劉繼榮,張一娜
(哈爾濱醫(yī)科大學(xué)附屬第二醫(yī)院老年病科,哈爾濱 150000)
炎癥是宿主系統(tǒng)對病原體感染或各種類型組織損傷的反應(yīng),其在炎性衰老過程中不可控[2]。老年人
體內(nèi)促炎因子與抗炎因子此消彼長,最終表現(xiàn)為炎癥穩(wěn)態(tài)失衡,促炎反應(yīng)過度,導(dǎo)致炎性衰老[7]。健康老年人試驗研究結(jié)果表明,衰老與促炎癥反應(yīng)水平增高相關(guān),是促炎癥介質(zhì)包括白細胞介素-1(interleukin-1,IL-1)、IL-6、腫瘤壞死因子-α(tumor necrosis factor α,TNF-α)和前列腺素E2(prostaglandin E2,PGE2)水平升高所致[8]。Adams等[9]以老年馬為研究對象的研究結(jié)果表明,老年馬外周血中IL-1β、IL-15、IL-18和TNF-α基因表達水平升高。
在炎性衰老過程中,過度的炎癥可加速骨質(zhì)流失,影響骨代謝,進而增加患者骨創(chuàng)傷術(shù)后的死亡率。炎性衰老目前的機制學(xué)說主要有細胞因子學(xué)說、自噬學(xué)說、應(yīng)激學(xué)說、氧化-炎癥學(xué)說及DAN損傷學(xué)說等[2], 一些前瞻性的國外研究結(jié)果表明細胞
因子學(xué)說、自噬學(xué)說與骨質(zhì)疏松關(guān)系密切。
2.1 細胞因子學(xué)說與骨質(zhì)疏松
Salvioli等[10]研究發(fā)現(xiàn),在機體衰老過程中炎癥細胞因子發(fā)揮重要的作用。TNF-α、IL-1、IL-6和IL-17等細胞因子的表達水平隨年齡增長而升高,它們可作為炎性衰老的血清學(xué)標(biāo)志物。同時,TNF-α、IL-1、IL-6和IL-17水平增高可導(dǎo)致大量破骨細胞產(chǎn)生并抑制成骨細胞活性[11]。
2.1.1 TNF-α與骨質(zhì)疏松 TNF-α可直接或間接促進巨噬細胞集落刺激因子(macrophage-colony stimulating factor,M-CSF)產(chǎn)生。M-CSF是破骨細胞前體細胞分化為成熟破骨細胞過程中一種重要的細胞因子,M-CSF對破骨細胞的存活和增殖起重要作用[12]。在任何炎癥過程中,免疫細胞如T淋巴細胞、B淋巴細胞、巨噬細胞或樹突狀細胞,都會被激活并產(chǎn)生炎癥細胞因子,特別是活化的T淋巴細胞,它主要通過增加骨吸收TNF-α而誘導(dǎo)破骨細胞生成[13]。D’Amelio等[14]也發(fā)現(xiàn)絕經(jīng)后骨質(zhì)疏松患者T淋巴細胞和單核細胞產(chǎn)生TNF-α。TNF-α還可抑制成骨細胞生成,同時降低骨基質(zhì)鈣化,最終誘導(dǎo)骨形成和骨吸收失衡。
2.1.2 IL-1與骨質(zhì)疏松 IL-1是骨微環(huán)境中重要的細胞因子,可影響骨代謝和骨重建活動[15]。IL-1對骨吸收具有較強刺激作用,可直接或間接影響破骨細胞生成,增強骨吸收能力。Eghbali-fatourechi等[16]也證明絕經(jīng)后骨質(zhì)疏松患者因雌激素缺乏可導(dǎo)致單核細胞產(chǎn)生的IL-1水平升高。
2.1.3 IL-6與骨質(zhì)疏松 研究表明,痛風(fēng)性關(guān)節(jié)炎、類風(fēng)濕性關(guān)節(jié)炎、銀屑病性關(guān)節(jié)炎患者炎性細胞因子IL-6水平升高[17]。類風(fēng)濕性關(guān)節(jié)炎患者的骨質(zhì)疏松和炎癥存在明顯關(guān)系,即炎癥細胞因子可造成骨質(zhì)流失和骨轉(zhuǎn)換標(biāo)志物水平升高[18]。IL-6水平升高也可能導(dǎo)致TNF-α和IL-1水平升高,這些細胞因子可增強破骨細胞活化、分化與存活,增強核因子-κB受體活化因子配體(receptor activator for nuclear factor-κB ligand,RANKL)表達和抑制成骨細胞存活,從而促進骨吸收[19]。
2.1.4 IL-17與骨質(zhì)疏松 IL-17是CD4+T淋巴細胞亞群Th17分泌的細胞因子。IL-17可加速骨質(zhì)流失,有利于破骨細胞產(chǎn)生和抑制成骨細胞分化[20]。IL-17可致RANKL表達上調(diào),進而促進骨吸收增加。IL-17對于類風(fēng)濕性關(guān)節(jié)炎患者的骨破壞也至關(guān)重要[21]。IL-17還可刺激滑膜巨噬細胞,進一步產(chǎn)生大量炎癥因子如 TNF-α、IL-1和IL-6等,這些炎癥因子可作用于破骨細胞前體,使其分化為破骨細胞,增加骨吸收,最終導(dǎo)致骨質(zhì)疏松發(fā)生[22]。
無論是炎癥因子還是炎癥細胞對骨代謝的影響主要是通過核因子-κB受體活化因子(receptor activator for nuclear factor-κB,RANK)/RANKL/護骨素(osteoprotegerin,OPG)途徑發(fā)揮作用[23]。
2.2 自噬學(xué)說與骨質(zhì)疏松
自噬(autophagy)是利用自身細胞器來源的膜結(jié)構(gòu)進行組裝而吞噬胞質(zhì)內(nèi)的底物,如錯誤折疊或衰老蛋白以及受損的細胞器、再與溶酶體結(jié)合將吞噬物降解并循環(huán)再利用的過程[24]。自噬是細胞的自我保護機制,對細胞穩(wěn)態(tài)的維持、細胞分化和增殖以及應(yīng)激發(fā)揮重要的作用[25]。Chen等[26]的研究表明,隨著人體衰老,骨細胞的自噬水平逐漸下降,使IL-1β等促炎因子分泌增加,加速骨丟失和影響骨代謝,進而導(dǎo)致骨質(zhì)疏松[27]。Almeida等[28]證明在骨細胞中,自噬可防止骨質(zhì)流失,并減少隨著年齡增長骨細胞發(fā)生的凋亡。
2.2.1 自噬基因與骨質(zhì)疏松 有研究表明,敲除果蠅的自噬基因Atg7后,細胞內(nèi)有毒蛋白和細胞器聚集,最終引起細胞衰老和凋亡[2]。缺乏自噬基因Atg7的小鼠骨量低,易發(fā)生骨折,與破骨細胞和成骨細胞數(shù)量減少相關(guān)。自噬在維持細胞功能和穩(wěn)態(tài)過程中,也需要使細胞形態(tài)發(fā)生改變,這種改變包括長的細胞突起以及內(nèi)質(zhì)網(wǎng)和線粒體減少,抑制自噬可減少骨細胞突起的數(shù)量,導(dǎo)致骨細胞中線粒體和內(nèi)質(zhì)網(wǎng)滯留。成骨細胞自噬也有助于骨骼平衡以及骨形成相關(guān)的形態(tài)學(xué)變化[29]。自噬基因BECN-1沉默可致成骨細胞增殖和分化受抑制,細胞更易受氧化應(yīng)激損害,增加細胞凋亡,而過量表達則增強成骨細胞抗氧化能力,減少細胞凋亡[30]。
2.2.2 自噬相關(guān)性氧化應(yīng)激與骨質(zhì)疏松 隨著年齡增長,自噬被抑制,使得線粒體受損,進而增加活性氧(reactive oxygen species,ROS)產(chǎn)生,進一步導(dǎo)致氧化應(yīng)激[31],反過來,氧化應(yīng)激又減少細胞自噬,這可能是骨質(zhì)疏松發(fā)生過程中骨質(zhì)流失的另一種解釋[32]。同時,衰老過程中細胞通過自噬而完成清除的能力逐漸下降,線粒體因功能失調(diào)致蛋白質(zhì)積聚,導(dǎo)致氧化應(yīng)激反應(yīng)和ROS增多,進而引發(fā)炎癥反應(yīng),刺激IL-1β和IL-18分泌,結(jié)果導(dǎo)致炎癥反應(yīng)增強和衰老加快[33]。
2.2.3 自噬相關(guān)藥物與骨質(zhì)疏松 雷帕霉素是一種自噬激活劑,可通過誘導(dǎo)細胞自噬保持細胞活力[34],也可抑制破骨細胞的骨吸收活性[35],從而調(diào)節(jié)骨重塑。雷帕霉素也拮抗二甲雙胍,可激活腺苷酸活化的蛋白激酶(AMP-activated protein kinase,AMPK),AMPK是真核細胞能量調(diào)節(jié)器。肝激酶B1(liver kinase B1,LKB1)又名絲氨酸-蘇氨酸激酶(serine threonine kinase 1,STK1),是一種功能性腫瘤抑制因子,LKB1可作用于AMPK的上游,抑癌基因TSC2、p53及p27作為LKB1-AMPK能量感應(yīng)通路的下游底物來調(diào)控自噬,還可通過直接磷酸化自噬相關(guān)基因(autophagy-related gene 1, Atg1)在哺乳動物細胞中的同源蛋白UNC-51樣激酶(UNC-51 like autophagy activating kinase 1,ULK1)引發(fā)自噬[36],促進成骨細胞礦化并抑制破骨細胞分化和成熟[37]。
川芎嗪是一種被認可的中藥提取物,具有抗凋亡特性。研究結(jié)果表明,它通過促進AMPK和哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路激活而引發(fā)自噬,防止骨髓間充質(zhì)干細胞(bone marrow mesenchymal stem cells,BMMSCs)凋亡[38]。BMMSCs是位于骨髓腔內(nèi)的具有多向分化和自我更新能力的一類中胚層來源的成體干細胞,在成人骨骼中主要分化為成骨細胞和脂肪細胞。隨著年齡增長,ROS水平升高,BMMSCs也表現(xiàn)一系列變化,如增殖能力下降、細胞凋亡水平升高、成骨能力下降[39]。激活自噬能降低BMMSCs的ROS水平,衰老BMMSCs的自噬水平較年輕細胞明顯降低,調(diào)節(jié)自噬可影響細胞周期和細胞凋亡[24]。
綜上所述,在衰老過程中,自噬水平下降、ROS增多等多種機制介導(dǎo)促炎因子產(chǎn)生,進而使骨質(zhì)疏松發(fā)生率升高。目前通過對RANKL/RANK/OPG途徑的研究,靶向RANKL的單克隆抗體狄諾塞麥已被開發(fā),它是被批準(zhǔn)用于骨質(zhì)疏松癥患者的第一個單克隆抗體。狄諾塞麥可抑制破骨細胞生成,減少骨吸收和增加骨密度,同時顯著降低脊椎、非脊椎和髖部骨折風(fēng)險。TNF-α抗體也已被證明能抑制過度的骨吸收[11]。自噬調(diào)節(jié)骨代謝是骨質(zhì)疏松研究的另一個里程碑,自噬抑制劑如氯喹(CQ)已在臨床被使用[40]。BECN-1可能是骨質(zhì)疏松抗氧化治療的有效靶點。但炎性衰老與骨質(zhì)疏松的相關(guān)機制研究目前仍較少,相信以后會有更多研究探索骨平衡的分子機制,對骨質(zhì)疏松提出新的治療方法。
【參考文獻】
[1] Franceschi C, Bonafè M, Valensin S,etal. Inflammaging: an evolutionary perspective on immunosenescence[J]. Ann N Y Acad Sci, 2000, 908(1): 244-254.
[2] 夏世金.前言——重視炎性衰老的研究[J]. 實用老年醫(yī)學(xué), 2014, 28(2): 91-92. DOI: 10.3969/j.issn.1003-9198.2014.02.011.
Xia SJ. Preface — attention to the study of inflamm-aging[J]. Pract Geriatr, 2014, 28(2): 91-92. DOI: 10.3969/j.issn.1003-9198.2014.02.011.
[3] Mishto M, Santoro A, Bellavista E,etal. Immunoproteasomes and immunosenescence[J]. Ageing Res Rev, 2003, 2(4): 419-432.
[4] Giunta B, Fernandez F, Nikolic WV,etal. Inflammaging as a prodrome to Alzheimer’s disease[J]. J Neuroinflammation, 2008, 5(1): 51. DOI: 10.1186/1742-2094-5-51.
[5] Franceschi C, Valensin S, Lescai F,etal. Neuroinflammation and the genetics of Alzheimer’s disease: the search for a pro-inflammatory phenotype[J]. Aging (Milano), 2001, 13(3): 163-170.
[6] Lencel P, Magne D. Inflammaging: the driving force in osteo-porosis?[J]. Med Hypotheses, 2011, 76(3): 317-321. DOI: 10.1016/j.mehy.2010.09.023.
[7] Lio D, Scola L, Crivello A,etal. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-alpha-308 promoter SNP[J]. J Med Genet, 2003, 40(4): 296-299.
[8] Cesari M, Penninx BW, Pahor M,etal. Inflammatory markers and physical performance in older persons: the InCHIANTI study[J]. J Gerontol A Biol Sci Med Sci, 2004, 59(3): 242-248.
[9] Adams AA, Breathnach CC, Katepalli MP,etal. Advanced age in horses affects divisional history of T cells and inflammatory cytokine production[J]. Mech Ageing Dev, 2008, 129(11): 656-664. DOI: 10.1016/j.mad.2008.09.004.
[10] Salvioli S, Capri M, Valensin S,etal. Inflammaging, cytokines and aging: state of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology[J]. Curr Pharm Des, 2006, 12(24): 3161-3171.
[11] Pietschmann P, Mechtcheriakova D, Meshcheryakova A,etal. Immunology of osteoporosis: a mini-review[J]. Gerontology, 2016, 62(2): 128-137. DOI: 10.1159/000431091.
[12] 徐亦文, 曹陽, 安蒂, 等. 自噬在破骨細胞分化過程中的調(diào)控作用[J]. 現(xiàn)代免疫學(xué), 2016, 36(5): 400-404.
Xu YW, Cao Y, An D,etal. Autophagy regulates the differentiation of osteoclasts[J]. Curr Immunol, 2016, 36 (5): 400-404.
[13] Rauner M, Sipos W, Pietschmann P. Osteoimmunology[J]. Int Arch Allergy Immunol, 2007, 143(1): 31-48. DOI: 10.1159/000098223.
[14] D’Amelio P, Grimaldi A, Bella S,etal. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis[J]. Bone, 2008, 43(1): 92-100. DOI: 10.1016/j.bone.2008.02.017.
[15] 馮歆, 李生強, 賴玉璉, 等. 絕經(jīng)后婦女膝關(guān)節(jié)骨性關(guān)節(jié)炎與骨質(zhì)疏松癥的相關(guān)性研究[J]. 中國骨質(zhì)疏松雜志, 2014, 20(4): 357 -359.
Feng X, Li SQ, Lai YL,etal. Correlational study between knee osteoarthritis and osteoporosis in postmenopausal women[J]. Chin J Osteoporos, 2014, 20(4): 357-359.
[16] Eghbali-fatourechi G, Khosla S, Sanyal A,etal. Role of RANK ligand in mediating increased bone resorption in early postmeno-pausal women[J]. J Clin Invest, 2003, 111(8): 1221-1230.
[17] Zhuang L, Jung JY, Wang EW,etal. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathwayinvitroandinvivo[J]. Laryngoscope, 2007, 117(5): 841-847.
[18] Ganesan K, Teklehaimanot S, Tran TH,etal. Relationship of C-reactive protein and bone mineral density in community-dwelling elderly females[J]. J Natl Med Assoc, 2005, 97(3): 329-333.
[19] Aldaghri NM, Aziz I, Yakout S,etal.Inflammation as a contribut-ing factor among postmenopausal Saudi women with osteopo-rosis[J]. Medicine (Baltimore), 2017, 96(4): e5780. DOI: 10.1097/MD.0000000000005780.
[20] 李文艷. 免疫調(diào)節(jié)在骨質(zhì)疏松癥中的研究進展[J]. 醫(yī)學(xué)綜述, 2015, 21(2): 213-216. DOI: 10.3969/j.issn.1006-2084.2015.02.008.
Li WY. The research progress of immunomodulatory in osteo-porosis[J]. Med Recapitulate, 2015, 21(2): 213-216. DOI: 10.3969/j.issn.1006-2084.2015.02.008.
[21] Kojiro S, Ayako S, Kazuo O,etal. Th17 functions as an osteo-clastogenic helper T cell subset that links T cell activation and bone destruction[J]. J Exp Med, 2006, 203(12): 2673-2682.
[22] 常志芳, 馮成龍, 史曉霞, 等. 免疫與骨質(zhì)疏松的研究進展[J]. 中國骨質(zhì)疏松雜志, 2015, 21(4): 508- 513. DOI: 10.3969/j.issn.1006-7108.2015.04.026.
Chang ZF, Feng CL, Shi XX,etal. Research progress in immunology and osteoporosis[J].Chin J Osteoporos, 2015, 21(4): 508-513. DOI: 10.3969/j.issn.1006-7108.2015.04.026.
[23] 陳玉鳳, 郭獻山, 趙建林, 等. 老年2型糖尿病中性粒細胞/淋巴細胞比率與骨質(zhì)疏松癥的關(guān)系[J]. 中國骨質(zhì)疏松雜志, 2015, 21(7): 824-826. DOI: 10.3969/j.issn.1006-7108.2015.07.014.
Cheng YF, Guo XS, Zhao JL,etal. The relationship between the blood neutrophil lymphocyte ratio and osteoporosis in elderly patients with type 2 diabetes mellitus[J]. Chin J Osteoporos, 2015, 21(7): 824-826. DOI: 10.3969/j.issn.1006-7108.2015.07.014.
[24] 戚朦. 自噬在雌激素缺乏骨質(zhì)疏松小鼠骨髓間充質(zhì)干細胞分化平衡中的作用研究[D]. 第四軍醫(yī)大學(xué), 2015.
Qi M. Effects of autophagy on differentiation abilities of bone marrow mesenchymal stem cells in estrogen deficiency-induced osteoporosis mice[D]. Fourth Mil Med Univer, 2015.
[25] Choi AM, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368(19): 1845-1846. DOI: 10.1056/NEJMc1303158.
[26] Chen K, Yang YH, Jiang SD,etal. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014,142(3): 285-295. DOI: 10.1007/s00418-014-1194-1.
[27] Pierrefite-Carle V, Santucci-Darmanin S, Breuil V,etal. Auto-phagy in bone: self-eating to stay in balance[J]. Ageing Res Rev, 2015, 24(Pt B): 206-217. DOI: 10.1016/j.arr.2015.08.004.
[28] Almeida M, Han L, Martin-millan M,etal. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids[J]. J Biol Chem, 2007, 282(37): 27285-27297. DOI: 10.1074/jbc.M702810200.
[29] Piemontese M, Onal M, Xiong J,etal. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage[J]. Sci Rep, 2016, 6: 24262. DOI: 10.1038/srep 24262.
[30] 楊越華. 自噬在成骨細胞氧化應(yīng)激中的作用及其與骨質(zhì)疏松的關(guān)系研究[D]. 上海交通大學(xué), 2015.
Yang YH.The role of autophagy in oxidative damage to osteoblasts and its contribution to osteoporosis[D].Shanghai Jiao Tong Univ, 2015.
[31] Mortensen M, Ferguson DJ, Edelmann M,etal. Loss of auto-phagy in erythroid cells leads to defective removal of mitochondria and severe anemiainvivo[J]. Proc Natl Acad Sci USA, 2010, 107(2): 832- 837. DOI: 10.1073/pnas.0913170107.
[32] Ke C, Yang YH, Jiang SD,etal. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population[J]. Histochem Cell Biol, 2014, 142(3): 285-295. DOI: 10.1007/s00418-014-1194-1.
[33] Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes[J]. Aging (Albany NY), 2012, 4(3): 166-175. DOI: 10.18632/aging.100444.
[34] Luo D, Ren H, Li T,etal. Rapamycin reduces severity of senile osteoporosis by activating osteocyte autophagy[J].Osteoporos Int, 2016, 27(3): 1093-1101. DOI: 10.100 7/s001 98-015-3325-5.
[35] Kneissel M, Luong-nguyen NH, Baptist M,etal. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts[J]. Bone, 2004, 35(5):1144-1156. DOI: 10.1016/j.bone.2004.07.013.
[36] 齊觀云, 李文林, 石小玉. 磷酸腺苷依賴的蛋白激酶在自噬通路中作用的研究進展[J]. 南昌大學(xué)學(xué)報(醫(yī)學(xué)版), 2014(2): 78-82. DOI: CNKI: SUN: JXYB.0.2014-02-023.
Qi GY, Li WL,Shi XY. Research progress in role of AMPK pathway in autophagy[J]. J Nanchang Univ (Med Sci), 2014(2): 78-82.
[37] Mai QG, Zhang ZM, Xu S,etal. Metformin stimulates osteo-protegerin and reduces RANKL expression in osteoblasts and ovariectomized rats[J]. J Cell Biochem, 2011,112(10): 2902-2909. DOI: 10.1002/jcb.23206.
[38] Wang L, Zhang HY, Gao B,etal. Tetramethylpyrazine protects against glucocorticoid-induced apoptosis by promoting autophagy in mesenchymal stem cells and improves bone mass in glucocorticoid-induced osteoporosis rats[J]. Stem Cells Dev, 2017, 26(6): 419-430. DOI: 10.1089/scd.2016.0233.
[39] 羅展鵬, 馬遠征. 骨質(zhì)疏松與間充質(zhì)干細胞[J]. 中華老年多器官疾病雜志, 2011, 10(5): 388-392.
Luo ZP, Ma YZ. Osteoporosis and mesenchymal stem cell[J].Chin J Mult Organ Dis Elderly, 2011, 10(5): 388-392.
[40] Lin NY, Chen CW, Kagwiria R,etal. Inactivation of autophagy ameliorates glucocorticoid-induced and ovariectomy-induced bone loss[J]. Ann Rheum Dis, 2016, 75(6): 1203-1210. DOI: 10.1136/annrheumdis-2015-207240.