• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      數(shù)學(xué)學(xué)習(xí)中創(chuàng)新能力的培養(yǎng)

      2017-03-11 19:33:07北京市懷柔區(qū)第四中學(xué)吳秋紅
      衛(wèi)星電視與寬帶多媒體 2017年7期
      關(guān)鍵詞:影長(zhǎng)平分線等腰三角

      北京市懷柔區(qū)第四中學(xué) 吳秋紅

      一、注重習(xí)題開(kāi)放性,激發(fā)學(xué)生創(chuàng)新意識(shí)

      一道很平淡的題目,經(jīng)老師做了開(kāi)放式引導(dǎo)后,竟能變成刺激學(xué)生探究知識(shí)欲望的催生劑,大大拓寬了學(xué)生學(xué)習(xí)的空間,不同程度的學(xué)生都能有所思,有所獲,收到了觸類旁通的效果。

      例,求證等腰三角形兩底角的平分線的交點(diǎn)到底邊的兩端點(diǎn)距離相等。

      這是一道普通的文字?jǐn)⑹鲱},學(xué)生很快根據(jù)題設(shè)和結(jié)論正確畫(huà)出圖形,寫(xiě)出已知求證。已知:如圖△ABC中,AB=AC,BD,CE是兩條角平分線,并且BD,CE相交于O點(diǎn)。求證:OB=OC。當(dāng)同學(xué)們解答出此題時(shí),我又問(wèn),“如果已知條件不變,同學(xué)們還能提出哪些問(wèn)題?”同學(xué)們有的沉思,有的小聲交流。認(rèn)為還可以證明:(1)BE=CD(2)BD=CE(3)AE=AD(4)∠OBC=∠OCB(即△OBC為等腰三角形)。我順勢(shì)引導(dǎo):“我們只要把數(shù)學(xué)情境與同學(xué)們提出的問(wèn)題結(jié)合就編成了一道幾何證明題?,F(xiàn)在請(qǐng)同學(xué)們小組內(nèi)分析解決以上幾道題”。同學(xué)們分析證明得非常好?!巴瑢W(xué)們還能提出新的問(wèn)題嗎?即改變題中的已知或求證而發(fā)展得到新的數(shù)學(xué)題?!保▽W(xué)生進(jìn)一步反思探索)接著又有幾道新的數(shù)學(xué)題形成了。生1:在△ABC中,AB=CD,BD、CE是兩邊AC、AB的中線,并且BD、CE相交于O點(diǎn)。求證:OB=OC。此生把題目中的兩條角平分線“再創(chuàng)造”為中線。生2:把角平分線改為高線,其他條件不變。生3:已知,在△ABC中,AB=AC,AE=AD,連結(jié)BD、CE且BD、CE相交于O點(diǎn)。求證:OB=OC。生4:在△ABC中,AB=AC,BD、CE是兩條角平分線,并且BD、CE相交于O點(diǎn)。求證:∠DBC=∠ECB。這位同學(xué)表現(xiàn)得非常好。他通過(guò)改變結(jié)論而創(chuàng)造性地提出了新的問(wèn)題。最后鼓勵(lì)大家繼續(xù)探索,如果此圖形不是等腰三角形,能否提出新的問(wèn)題呢?并證明上述問(wèn)題。

      由一道普通的教材例題“再創(chuàng)造”為數(shù)學(xué)情境,由學(xué)生自己編題,提出問(wèn)題并解決他們自己提出的問(wèn)題,通過(guò)反思,探索形成新的問(wèn)題。這樣不僅溝通、整合知識(shí)間的相互關(guān)系;激發(fā)了學(xué)生學(xué)習(xí)的積極性、主動(dòng)性;培養(yǎng)了學(xué)生主動(dòng)參與樂(lè)于探索的精神和在解決問(wèn)題后要善于將問(wèn)題發(fā)展,即一題多變的能力;培養(yǎng)學(xué)生提出新問(wèn)題的良好品質(zhì),促進(jìn)了學(xué)生創(chuàng)新思維的發(fā)展;鍛煉了學(xué)生的編題能力;更重要的是培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。

      二、調(diào)用生活經(jīng)驗(yàn),培養(yǎng)創(chuàng)新精神

      解題時(shí),經(jīng)常注意引導(dǎo)學(xué)生結(jié)合生活經(jīng)驗(yàn),運(yùn)用不同的知識(shí),從不同的角度去探索多種解題途徑,這樣既能提高學(xué)生思維的靈活性,又有利于培養(yǎng)學(xué)生的創(chuàng)新精神。在講相似三角形時(shí),我讓學(xué)生探究這樣一個(gè)問(wèn)題:現(xiàn)在有一棵很高的古樹(shù),要測(cè)出它的高度,但又不能爬到樹(shù)尖上去測(cè)量,你有好的辦法嗎?同學(xué)們分組進(jìn)行討論。同時(shí)鼓勵(lì)學(xué)生大膽運(yùn)用生活實(shí)際經(jīng)驗(yàn)說(shuō)出自己的想法。全體同學(xué)積極參加到討論中,想出了幾種解決的辦法。方法1:在有陽(yáng)光的前提下,樹(shù)在地面上的影長(zhǎng)可測(cè),然后在地面上立一根木桿,它在地面上也出現(xiàn)了一個(gè)影子,再用皮尺量出木桿長(zhǎng)和他的影長(zhǎng) 。當(dāng)有了以上三個(gè)數(shù)據(jù)后,樹(shù)的影長(zhǎng)與桿的影長(zhǎng)的比等于樹(shù)高與木桿高的比。方法2:在地面上放一面鏡子,移動(dòng)人的站位,使眼睛通過(guò)鏡子恰好看到樹(shù)的全身。方法3:利用小孔成像原理也可測(cè)得樹(shù)高。同學(xué)們議論紛紛,然后告訴學(xué)生,大家利用的都是相似形的原理,也是我們這節(jié)課要解決的主要問(wèn)題。這時(shí)學(xué)生對(duì)相似三角形產(chǎn)生了濃厚的興趣,帶著目標(biāo)參與到課堂學(xué)習(xí)中。對(duì)于這道題,不同程度的學(xué)生都能積極參與到教學(xué)活動(dòng)中,表現(xiàn)出不同思維過(guò)程,用自己最自然、最真實(shí)地感受去學(xué)習(xí)幾何。

      三、運(yùn)用實(shí)際問(wèn)題,提高創(chuàng)新能力

      數(shù)學(xué)來(lái)源于生活,應(yīng)用于生活。在學(xué)習(xí)多邊形內(nèi)角和定理時(shí),同學(xué)們通過(guò)動(dòng)手操作、親自實(shí)踐,將多邊形分割成三角形。分法不一,但他們得到的答案是一致的,n變形內(nèi)角和為:(n-2)·180 。在學(xué)習(xí)外角和定理時(shí)引導(dǎo)學(xué)生把操場(chǎng)看成不同的多邊形,從某點(diǎn)出發(fā),沿著跑道跑一圈,身體轉(zhuǎn)過(guò)的角度之和是不變的。從而歸納出n變形的外角和是3600(n≥3),接著引出新的問(wèn)題:用形狀大小完全相同的三角形或四邊形地板磚,彼此之間不留空隙,不重疊地鋪地面能實(shí)現(xiàn)平鋪嗎?同學(xué)們用自制圖形做試驗(yàn),并與同伴交流。在用三角形密鋪的圖案中,觀察每個(gè)拼接點(diǎn)處有幾個(gè)角,他們與這種三角形的三個(gè)內(nèi)角有什么關(guān)系。在用四邊形密鋪的圖案中,觀察每個(gè)拼接處的四個(gè)角與這種四邊形的四個(gè)內(nèi)角有什么關(guān)系。引導(dǎo)學(xué)生歸納總結(jié)并得出結(jié)論。接著繼續(xù)引導(dǎo)學(xué)生思考:用正五邊形能密鋪嗎?正六邊形可以嗎?試試看。你還能找到能密鋪的其他正多邊形嗎?讓學(xué)生在實(shí)踐中找答案,把多邊形內(nèi)角和外角和定理應(yīng)用得淋漓盡致,活靈活現(xiàn)。我不禁贊嘆道:“咱們班的同學(xué)都可以搞建筑,當(dāng)設(shè)計(jì)師了。”

      又如,在講等腰三角形時(shí),我拿了一塊殘缺的等腰三角形紙板(只剩下∠B和一邊BC)問(wèn)學(xué)生:“誰(shuí)能設(shè)法補(bǔ)全三角形?”

      同學(xué)們解得非常精彩,沒(méi)想到這道題竟成了“會(huì)下金蛋的母雞”,它在設(shè)計(jì)時(shí)險(xiǎn)些被扼殺了。通過(guò)小組進(jìn)一步討論探究,促進(jìn)了學(xué)生合作學(xué)習(xí)。同時(shí)激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,學(xué)生能夠從數(shù)學(xué)的角度發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,創(chuàng)造性地解決問(wèn)題。

      數(shù)學(xué)學(xué)習(xí)中經(jīng)常聯(lián)系實(shí)際,創(chuàng)設(shè)情境,引導(dǎo)學(xué)生反思問(wèn)題,不僅有助于學(xué)生在紛繁復(fù)雜的情況下選用各種方式討論問(wèn)題,思考探究問(wèn)題,而且更有助于學(xué)生主動(dòng)的創(chuàng)造性地解決問(wèn)題。學(xué)生的思維不斷得到提高,創(chuàng)新意識(shí)不斷得到加強(qiáng)。

      總之,數(shù)學(xué)學(xué)習(xí)中通過(guò)創(chuàng)設(shè)一個(gè)有利于學(xué)生主動(dòng)學(xué)習(xí)的氛圍,鼓勵(lì)學(xué)生積極地投入到學(xué)習(xí)活動(dòng)中去,高效地進(jìn)行思考。緊密聯(lián)系實(shí)際,運(yùn)用實(shí)際問(wèn)題大膽探索,這是培養(yǎng)學(xué)生創(chuàng)新意識(shí)的關(guān)鍵所在。

      猜你喜歡
      影長(zhǎng)平分線等腰三角
      玩轉(zhuǎn)角的平分線
      “拐彎”的影子
      怎樣構(gòu)造等腰三角形
      角平分線形成的角
      多用角的平分線證題
      如何構(gòu)造等腰三角形
      這里常有等腰三角形
      等腰三角形中討論多
      折疊莫忘角平分線
      珠海市| 河曲县| 专栏| 绵阳市| 平阴县| 古交市| 岱山县| 平南县| 留坝县| 阿瓦提县| 钟祥市| 潜山县| 苏尼特右旗| 交城县| 永安市| 汉沽区| 塘沽区| 茌平县| 包头市| 武川县| 寻乌县| 开鲁县| 渭南市| 屯昌县| 山阴县| 乐东| 广饶县| 永城市| 临沂市| 黄山市| 和政县| 江门市| 江西省| 宁都县| 北京市| 望谟县| 宁阳县| 乌拉特后旗| 永清县| 沂源县| 安宁市|