陳禮頻 杜新偉 汪 偉 曹開(kāi)江 任志超
(國(guó)網(wǎng)四川省電力公司經(jīng)濟(jì)技術(shù)研究院 成都 610041)
考慮故障電阻隨機(jī)不確定性的電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置
陳禮頻 杜新偉 汪 偉 曹開(kāi)江 任志超
(國(guó)網(wǎng)四川省電力公司經(jīng)濟(jì)技術(shù)研究院 成都 610041)
電力系統(tǒng)元件發(fā)生短路故障時(shí),故障電阻客觀存在且具有隨機(jī)不確定特性。為提高電壓暫降監(jiān)測(cè)點(diǎn)配置方案在不同故障電阻條件下的工程適用性,需將故障電阻這一關(guān)鍵參數(shù)引入到監(jiān)測(cè)點(diǎn)優(yōu)化配置模型中。首先基于網(wǎng)絡(luò)參數(shù)和短路計(jì)算構(gòu)建臨界故障電阻矩陣,在此基礎(chǔ)上以監(jiān)測(cè)點(diǎn)數(shù)最少為目標(biāo),以各故障點(diǎn)短路時(shí)最小電壓暫降可觀率為約束,建立考慮故障電阻隨機(jī)不確定性的監(jiān)測(cè)點(diǎn)優(yōu)化配置模型,并用遺傳算法求解最優(yōu)配置方案。應(yīng)用該方法對(duì)IEEE 30節(jié)點(diǎn)測(cè)試系統(tǒng)進(jìn)行了仿真分析,結(jié)果表明該方法能有效監(jiān)測(cè)非金屬性短路故障引起的電壓暫降,相比傳統(tǒng)方法更具工程實(shí)用價(jià)值。
電壓暫降 故障電阻 監(jiān)測(cè)點(diǎn)配置 臨界故障電阻矩陣 電壓暫降可觀率
隨著高新科技的不斷發(fā)展,大量對(duì)電壓暫降極為敏感的精密設(shè)備被廣泛應(yīng)用于各行各業(yè),為人們生產(chǎn)生活帶來(lái)了極大便利。與此同時(shí),由電壓暫降導(dǎo)致的經(jīng)濟(jì)損失和用戶(hù)抱怨等問(wèn)題也日益凸顯,引起了國(guó)內(nèi)外學(xué)者廣泛關(guān)注[1-5]。而科學(xué)分析評(píng)估系統(tǒng)電壓暫降水平,是準(zhǔn)確反映電力用戶(hù)受擾動(dòng)程度及合理制定電壓暫降治理措施的必要前提[6]。
現(xiàn)有電壓暫降評(píng)估法主要分為隨機(jī)評(píng)估法和實(shí)測(cè)統(tǒng)計(jì)法。隨機(jī)評(píng)估法具有較好的時(shí)空延展性[7-9],但由于評(píng)估模型中許多具有隨機(jī)不確定特性的參數(shù)往往根據(jù)經(jīng)驗(yàn)主觀設(shè)定,因此無(wú)法保證評(píng)估結(jié)果的準(zhǔn)確性。實(shí)測(cè)統(tǒng)計(jì)法從構(gòu)建電壓暫降監(jiān)測(cè)網(wǎng)絡(luò)的角度出發(fā),基于系統(tǒng)元件參數(shù)和網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),并結(jié)合電壓暫降產(chǎn)生和傳播機(jī)理,以最少的監(jiān)測(cè)點(diǎn)構(gòu)建覆蓋電網(wǎng)的監(jiān)測(cè)網(wǎng)絡(luò)。與隨機(jī)評(píng)估法相比,實(shí)測(cè)統(tǒng)計(jì)法基于監(jiān)測(cè)裝置記錄電壓暫降特征,能保證評(píng)估結(jié)果的準(zhǔn)確性,具有更好的工程實(shí)用價(jià)值。
現(xiàn)有電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置方法較多,但其假設(shè)條件往往過(guò)于理想:文獻(xiàn)[10-13]基于監(jiān)測(cè)點(diǎn)可觀域原理,通過(guò)構(gòu)建電壓暫降可觀性矩陣配置監(jiān)測(cè)點(diǎn),但由于建模時(shí)故障電阻值均被假設(shè)為0,當(dāng)系統(tǒng)發(fā)生非金屬性短路時(shí)其工程適用性必然下降;文獻(xiàn)[14-17]基于故障定位原理,以全網(wǎng)電壓暫降擾動(dòng)源可觀為目標(biāo)進(jìn)行監(jiān)測(cè)點(diǎn)優(yōu)化配置,但同樣存在故障電阻值被假設(shè)為0的弊端;文獻(xiàn)[18]雖然在建模時(shí)考慮了故障電阻的存在,但未考慮在實(shí)際工程應(yīng)用中監(jiān)測(cè)裝置由于存儲(chǔ)空間有限,只會(huì)記錄幅值低于設(shè)定閾值的電壓暫降事件,而不可能對(duì)電壓幅值一直錄波的客觀事實(shí)。
本文充分考慮了故障電阻的隨機(jī)不確定特性和監(jiān)測(cè)裝置實(shí)際工作原理,提出更具工程適用性的電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置模型。首先基于電網(wǎng)參數(shù)和短路計(jì)算構(gòu)建臨界故障電阻矩陣,反映各故障點(diǎn)與電網(wǎng)節(jié)點(diǎn)之間對(duì)應(yīng)的臨界故障電阻值。然后基于臨界故障電阻矩陣,建立該優(yōu)化問(wèn)題的不等式約束。最后采用遺傳算法,求解得出監(jiān)測(cè)點(diǎn)優(yōu)化配置方案。對(duì)IEEE 30節(jié)點(diǎn)測(cè)試系統(tǒng)的仿真結(jié)果表明,本文方法正確有效,相比傳統(tǒng)方法更具完備性和工程適用性。
電網(wǎng)結(jié)構(gòu)示意圖如圖1所示。假設(shè)f為線(xiàn)路i-j上的短路故障點(diǎn),l為故障點(diǎn)f與節(jié)點(diǎn)i之間距離,m為觀測(cè)節(jié)點(diǎn),則f的自阻抗以及f與m之間互阻抗分別為
(1)
(2)
圖1 電網(wǎng)結(jié)構(gòu)示意圖Fig.1 Structure of power network
設(shè)各節(jié)點(diǎn)的故障前電壓均為1(pu),旋轉(zhuǎn)因子α=ej120°, 故障電阻值為rf。 當(dāng)圖1中f處發(fā)生不同類(lèi)型短路故障時(shí),節(jié)點(diǎn)m處各相電壓幅值分別如式(3)~式(6)所示[19]。
A相接地短路故障
(3)
BC相間短路故障
(4)
BC兩相接地短路故障
(5)
三相短路故障
(6)
2.1 傳統(tǒng)模型實(shí)現(xiàn)原理
監(jiān)測(cè)點(diǎn)可觀域(Monitor Reach Area,MRA),是指能觸發(fā)監(jiān)測(cè)裝置記錄電壓暫降事件的短路故障發(fā)生區(qū)域[10-13]。傳統(tǒng)監(jiān)測(cè)點(diǎn)優(yōu)化配置模型基于MRA原理,并假設(shè)所有短路故障處故障電阻值均為0,將發(fā)生短路故障時(shí)節(jié)點(diǎn)電壓與設(shè)定的電壓閾值進(jìn)行比較,構(gòu)建電壓暫降可觀性矩陣
(8)
定義b維監(jiān)測(cè)位置決策向量為
(9)
D中任意元素dj取值為
(10)
為確保全網(wǎng)任意位置發(fā)生短路故障時(shí),電壓暫降事件均能被監(jiān)測(cè)裝置記錄,則對(duì)于Pt中任意第i行元素,決策向量D均須滿(mǎn)足不等式約束
(11)
以監(jiān)測(cè)點(diǎn)數(shù)量最少為目標(biāo)、式(11)為不等式約束,對(duì)該0-1整數(shù)線(xiàn)性規(guī)劃問(wèn)題進(jìn)行求解,便能得出監(jiān)測(cè)點(diǎn)優(yōu)化配置方案。
綜上所述,傳統(tǒng)電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置模型,可概括為如圖2所示以最少的監(jiān)測(cè)點(diǎn)實(shí)現(xiàn)其MRA聯(lián)合覆蓋整個(gè)電網(wǎng)。
圖2 傳統(tǒng)未考慮故障電阻的監(jiān)測(cè)點(diǎn)配置原理Fig.2 Principle of traditional method without considering the influence of fault resistance
2.2 傳統(tǒng)模型的不足
電力系統(tǒng)元件發(fā)生短路故障時(shí),故障電阻廣泛客觀存在,且其值受短路介質(zhì)類(lèi)型、相間距離以及大地導(dǎo)電率等因素影響,常呈現(xiàn)出較強(qiáng)的隨機(jī)不確定特性[20]。由式(7)~式(11)所示傳統(tǒng)模型可知,基于MRA原理進(jìn)行監(jiān)測(cè)點(diǎn)優(yōu)化配置的假設(shè)前提是故障電阻必須為0,因此無(wú)法客觀反映故障電阻的隨機(jī)不確定特性對(duì)電壓暫降幅值的影響。
故障電阻值對(duì)電壓暫降幅值影響顯著,故障電阻值越大,各節(jié)點(diǎn)對(duì)應(yīng)MRA范圍越小。若基于傳統(tǒng)模型在全網(wǎng)配置監(jiān)測(cè)點(diǎn),當(dāng)電網(wǎng)中發(fā)生非金屬性短路故障時(shí),圖2中節(jié)點(diǎn)M、N的MRA范圍相應(yīng)縮小,將會(huì)出現(xiàn)圖3所示的監(jiān)測(cè)盲區(qū)。即在監(jiān)測(cè)盲區(qū)中發(fā)生非金屬性短路故障時(shí),節(jié)點(diǎn)A處電壓雖已低于閾值,但節(jié)點(diǎn)M、N處電壓仍高于閾值,因此節(jié)點(diǎn)M、N處監(jiān)測(cè)裝置無(wú)法記錄電壓暫降事件。
圖3 采用傳統(tǒng)監(jiān)測(cè)點(diǎn)配置方法出現(xiàn)監(jiān)測(cè)盲區(qū)示意圖Fig.3 Blind area of placement scheme determined by traditional method
由此可見(jiàn),傳統(tǒng)監(jiān)測(cè)點(diǎn)優(yōu)化配置模型由于未引入故障電阻這一關(guān)鍵變量,必將導(dǎo)致出現(xiàn)大量監(jiān)測(cè)盲區(qū)。
針對(duì)傳統(tǒng)模型存在的不足,本文充分考慮故障電阻的隨機(jī)不確定特性,提出更具有工程適用性的配置模型,以進(jìn)一步完善電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置模型體系。
3.1 臨界故障電阻矩陣
對(duì)于系統(tǒng)中的某一短路故障點(diǎn),可根據(jù)式(3)~式(6)反解求出與電壓閾值Vth對(duì)應(yīng)的各類(lèi)故障臨界故障電阻。對(duì)于非對(duì)稱(chēng)性短路故障,取三相臨界故障電阻中的最大值,作為該故障點(diǎn)的臨界故障電阻值。
定義臨界故障電阻矩陣為
(12)
3.2 監(jiān)測(cè)點(diǎn)優(yōu)化配置模型
同樣采用式(9)所示D為決策向量,與D對(duì)應(yīng)的決策方案臨界故障電阻矩陣為
(13)
(14)
(15)
(16)
若用β表示電壓暫降可觀率閾值,為保證全網(wǎng)任意位置發(fā)生任意類(lèi)型短路故障時(shí)電壓暫降可觀率均大于β,則對(duì)于任意故障點(diǎn)i,D中元素均應(yīng)滿(mǎn)足不等式約束
(17)
考慮到投資及運(yùn)維成本的經(jīng)濟(jì)性,應(yīng)使監(jiān)測(cè)點(diǎn)數(shù)量最少,因此目標(biāo)函數(shù)為
(18)
式(17)、式(18)構(gòu)成一個(gè)含非線(xiàn)性約束的0-1整數(shù)線(xiàn)性規(guī)劃問(wèn)題,本文采用遺傳算法對(duì)該規(guī)劃問(wèn)題進(jìn)行求解。
為提高本模型應(yīng)用于大規(guī)模電網(wǎng)時(shí)遺傳算法的全局尋優(yōu)能力,采用自適應(yīng)遺傳算法求解監(jiān)測(cè)點(diǎn)最優(yōu)配置方案[21]。自適應(yīng)遺傳算法的交叉概率Pc和變異概率Pm計(jì)算公式為
(19)
(20)
式中,favg和fmin分別為種群中各個(gè)體對(duì)應(yīng)監(jiān)測(cè)點(diǎn)數(shù)量的平均值和最小值;fc為待交叉兩個(gè)體對(duì)應(yīng)監(jiān)測(cè)點(diǎn)數(shù)量的較小值;fm為待變異個(gè)體對(duì)應(yīng)監(jiān)測(cè)點(diǎn)數(shù)量;常系數(shù)k1 交叉概率和變異概率通過(guò)上述方式自適應(yīng)改變,對(duì)于所需監(jiān)測(cè)點(diǎn)數(shù)較少的個(gè)體,交叉概率和變異概率相應(yīng)減小,使該優(yōu)秀個(gè)體更易被保護(hù)進(jìn)入下一代。而對(duì)于所需監(jiān)測(cè)點(diǎn)數(shù)較多的個(gè)體,交叉概率和變異概率相應(yīng)增大,則該個(gè)體更易被淘汰。 綜上所述,考慮故障電阻隨機(jī)不確定性的電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置模型實(shí)現(xiàn)流程如圖4所示。 圖4 考慮故障電阻隨機(jī)不確定性的監(jiān)測(cè)點(diǎn)優(yōu)化配置流程Fig.4 Flow chart of optimal voltage sag monitors placement considering randomness of fault resistance 4.1 本模型正確性驗(yàn)證 應(yīng)用本文優(yōu)化配置模型,對(duì)圖5所示IEEE 30節(jié)點(diǎn)測(cè)試系統(tǒng)進(jìn)行仿真。假設(shè)故障電阻值服從正態(tài)分布[22],且在區(qū)間(0,4) Ω內(nèi)滿(mǎn)足3σ準(zhǔn)則[23],即故障電阻均值為2 Ω,標(biāo)準(zhǔn)差σ為2/3。在工程應(yīng)用中可根據(jù)實(shí)際情況設(shè)定故障電阻隨機(jī)分布特性。此外,Vth取0.9 (pu),自適應(yīng)遺傳算法種群規(guī)模設(shè)定為300,k1~k4分別取0.5、0.8、0.02和0.05,在每條線(xiàn)路上等間距設(shè)置10個(gè)故障點(diǎn)。經(jīng)仿真得出不同電壓暫降可觀率閾值β對(duì)應(yīng)的監(jiān)測(cè)點(diǎn)配置方案見(jiàn)表1。 圖5 IEEE 30節(jié)點(diǎn)測(cè)試系統(tǒng)Fig.5 IEEE 30-bus test system 方案β監(jiān)測(cè)點(diǎn)數(shù)量監(jiān)測(cè)點(diǎn)位置10.972,9,11,13,14,17,2620.865,10,11,13,14,2930.767,11,13,15,17,2940.657,9,11,12,2550.545,11,12,2460.447,9,15,2570.345,9,16,2980.247,11,19,2990.122,24 由表1中仿真結(jié)果可知,β值越大,即對(duì)最小電壓暫降可觀率的要求越高,所需監(jiān)測(cè)點(diǎn)數(shù)量越多。在實(shí)際工程應(yīng)用中,可結(jié)合經(jīng)濟(jì)成本限額或可觀率要求設(shè)定對(duì)應(yīng)β值,以構(gòu)建經(jīng)濟(jì)實(shí)用的電網(wǎng)級(jí)電壓暫降監(jiān)測(cè)系統(tǒng)。 為驗(yàn)證本模型的正確性,按表1所示方案對(duì)測(cè)試系統(tǒng)配置監(jiān)測(cè)點(diǎn),采用蒙特卡洛法在全網(wǎng)隨機(jī)模擬不同位置、類(lèi)型和故障電阻值的短路故障[24]。經(jīng)過(guò)100 000次隨機(jī)模擬仿真,統(tǒng)計(jì)得出表1中各配置方案對(duì)應(yīng)電壓暫降可觀率最小的故障點(diǎn)信息見(jiàn)表2。 表2 隨機(jī)模擬得出電壓暫降可觀率最小的故障點(diǎn)信息 Tab.2 Information of faults with minimal observability rate of voltage sags 方案β電壓暫降可觀率最小的故障點(diǎn)信息線(xiàn)路起—止點(diǎn)故障位置故障類(lèi)型電壓暫降可觀率10.912—160.3三相短路0.908020.89—110.5三相短路0.851130.79—110.4三相短路0.751540.612—130.9兩相接地短路0.637950.51—20.3單相接地短路0.575160.412—130.9兩相接地短路0.449770.312—130.9兩相接地短路0.307980.212—130.9兩相接地短路0.200290.19—110.9兩相接地短路0.1366 由表2中隨機(jī)模擬結(jié)果可知,應(yīng)用本模型進(jìn)行監(jiān)測(cè)點(diǎn)優(yōu)化配置,能保證全網(wǎng)任意位置發(fā)生不同類(lèi)型非金屬性短路故障時(shí),監(jiān)測(cè)網(wǎng)絡(luò)捕捉到電壓暫降事件的概率均大于對(duì)應(yīng)β,由此驗(yàn)證了本模型的正確性。 4.2 與傳統(tǒng)模型比較 采用傳統(tǒng)監(jiān)測(cè)點(diǎn)優(yōu)化配置模型,即假設(shè)故障電阻值均為0,所得配置方案為(5,30)。經(jīng)隨機(jī)模擬得出該配置方案對(duì)應(yīng)的最小電壓暫降可觀率僅為0.015 1,明顯低于表2中各方案對(duì)應(yīng)最小電壓暫降可觀率。由此可見(jiàn),采用傳統(tǒng)模型所得配置方案,在電網(wǎng)發(fā)生非金屬性短路故障時(shí),對(duì)電壓暫降的監(jiān)測(cè)遺漏現(xiàn)象會(huì)非常嚴(yán)重。本模型充分考慮了故障電阻客觀存在的事實(shí),保證了全網(wǎng)任意位置發(fā)生短路故障引起電壓暫降的可觀率,相比傳統(tǒng)方法更完備實(shí)用。 經(jīng)隨機(jī)模擬統(tǒng)計(jì)得出本模型與傳統(tǒng)模型所得配置方案的全網(wǎng)電壓暫降可觀率見(jiàn)表3。 表3 不同配置方案的全網(wǎng)電壓暫降可觀率 Tab.3 Observability rate of voltage sags in whole network for different monitor schemes 方法β監(jiān)測(cè)點(diǎn)位置全網(wǎng)電壓暫降可觀率本文方法0.92,9,11,13,14,17,260.99860.85,10,11,13,14,290.99780.77,11,13,15,17,290.99550.67,9,11,12,250.98470.55,11,12,240.99100.47,9,15,250.99070.35,9,16,290.97990.27,11,19,290.98370.12,240.9706傳統(tǒng)方法—5,300.7891 由表3可知,采用本模型所得配置方案的全網(wǎng)電壓暫降可觀率均處于較高水平,而采用傳統(tǒng)模型時(shí)全網(wǎng)電壓暫降可觀率僅為0.789 1,明顯偏低。傳統(tǒng)模型在建立監(jiān)測(cè)點(diǎn)優(yōu)化配置模型時(shí),由于未考慮故障電阻的隨機(jī)不確定特性,導(dǎo)致電壓暫降幅值特征的刻畫(huà)相比實(shí)際情況存在較大偏差。當(dāng)系統(tǒng)發(fā)生非金屬性短路故障時(shí),必將產(chǎn)生監(jiān)測(cè)盲區(qū)。本文方法將故障電阻及其隨機(jī)不確定特性引入優(yōu)化配置模型,對(duì)電壓暫降幅值特征的刻畫(huà)更符合實(shí)際,因此相比傳統(tǒng)方法具有更好的工程適用性。 1)實(shí)際電網(wǎng)中發(fā)生短路故障時(shí),故障電阻廣泛客觀存在。本文充分考慮了故障電阻的隨機(jī)不確定特性對(duì)電壓暫降幅值的影響,基于臨界故障電阻矩陣將故障電阻引入到監(jiān)測(cè)點(diǎn)優(yōu)化配置模型中,有效彌補(bǔ)了傳統(tǒng)模型中未考慮故障電阻存在的不足。 2)本文方法物理邏輯清晰,可操作性強(qiáng)。對(duì)IEEE 30節(jié)點(diǎn)測(cè)試系統(tǒng)的仿真結(jié)果表明,本文方法正確、有效,相比傳統(tǒng)方法具有更好的工程實(shí)用價(jià)值。 [1] Chan J Y,Milanovic J V,Delahunty A.Risk-based assessment of financial losses due to voltage sag[J].IEEE Transactions on Power Delivery,2011,26(2):492-500. [2] 劉旭娜,肖先勇,劉陽(yáng),等.工業(yè)過(guò)程電壓暫降風(fēng)險(xiǎn)等級(jí)層次化多級(jí)模糊綜合評(píng)估[J].電網(wǎng)技術(shù),2014,38(7):1984-1988. Liu Xuna,Xiao Xianyong,Liu Yang,et al.Hierarchical multi-level fuzzy comprehensive evaluation on risk level of voltage sag during industrial process[J].Power System Technology,2014,38(7):1984-1988. [3] 孔祥雨,徐永海,陶順.基于一種電壓暫降新型描述的敏感設(shè)備免疫能力評(píng)估[J].電工技術(shù)學(xué)報(bào),2015,30(3):165-171. Kong Xiangyu,Xu Yonghai,Tao Shun.Sensitive equipment immunity assessment based on a new voltage sag description[J].Transactions of China Electrotechnical Society,2015,30(3):165-171. [4] 徐永海,蘭巧倩,洪旺松.交流接觸器對(duì)電壓暫降敏感度的試驗(yàn)研究[J].電工技術(shù)學(xué)報(bào),2015,30(21):136-146. Xu Yonghai,Lan Qiaoqian,Hong Wangsong.Experimental research on AC contactor sensitivity during voltage sags[J].Transactions of China Electrotechnical Society,2015,30(21):136-146. [5] 陶順,周雙亞,肖湘寧,等.基于IEC 61970公共信息模型的電壓凹陷域分析[J],電工技術(shù)學(xué)報(bào),2013,28(9):40-46. Tao Shun,Zhou Shuangya,Xiao Xiangning,et al.Analysis of area of vulnerability based on common information model in IEC61970[J].Transactions of China Electrotechnical Society,2013,28(9):40-46. [6] 徐永海,蘭巧倩,孔祥雨,等.電壓暫降特征值統(tǒng)計(jì)分析及暫降傳播特性[J].電工技術(shù)學(xué)報(bào),2016,31 (11):165-175. Xu Yonghai,Lan Qiaoqian,Kong Xiangyu,et al.Statistical analysis of voltage sag characteristics and research on sag propagation property[J].Transactions of China Electrotechnical Society,2016,31(11):165-175. [7] 李庚銀,楊曉東,周明.復(fù)雜配電網(wǎng)的電壓暫降隨機(jī)預(yù)估方法[J].電工技術(shù)學(xué)報(bào),2009,24(11):134-141. Li Gengyin,Yang Xiaodong,Zhou Ming.Stochastic estimation method of voltage sags in complex distribution systems[J].Transactions of China Electrotechnical Society,2009,24(11):134-141. [8] 徐培棟,肖先勇,汪穎.考慮母線(xiàn)電壓時(shí)變區(qū)間特性的電壓暫降頻次評(píng)估[J].中國(guó)電機(jī)工程學(xué)報(bào),2011,31(10):66-72. Xu Peidong,Xiao Xianyong,Wang Ying.Voltage sags frequency evaluation considering the time-varying interval characteristics of bus voltage[J].Proceedings of the CSEE,2011,31(10):66-72. [9] 陳偉,趙錦蘋(píng).復(fù)雜電網(wǎng)中電壓跌落凹陷域的仿真分析[J].電網(wǎng)技術(shù),2014,38(5):1322-1327. Chen Wei,Zhao Jinping.Simulation analysis on vulnerability area of voltage dip in complex power grid[J].Power System Technology,2014,38(5):1322-1327. [10]Espinosa-juarez E,Hernandez A,Olguin G.An approach based on analytical expressions for optimal location of voltage sags monitors[J].IEEE Transactions on Power Delivery,2009,24(4):2034-2042. [11]Haghbin M,F(xiàn)arjah E,Mazaherifar H.Improved power quality monitor placement using innovative indices[C]//4th Power Electronics,Drive Systems and Technologies Conference,Tehran,Iran,2013:501-509. [12]周超,田立軍.基于粒子群優(yōu)化算法的電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置[J].電工技術(shù)學(xué)報(bào),2014,29(4):181-187. Zhou Chao,Tian Lijun.An optimum allocation method of voltage sag monitoring nodes based on particle swarm optimization algorithm[J].Transactions of China Electrotechnical Society,2014,29(4):181-187. [13]呂偉,田立軍.基于凹陷域分析的電壓暫降監(jiān)測(cè)點(diǎn)優(yōu)化配置[J].電力自動(dòng)化設(shè)備,2012,32(6):45-50. Lü Wei,Tian Lijun.Optimal allocation of voltage sag monitoring based on exposed area analysis[J].Electric Power Automation Equipment,2012,32(6):45-50. [14]陳禮頻,肖先勇,張文海.考慮擾動(dòng)源定位的電壓暫降監(jiān)測(cè)點(diǎn)最優(yōu)配置[J].電力自動(dòng)化設(shè)備,2014,34(2):79-84. Chen Lipin,Xiao Xianyong,Zhang Wenhai.Optimal allocation of voltage sag monitors considering disturbance source locating[J].Electric Power Automation Equipment,2014,34(2):79-84. [15]周超,田立軍,侯燕文,等.基于監(jiān)測(cè)點(diǎn)優(yōu)化配置的電壓暫降故障點(diǎn)定位估計(jì)[J].電力系統(tǒng)自動(dòng)化,2012,36(16):102-107. Zhou Chao,Tian Lijun,Hou Yanwen,et al.Fault location estimation based on optimal voltage sag monitoring program[J].Automation of Electric Power Systems,2012,36(16):102-107. [16]邱玉濤,肖先勇,趙恒,等.滿(mǎn)足電壓暫降與故障位置均可觀的監(jiān)測(cè)裝置二階段配置[J].電網(wǎng)技術(shù),2014,38(11):3166-3172. Qiu Yutao,Xiao Xianyong,Zhao Heng,et al.A placement approach of two-stage monitors making both voltage sag and fault position observable[J].Power System Technology,2014,38(11):3166-3172. [17]譚丹,楊洪耕.基于故障識(shí)別法的電壓暫降監(jiān)測(cè)點(diǎn)的優(yōu)化配置[J].電力系統(tǒng)保護(hù)與控制,2013,41(20):7-12. Tan Dan,Yang Honggeng.An optimum allocation of voltage sag monitor based on fault recognition method[J].Power System Protection and Control,2013,41(20):7-12. [18]Avendano-mora M,Milanovic J V.Monitor placement for reliable estimation of voltage sags in power networks[J].IEEE Transactions on Power Delivery,2012,27(2):936-944. [19]王東旭,樂(lè)健,劉開(kāi)培,等.基于虛擬節(jié)點(diǎn)的復(fù)雜電網(wǎng)電壓跌落隨機(jī)評(píng)估方法[J].電工技術(shù)學(xué)報(bào),2011,26(8):190-197. Wang Dongxu,Le Jian,Liu Kaipei,et al.Stochastic Assessment method of voltage dip in complex power grid based on virtual bus[J].Transactions of China Electrotechnical Society,2011,26(8):190-197. [20]肖先勇,李政光,陳武,等.考慮故障阻抗與多級(jí)變壓器影響的電壓凹陷評(píng)估[J].電力自動(dòng)化設(shè)備,2010,30(2):43-47. Xiao Xianyong,Li Zhengguang,Chen Wu,et al.Voltage sag assessment considering fault impedance and cascaded transformers[J].Electric Power Automation Equipment,2010,30(2):43-47. [21]龔純,王正林.精通MATLAB最優(yōu)化計(jì)算[M].2版.北京:電子工業(yè)出版社,2012:330-333. [22]Martinez J A,Martin-Arnedo J.Voltage sag studies in distribution networks,part II:voltage sag assessment[J].IEEE Transactions on Power Delivery,2006,21(3):1679-1688. [23]盛驟,謝式千,潘承毅.概率論與數(shù)理統(tǒng)計(jì)[M].北京:高等教育出版社,2008:46-49. [24]陳瑞.電壓暫降在配電網(wǎng)中的傳播規(guī)律及仿真評(píng)估研究[D].北京:華北電力大學(xué),2006. Optimal Voltage Sag Monitors Placement Considering Randomness of Fault Resistance Chen Lipin Du Xinwei Wang Wei Cao Kaijiang Ren Zhichao (State Grid Sichuan Economic Research Institute Chengdu 610041 China) When short-circuit fault occurs in a power system,fault resistance frequently existed,and the value of the fault resistance is random due to many factors.In order to effectively monitor voltage sags in the whole network,the variable of fault resistance should be added into optimal model.In the proposed method,matrix of critical fault resistance is established based on the parameters of power network and short circuit calculation,then optimal placement model considering randomness of fault resistances can be built.The constraint in the improved model is the observability rate of voltage sags,and the objective is to minimize the number of monitors placed in the whole network.Based on the optimal model,genetic algorithm is applied to obtain the best placement scheme.The proposed method has been applied to the IEEE 30-bus test system,simulation results show that,voltage sags caused by short-circuits resistances can be effectively monitored based on the improved method.Compared with traditional method,the proposed method can be more applicable in practical engineering. Voltage sag,fault resistance,monitors placement,matrix of critical fault resistance,observability rate of voltage sags 2015-07-05 改稿日期2015-11-02 TM713 陳禮頻 男,1986年生,博士,研究方向?yàn)殡娔苜|(zhì)量、電力市場(chǎng)及電網(wǎng)規(guī)劃等。 E-mail:chenleepin@163.com(通信作者) 杜新偉 男,1980年生,博士,研究方向?yàn)殡娋W(wǎng)規(guī)劃、系統(tǒng)分析等。 E-mail:351479318@qq.com4 算例分析
5 結(jié)論