有像在小鼠體內(nèi)一樣特異[50]。還需要進(jìn)一步深入研究骨鈣素對人體糖代謝的調(diào)節(jié)作用。
3 總結(jié)與展望
一方面,臨床上糖代謝異常和骨代謝異常合并發(fā)生十分常見,而FRAX等使用較為廣泛的骨折風(fēng)險(xiǎn)評估工具只將骨密度放在諸多風(fēng)險(xiǎn)評估因素的首要地位。2型糖尿病患者在骨密度未發(fā)生明顯減低甚至有所升高的情況下骨折風(fēng)險(xiǎn)卻明顯升高,提示患者骨骼的細(xì)微結(jié)構(gòu)和質(zhì)量在骨折發(fā)生的風(fēng)險(xiǎn)評估中同樣處于重要地位。盡早發(fā)現(xiàn)能夠靈敏反映骨骼細(xì)微結(jié)構(gòu)和質(zhì)量的檢驗(yàn)指標(biāo)或檢查手段將有助于控制糖代謝異常患者的骨折風(fēng)險(xiǎn)。另一方面,現(xiàn)已發(fā)現(xiàn)維生素D和骨鈣素及其上下游信號分子在機(jī)體糖代謝途徑的不同環(huán)節(jié)中均可發(fā)揮重要的調(diào)節(jié)作用。進(jìn)一步揭示骨代謝途徑中的活性分子調(diào)節(jié)機(jī)體糖代謝水平的具體環(huán)節(jié)可為明確糖尿病等糖代謝異常疾病的發(fā)病機(jī)制提供理論依據(jù),進(jìn)而輔助臨床尋找更為科學(xué)合理的治療方案。
[1]Vestergaard P.Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis.Osteoporos Int,2007,18(4):427-444.
[2]Shah V N,Shah C S,Snell-Bergeon J K.Type 1 diabetes and risk of fracture:meta-analysis and review of the literature.Diabet Med,2015,32(9):1134-1142.
[3]Rathmann W,Kostev K.Fracture risk in patients with newly diagnosed type 2 diabetes:a retrospective database analysis in primary care.J Diabetes Complications,2015,29(6):766-770.
[4]Dost A,Rohrer T,F(xiàn)ussenegger J,et al.Bone maturation in 1788 children and adolescents with diabetes mellitus type 1.J Pediatr Endocrinol Metab,2010,23(9):891-898.
[5]Pan H,Wu N,Yang T,et al.Association between bone mineral density and type 1 diabetes mellitus:a meta-analysis of crosssectional studies.Diabetes Metab Res Rev,2014,30(7):531-542.
[6]Shu A,Yin M T,Stein E,et al.Bone structure and turnover in type 2 diabetes mellitus.Osteoporos Int,2012,23(2):635-641.
[7]Siddapur P R,Patil A B,Borde V S.Comparison of bone mineral density,t-scores and serum zinc between diabetic and non diabetic postmenopausal women with osteoporosis.J Lab Physicians,2015,7(1):43-48.
[8]Yamamoto M.Insights into bone fragility in diabetes:the crucial role of bone quality on skeletal strength.Endocr J,2015,62(4):299-308.
[9]Starup-Linde J,Eriksen S A,Lykkeboe S,et al.Biochemical markers of bone turnover in diabetes patients--a meta-analysis,and a methodological study on the effects of glucose on bone markers.Osteoporos Int,2014,25(6):1697-1708.
[10]Ma X Y,Chen F Q,Hong H,et al.The relationship between serum osteocalcin concentration and glucose and lipid metabolism in patients with type 2 diabetes mellitus-the role of osteocalcin in energy metabolism.Ann Nutr Metab,2015,66(2-3):110-116.
[11]Kanazawa I,Yamaguchi T,Tada Y,et al.Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes.Bone,2011,48(4):720-725.
[12]Rui X,Xu B,Su J,et al.Differential pattern for regulating insulin secretion,insulin resistance,and lipid metabolism by osteocalcin in male and female T2DM patients.Med Sci Monit,2014,20:711-719.
[13]Yamamoto M,Yamaguchi T,Yamauchi M,et al.Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes.J Clin Endocrinol Metab,2008,93(3):1013-1019.
[14]Neumann T,Lodes S,Kastner B,et al.High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control.Osteoporos Int,2014,25(5):1527-1533.
[15]Schwartz AV,Garnero P,Hillier TA,et al.Pentosidine and increased fracture risk in older adults with type 2 diabetes.J Clin Endocrinol Metab,2009,94(7):2380-2386.
[16]Yun-Kai L,Hui W,Xin-Wei Z,et al.The polymorphism of Insulin-like growth factor-I(IGF-I)is related to osteoporosis and bone mineral density in postmenopausal population.Pak J Med Sci,2014,30(1):131-135.
[17]Sheng M H,Lau K H,Baylink D J.Role of osteocyte-derived insulin-like growth factor I in developmental growth,modeling,remodeling,and regeneration of the bone.J Bone Metab,2014,21(1):41-54.
[18]Aneke-Nash C S,Parrinello C M,Rajpathak S N,et al.Changes in insulin-like growth factor-I and its binding proteins are associated with diabetes mellitus in older adults.J Am Geriatr Soc,2015,63(5):902-909.
[19]Ardawi M S,Akhbar D H,Alshaikh A,et al.Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes.Bone,2013,56(2):355-362.
[20]Harada S,Rodan GA.Control of osteoblast function and regulation of bone mass.Nature,2003,423(6937):349-355.
[21]Lee N K,Sowa H,Hinoi E,et al.Endocrine regulation of energy metabolism by the skeleton.Cell,2007,130(3):456-469.
[22]van de Peppel J,van Leeuwen J P.Vitamin D and gene networks in human osteoblasts.Front Physiol,2014,5:137.
[23]Haussler M R,Haussler C A,Bartik L,et al.Vitamin D receptor:molecular signaling and actions of nutritional ligands in disease prevention.Nutr Rev,2008,66(10 Suppl 2):S98-112.
[24]Qin W H,Wang H X,Qiu J L,et al.A meta-analysis of association of vitamin D receptor BsmI gene polymorphism with therisk of type 1 diabetes mellitus.J Recept Signal Transduct Res,2014,34(5):372-377.
[25]Wang G,Zhang Q,Xu N,et al.Associations between two polymorphisms(FokI and BsmI)of vitamin D receptor gene and type 1 diabetes mellitus in Asian population:a meta-analysis.PLoS One,2014,9(3):e89325.
[26]Abd-Allah S H,Pasha H F,Hagrass H A,et al.Vitamin D status and vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Egyptian children.Gene,2014,536(2):430-434.
[27]Zhang H,Wang J,Yi B,et al.BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population.Gene,2012,495(2):183-188.
[28]Yokoyama K,Nakashima A,Urashima M,et al.Interactions between serum vitamin D levels and vitamin D receptor gene FokI polymorphisms for renal function in patients with type 2 diabetes.PLoS One,2012,7(12):e51171.
[29]Veldman C M,Cantorna M T,DeLuca H F.Expression of 1,25-dihydroxyvitamin D(3)receptor in the immune system.Arch Biochem Biophys,2000,374(2):334-338.
[30]Mathieu C,Badenhoop K.Vitamin D and type 1 diabetes mellitus:state of the art.Trends Endocrinol Metab,2005,16(6):261-266.
[31]Sung C C,Liao M T,Lu K C,et al.Role of vitamin D in insulin resistance.J Biomed Biotechnol,2012,2012:634195.
[32]Takiishi T,Ding L,Baeke F,et al.Dietary supplementation with high doses of regular vitamin D3 safely reduces diabetes incidence in NOD mice when given early and long term.Diabetes,2014,63(6):2026-2036.
[33]Tabesh M,Azadbakht L,F(xiàn)aghihimani E,et al.Effects of calciumvitamin D co-supplementation on metabolic profiles in vitamin D insufficient people with type 2 diabetes:a randomised controlled clinical trial.Diabetologia,2014,57(10):2038-2047.
[34]Green R T,Gambhir K K,Nunlee-Bland G,et al.Maintenance of long-term adequate levels of vitamin d lowers HbA1c in African American patients with type 2 diabetes.Ethn Dis,2014,24(3):335-341.
[35]Strobel F,Reusch J,Penna-Martinez M,et al.Effect of a randomised controlled vitamin D trial on insulin resistance and glucose metabolism in patients with type 2 diabetes mellitus.Horm Metab Res,2014,46(1):54-58.
[36]Jehle S,Lardi A,F(xiàn)elix B,et al.Effect of large doses of parenteral vitamin D on glycaemic control and calcium/phosphate metabolism in patients with stable type 2 diabetes mellitus:a randomised,placebo-controlled,prospective pilot study.Swiss Med Wkly,2014,144:w13942.
[37]DuttaD,MondalSA,ChoudhuriS,etal.Vitamin-D supplementation in prediabetes reduced progression to type 2 diabetes and was associated with decreased insulin resistance and systemic inflammation:an open label randomized prospective study from Eastern India.Diabetes Res Clin Pract,2014,103(3):e18-23.
[38]Ren Z,Li W,Zhao Q,et al.The impact of 1,25-dihydroxy vitamin D3 on the expressions of vascular endothelial growth factor and transforming growth factor-beta(1)in the retinas of rats with diabetes.Diabetes Res Clin Pract,2012,98(3):474-480.
[39]Shab-Bidar S,Neyestani TR,Djazayery A,et al.Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes.Diabetes Metab Res Rev,2012,28(5):424-430.
[40]Perez-Castrillon J L,Riancho J A,de Luis D,et al.Expression of genes related to energy metabolism(osteocalcin,F(xiàn)OXO1,insulin receptor,and SOST)in bone cells of Goto-Kakizaki rats and response to bariatric surgery.Surg Obes Relat Dis,2014,10(2):299-303.
[41]Yoshikawa Y,Kode A,Xu L,et al.Genetic evidence points to an osteocalcin-independentinfluenceofosteoblastsonenergy metabolism.J Bone Miner Res,2011,26(9):2012-2025.
[42]Choudhury A B,Sarkar P D,Sakalley D K,et al.Role of adiponectin in mediating the association of osteocalcin with insulin resistance and type 2 diabetes:a cross sectional study in pre-and post-menopausal women.Arch Physiol Biochem,2014,120(2):73-79.
[43]Mizokami A,Yasutake Y,Gao J,et al.Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice.PLoS One,2013,8(2):e57375.
[44]Zhou B,Li H,Xu L,et al.Osteocalcin reverses endoplasmic reticulum stress and improves impaired insulin sensitivity secondary to diet-induced obesity through nuclear factor-kappaB signaling pathway.Endocrinology,2013,154(3):1055-1068.
[45]Hill H S,Grams J,Walton R G,et al.Carboxylated and uncarboxylated forms of osteocalcin directly modulate the glucose transport system and inflammation in adipocytes.Horm Metab Res,2014,46(5):341-347.
[46]Wei J,Hanna T,Suda N,et al.Osteocalcin promotes beta-cell proliferation during development and adulthood through Gprc6a.Diabetes,2014,63(3):1021-1031.
[47]Pi M,Chen L,Huang M Z,et al.GPRC6A null mice exhibit osteopenia,feminization and metabolic syndrome.PLoS One,2008,3(12):e3858.
[48]Pi M,Wu Y,Quarles L,D.GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo.J Bone Miner Res,2011,26(7):1680-1683.
[49]Oury F,Sumara G,Sumara O,et al.Endocrine regulation of male fertility by the skeleton.Cell,2011,144(5):796-809.
[50]DiGirolamo D J,Clemens T L,Kousteni S.The skeleton as an endocrine organ.Nat Rev Rheumatol,2012,8(11):674-683.
(潘子昂編輯)
Research Status and Progress of Interaction Between Bone and Glucose Metabolism
TIAN Lu,LI Dan,JING Hua
(Department of Clinical Laboratory,The 306thHospital of PLA,Beijing 100101,China)
The risk of bone fracture is significantly increased in patients with diabetes mellitus,and the abnormalities of bone metabolism are also accompanied by glucose intolerance and insulin resistance.In recent years,many studies show that there is a complex interaction between bone and glucose metabolism.This paper summarized the research status and progress of interaction between bone and glucose metabolism.
Bone metabolism; Glucose metabolism; interaction
10.11748/bjmy.issn.1006-1703.2016.03.030
2015-09-28;
2015-11-16
敬華。E-mail:jinghua6379@163.com