劉德軍,孫雪林,葉平
(1.中國(guó)人民解放軍總醫(yī)院老年心血管內(nèi)科,北京 100853;2.北京醫(yī)院藥學(xué)部)
·綜述·
微小RNA與動(dòng)脈粥樣硬化的研究進(jìn)展
劉德軍1,孫雪林2,葉平1
(1.中國(guó)人民解放軍總醫(yī)院老年心血管內(nèi)科,北京 100853;2.北京醫(yī)院藥學(xué)部)
微小 RNA(簡(jiǎn)稱miRNA)作為重要的調(diào)節(jié)分子廣泛存在于真核生物中,主要通過(guò)對(duì)血管內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞以及單核巨噬細(xì)胞等進(jìn)行調(diào)控而參與動(dòng)脈粥樣硬化斑塊發(fā)生、斑塊進(jìn)展及斑塊破裂的過(guò)程。篩選動(dòng)脈粥樣硬化相關(guān)的異常表達(dá)微小 RNA,研究其對(duì)動(dòng)脈粥樣硬化形成過(guò)程中相關(guān)影響因素的調(diào)控,有助于進(jìn)一步了解動(dòng)脈粥樣硬化發(fā)生發(fā)展的分子機(jī)制以及發(fā)現(xiàn)預(yù)防與治療動(dòng)脈粥樣硬化的新靶點(diǎn)。
動(dòng)脈粥樣硬化;微RNAs;基因表達(dá)調(diào)控
動(dòng)脈粥樣硬化是冠心病、腦梗死及外周血管病的主要病因;其特點(diǎn)是受累的大、中動(dòng)脈病變從內(nèi)膜開(kāi)始,先有脂質(zhì)和復(fù)合糖類物質(zhì)積聚,進(jìn)而纖維組織和平滑肌細(xì)胞增生,并有動(dòng)脈中層的逐漸蛻變及鈣化,導(dǎo)致動(dòng)脈壁增厚變硬乃至血管腔狹窄。動(dòng)脈粥樣硬化是由多種因素、多個(gè)環(huán)節(jié)共同作用引起的系統(tǒng)性病變,其導(dǎo)致的動(dòng)脈粥樣硬化性心腦血管疾病在人群中發(fā)病率高、死亡率高、致殘率高,一旦發(fā)病需要長(zhǎng)期用藥維持治療,給人類健康和社會(huì)保障帶來(lái)沉重負(fù)擔(dān),是目前需要解決的主要慢性病之一[1-3],但其發(fā)病機(jī)制至今尚未完全闡明。微小RNA(簡(jiǎn)稱miRNA)是一類長(zhǎng)18~22個(gè)核苷酸的內(nèi)生性單鏈成熟非編碼 RNA,大部分定位于基因間區(qū)域,少部分位于蛋白質(zhì)編碼基因的內(nèi)含子或外顯子區(qū)域,其內(nèi)部的2~8個(gè)核苷酸是連續(xù)高度保守的“種子序列”,可以精確匹配、識(shí)別靶標(biāo)序列,對(duì)生物進(jìn)化起關(guān)鍵作用。目前觀點(diǎn)認(rèn)為微小RNA參與了動(dòng)脈粥樣硬化斑塊形成、發(fā)展和破裂等各個(gè)具體階段的調(diào)控。本文綜述部分有代表性的微小RNA對(duì)參與動(dòng)脈粥樣硬化形成過(guò)程中斑塊發(fā)生、發(fā)展及破裂所發(fā)揮的調(diào)控作用[4-7],為動(dòng)脈粥樣硬化的診斷、預(yù)后和基因治療提供新的思路。
微小 RNA是一組重要的內(nèi)源性單鏈非編碼RNAs,廣泛存在于真核生物中,能夠調(diào)控基因的表達(dá)和翻譯;并在調(diào)節(jié)細(xì)胞分化方面有著重要的作用。1993 年,Lee 等[8]發(fā)現(xiàn)了第一個(gè)微小 RNA lin4;目前,大約有 1000 個(gè) miRNA 被人類基因組編碼,其中有超過(guò)400個(gè)已經(jīng)被克隆和證實(shí)[9]。大量的研究顯示微小 RNA在生物發(fā)育和疾病中發(fā)揮重要的作用,研究者們也逐漸了解微小 RNA的生成過(guò)程、 作用機(jī)制、 生物學(xué)功能及和疾病間的關(guān)系。研究發(fā)現(xiàn)微小 RNA通過(guò)形成RNA誘導(dǎo)沉默復(fù)合體(RISC)與靶標(biāo)mRNA的3’非翻譯區(qū)(3’UTR)發(fā)生不完全或完全配對(duì),進(jìn)而促進(jìn)靶標(biāo)mRNA的切割降解和翻譯受抑,在轉(zhuǎn)錄后水平調(diào)控靶標(biāo)基因的表達(dá)[10-12]。成熟的微小 RNA可以通過(guò)上述機(jī)制發(fā)揮作用,參與各種生理及病理生理活動(dòng)過(guò)程。
正常動(dòng)脈血管內(nèi)皮細(xì)胞具有屏障、抗凝、調(diào)節(jié)血管張力及表達(dá)炎性介質(zhì)等功能。在動(dòng)脈粥樣硬化的發(fā)生過(guò)程中,首先表現(xiàn)出慢性炎癥對(duì)血管內(nèi)皮細(xì)胞的損傷,在趨化因子和黏附分子的共同作用,單核細(xì)胞及T細(xì)胞等炎性細(xì)胞遷移至動(dòng)脈內(nèi)膜下分化為巨噬細(xì)胞,促進(jìn)循環(huán)中的單核細(xì)胞與內(nèi)皮細(xì)胞粘附、在血管壁中遷移、吞噬脂質(zhì),進(jìn)而衍化為巨噬泡沫細(xì)胞甚至粥樣病變。多個(gè)微小RNA參與調(diào)控動(dòng)脈血管內(nèi)皮細(xì)胞慢性炎性反應(yīng),影響動(dòng)脈粥樣硬化斑塊的發(fā)生發(fā)展。Wu等[13]研究顯示miR-155通過(guò)對(duì)內(nèi)皮細(xì)胞的負(fù)反饋調(diào)節(jié)發(fā)揮抗動(dòng)脈粥樣硬化作用;主要機(jī)制是miR-155能夠抑制TNFα誘導(dǎo)單核細(xì)胞向內(nèi)皮細(xì)胞黏附。miR-125a-5p通過(guò)靶向下調(diào)氧化固醇結(jié)合蛋白相關(guān)蛋白-9的表達(dá),減少巨噬細(xì)胞對(duì)氧化型低密度脂蛋白的攝?。徊⑶乙种瓢准?xì)胞介素(IL)-2、IL-6、腫瘤壞死因子α和轉(zhuǎn)化生長(zhǎng)因子β等相關(guān)炎性因子的基因表達(dá)[14-18]。此外,血流動(dòng)力學(xué)改變也可引起動(dòng)脈血管內(nèi)皮細(xì)胞的損傷;高剪切力可抑制動(dòng)脈粥樣硬化斑塊的形成而低剪切力和震蕩剪切力則可以促進(jìn)動(dòng)脈粥樣硬化的發(fā)生;研究認(rèn)為血管剪切力與斑塊的發(fā)生發(fā)展密切相關(guān) 但具體分子機(jī)制尚有待進(jìn)一步研究。在血管分叉處易發(fā)生湍流,其產(chǎn)生的低剪切力可誘導(dǎo)miR-21、miR-92a及miR-663等多個(gè)微小RNA的表達(dá),使血管分叉處好發(fā)動(dòng)脈粥樣硬化;高層流剪切力可誘導(dǎo)動(dòng)脈內(nèi)皮細(xì)胞表達(dá)多種微小RNA,如 miR-10a、miR-23b及miR-101等,均具有抗炎及抗動(dòng)脈粥樣硬化作用[19]。
平滑肌細(xì)胞在動(dòng)脈粥樣硬化的進(jìn)展過(guò)程中發(fā)揮重要作用。在高血脂、內(nèi)皮細(xì)胞及巨噬細(xì)胞釋放趨化因子等多種影響因子的調(diào)節(jié)下,平滑肌細(xì)胞由動(dòng)脈血管中層向內(nèi)膜層移動(dòng);遷移至內(nèi)膜層及內(nèi)膜層固有的平滑肌細(xì)胞共同作用,導(dǎo)致動(dòng)脈血管內(nèi)膜層平滑肌細(xì)胞增殖加快,并促使大量細(xì)胞外基質(zhì)分泌增加,使得趨化因子合成增加[20]。趨化因子進(jìn)一步促使血管平滑肌細(xì)胞向內(nèi)膜遷移及增殖,導(dǎo)致動(dòng)脈粥樣硬化的持續(xù)發(fā)展。血管平滑肌細(xì)胞表面的低密度脂蛋白受體,可促使平滑肌細(xì)胞結(jié)合并攝取低密度脂蛋白和極低密度脂蛋白成為泡沫細(xì)胞;導(dǎo)致進(jìn)入動(dòng)脈血管中膜的平滑肌細(xì)胞發(fā)生轉(zhuǎn)變,即由收縮型成為合成型,分泌大量膠原纖維、彈力纖維、蛋白多糖和糖蛋白等結(jié)締組織基質(zhì)形成;并進(jìn)一步合成及釋放多種生長(zhǎng)因子和細(xì)胞因子,如成纖維細(xì)胞生長(zhǎng)因子(FGF)等。
微小RNA在調(diào)節(jié)平滑肌細(xì)胞表型轉(zhuǎn)變、遷移及增殖的過(guò)程中發(fā)揮著重要的作用,如miR-143/145能夠促使平滑肌細(xì)胞表型由收縮型向合成型轉(zhuǎn)變,miR-21、miR-146a可刺激平滑肌細(xì)胞的增殖加快[21]。miR-33通過(guò)調(diào)節(jié)巨噬細(xì)胞內(nèi)膽固醇的代謝,導(dǎo)致巨噬細(xì)胞內(nèi)膽固醇蓄積,形成大量泡沫細(xì)胞;miR-155通過(guò)調(diào)節(jié)巨噬細(xì)胞產(chǎn)生促炎和抗炎因子,發(fā)揮促動(dòng)脈粥樣硬化或抗動(dòng)脈粥樣硬化的作用;在體外增殖培養(yǎng)大鼠血管平滑肌細(xì)胞及動(dòng)脈粥樣硬化大鼠體內(nèi)動(dòng)脈的研究中,頸動(dòng)脈球囊損傷大鼠后miR-145表達(dá)明顯減少,與pri-miR-145向pre-miR-145轉(zhuǎn)化受損相關(guān),涉及PI3-K/Akt/p53信號(hào)通路,平滑肌細(xì)胞分化標(biāo)志物α肌動(dòng)蛋白、鈣調(diào)蛋白等蛋白的表達(dá)明顯受抑,最終作用的結(jié)果是促進(jìn)平滑肌細(xì)胞增殖導(dǎo)致動(dòng)脈內(nèi)膜增生[22-24],因此miR-143/145在維持平滑肌細(xì)胞的收縮表型中具有重要作用。
動(dòng)脈粥樣硬化斑塊形成后常常不穩(wěn)定,斑塊破裂發(fā)生率較高;由于斑塊纖維帽最薄部位的泡沫細(xì)胞含量較高,所以破裂的部位主要集中于此。纖維帽是由增生的膠原纖維與平滑肌細(xì)胞組成的致密層。纖維帽的厚度、強(qiáng)度及膠原纖維含量對(duì)于防止動(dòng)脈粥樣硬化斑塊破裂至關(guān)重要,而斑塊與正常內(nèi)膜交界部位是纖維帽最薄,也是斑塊最易發(fā)生破裂之處。纖維帽中的膠原含量最高,膠原以間質(zhì)膠原為主,主要作用為保持纖維帽的穩(wěn)定性。生理狀態(tài)下平滑肌細(xì)胞合成并釋放膠原,血小板源性生長(zhǎng)因子或轉(zhuǎn)化生長(zhǎng)因子發(fā)生斑塊破裂的主要原因是保持斑塊整體性的膠原蛋白動(dòng)態(tài)失調(diào),表現(xiàn)為合成減少以及降解增加。miR-133及miR-663等均能夠控制平滑肌細(xì)胞的增殖及表型轉(zhuǎn)化,從而影響膠原纖維的合成分泌[25]。
此外,還有miR-21、miR-24和miR-29等微小RNA參與調(diào)控膠原合成和纖維化過(guò)程[26-28]。在非鈣化斑塊中,單核細(xì)胞來(lái)源的巨噬細(xì)胞內(nèi)miR-21的表達(dá)水平較鈣化斑塊顯著升高,說(shuō)明miR-21可通過(guò)靶向調(diào)節(jié)促使基質(zhì)金屬蛋白酶9表達(dá)及活性增加,降低斑塊的穩(wěn)定性[29-30]。抑制miR-322能夠引起促炎性因子IL-6的下調(diào)及抗炎性因子IL-10的上調(diào),提示miR-322具有導(dǎo)致動(dòng)脈粥樣硬化斑塊不穩(wěn)定的潛在作用。
微小RNA對(duì)基因表達(dá)的調(diào)控精細(xì),雖然單個(gè)微小RNA對(duì)某一蛋白質(zhì)表達(dá)水平的影響微乎其微,但調(diào)節(jié)信號(hào)通路中多個(gè)靶基因同時(shí)作用所產(chǎn)生的效果明顯[31]。不同于傳統(tǒng)藥物治療方法,應(yīng)用微小RNA基因治療可以調(diào)控整個(gè)基因系統(tǒng);因此針對(duì)其中的關(guān)鍵節(jié)點(diǎn)進(jìn)行靶向治療將是未來(lái)治療的主要方向。通過(guò)研究人類已經(jīng)發(fā)現(xiàn)一些與動(dòng)脈粥樣硬化密切相關(guān)的微小RNA作用靶點(diǎn)、作用途徑等,揭示了微小RNA通過(guò)調(diào)控各種靶標(biāo)分子表達(dá),發(fā)揮著促進(jìn)或抑制動(dòng)脈粥樣硬化發(fā)生發(fā)展的作用,其在動(dòng)脈粥樣硬化中的作用呈現(xiàn)為復(fù)雜的網(wǎng)絡(luò)模式,這也體現(xiàn)了其對(duì)疾病的強(qiáng)大調(diào)控作用。因此,篩選與動(dòng)脈粥樣硬化早期病變相關(guān)的微小RNA作為動(dòng)脈粥樣硬化相關(guān)疾病診斷的分子標(biāo)志物,從而實(shí)現(xiàn)早期診斷與干預(yù)治療,已經(jīng)成為近年來(lái)動(dòng)脈粥樣硬化防治研究的新靶點(diǎn)。
[1] LIU Y,ZHENG L,WANG Q,et al.Emerging roles and mechanisms of long noncoding RNAs in atherosclerosis[J].Int J Cardiol,2017,228:570-582.
[2] TIWARI RL,SINGH V,BARTHWAL MK.Macrophages:an elusive yet emerging therapeutic target of atherosclerosis[J].Med Res Rev,2008,28(4):483-544.
[3] LIBBY P,RIDKER PM,HANSSON GK.Progress and challenges in translating the biology of atherosclerosis[J].Nature,2011,473(7347):317-325.
[4] LUSCHER TF.Atherosclerosis and CAD[J].Eur Heart J,2015,36(8):457-459.
[5] SPANN NJ,GARMIRE LX,MCDONALD JG,et al.Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses[J].Cell,2012,151(1):138-152.
[6] LEE-RUECKERT M,ESCOLA-GIL JC,KOVANEN PT.HDL functionality in reverse cholesterol transport-challenges in translating data emerging from mouse models to human disease[J].Biochim Biophys Acta,2016,1861(7):566-583.
[7] YAKUSHIJI E,AYAORI M,NISHIDA T,et al.Probucol-oxidized products,spiroquinone and diphenoquinone,promote reverse cholesterol transport in mice[J].Arterioscler Thromb Vasc Biol,2016,36(4):591-597.
[8] LEE RC,F(xiàn)EINBAUM RL,AMBROS V.The celegans heterochronic gene lin4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[9] MACKENZIE NC,STAINES KA,ZHU D,et al.miRNA- 221 and miRNA- 222 synergistically function to promote vascular calcification[J].Cell Biochem Funct,2014,32(2):209-216.
[10] ZHANG Z,QIN YW,BREWER G,et al.MicroRNA degradation and turnover:regulating the regulators[J].Wiley Interdiscip Rev RNA,2012,3(4):593-600.
[11] HUSSEIN K.Pathobiology of the microRNA system[J].Pathologe,2012,33(1):70-78.
[12] ZAMPETAKI A,MAYR M.MicroRNAs in vascular and metabolic disease[J].Circ Res,2012,110(3):508-522.
[13] WU XY,FAN WD,FANG R,et al.Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65[J].J Cell Biochem,2014,115(11):1928-1936.
[14] LI X,KONG D,CHEN H,et al.miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1[J].Sci Rep,2016:21789.
[15] ZHANG X,SHAO S,GENG H,et al.Expression profiles of six circulating microRNAs critical to atherosclerosis in patients with subclinical hypothyroidism:a clinical study[J].J Clin Endocrinol Metab,2014,99(5):E766-E74.
[16] HAO L,WANG XG,CHENG JD,et al.The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p,-155,and -199a/b-3p in human atherosclerotic coronary artery[J].Cardiovasc Pathol,2014,23(4):217-223.
[17] YAN H,WANG S,LI Z.Upregulation of miRNA-155 expression by OxLDL in dendritic cells involves JAK1/2 kinase and transcription factors YY1 and MYB[J].Int J Mol Med,2016,37(5):1371-1378.
[18] NETH P,NAZARI-JAHANTIGH M,SCHOBER A,et al.MicroRNAs in flow-dependent vascular remodelling[J].Cardiovasc Res,2013,99(2):294-303.
[19] TIAN FJ,AN LN,WANG GK,et al.Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis[J].Cardiovasc Res,2014,103(1):100-110.
[20] KARUNAKARAN D,RAYNER KJ.Macrophage miRNAs in atherosclerosis[J].Biochim Biophys Acta,2016,1861(12 Pt B):2087-2093.
[21] OWENS GK,KUMAR MS,WAMHOFF BR.Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J].Physiol Rev,2004,84(3):767-801.
[22] LIU X,CHENG Y,YANG J,et al.Flank sequences of miR-145/143 and their aberrant expression in vascular disease:mechanism and therapeutic application[J].J Am Heart Assoc,2013,2(6):e000407.
[23] CHENG Y,LIU X,YANG J,et al.MicroRNA-145,a novel smooth muscle cell phenotypic marker and modulator,controls vascular neointimal lesion formation[J].Circ Res,2009,105(2):158-166.
[24] ZHANG YN,XIE BD,SUN L,et al.Phenotypic switching of vascular smooth muscle cells in the ′normal region′ of aorta from atherosclerosis patients is regulated by miR-145[J].J Cell Mol Med,2016,20(6):1049-1061.
[25] CASTOLDI G,DI GIOIA CR,BOMBARDI C,et al.MiR-133a regulates collagen 1A1:potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension[J].J Cell Physiol,2012,227(2):850-856.
[26] LIU YR,CHEN JJ,DAI M.Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-alpha release[J].Acta Pharmacol Sin,2014,35(4):483-488.
[27] ULRICH V,ROTLLAN N,ARALDI E,et al.Chronic miR-29 antagonism promotes favorable plaque remodeling in atherosclerotic mice[J].EMBO Mol Med,2016,8(6):643-653.
[28] ZHANG C,WANG L,ALI T,et al.Hydatid cyst fluid promotes peri-cystic fibrosis in cystic echinococcosis by suppressing miR-19 expression[J].Parasit Vectors,2016,9(1):278.
[29] FAN X,WANG E,WANG X,et al.MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs[J].Exp Mol Pathol,2014,96(2):242-249.
[30] XUE Y,WEI Z,DING H,et al.MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1alpha in the progression of atherosclerosis[J].Atherosclerosis,2015,241(2):671-681.
[31] GANTIER MP,STUNDEN HJ,MCCOY CE,et al.A miR-19 regulon that controls NF-κB signaling[J].Nucleic Acids Res,2012,40(16):8048-8058.
Research progress of microRNA in atherosclerosis
Liu Dejun*,Sun Xunlin,Ye Ping
(*Department of Geriatric Cardiology,General Hospital of PLA,Beijing 100853,China)
Ye Ping,Email:yeping@sina.com
Micro RNA as important regulatory molecules widely exist in eukaryotes and participate in the process of atherosclerotic plaque progression and plaque rupture,mainly by regulation of the vascular endothelial cells,vascular smooth muscle cells,monocytes and macrophages.By screening of atherosclerosis related abnormal expression of microRNAthis research investigate the formation of influence factors in the process of regulation of atherosclerosis,this may facilitate discovering new targets for the prevention and treatment of atherosclerosis to further understand the molecular mechanism of the occurrence and development of atherosclerosis.
Atherosclerosis;MicroRNAs;Gene expression regulation
劉德軍,主任醫(yī)師,Email:liudejun6721@126.com
葉平,主任醫(yī)師,教授,博士生導(dǎo)師,Email:yeping@sina.com
R543.5
A
10.3969/J.issn.1672-6790.2017.03.034
2017-03-20)