• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化

      2017-04-26 02:38:46沈留紅巫曉峰肖勁邦姜思汛鄧俊良左之才傅宏慶曹隨忠余樹民張有瑞
      關(guān)鍵詞:天和產(chǎn)奶量泌乳

      沈留紅,巫曉峰,肖勁邦,姜思汛,鄧俊良,左之才,傅宏慶,曹隨忠,余樹民,*,張有瑞

      (1.四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院 動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,奶牛疾病研究中心, 四川 成都 611130; 2.江蘇農(nóng)牧科技職業(yè)學(xué)院,江蘇 泰州 225300; 3.河北省廊坊市農(nóng)業(yè)局水產(chǎn)站,河北 廊坊 065000)

      回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化

      沈留紅1,巫曉峰1,肖勁邦1,姜思汛1,鄧俊良1,左之才1,傅宏慶2,曹隨忠1,余樹民1,*,張有瑞3

      (1.四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院 動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室,奶牛疾病研究中心, 四川 成都 611130; 2.江蘇農(nóng)牧科技職業(yè)學(xué)院,江蘇 泰州 225300; 3.河北省廊坊市農(nóng)業(yè)局水產(chǎn)站,河北 廊坊 065000)

      為探究回乳期奶牛血清中生長激素(GH)、胰島素(INS)、氫化可的松(HC)、轉(zhuǎn)化生長因子β1(TGF-β1)和胰島素樣生長因子1(IGF-1)含量的變化及其相關(guān)性。試驗(yàn)選擇規(guī)?;膛鋈债a(chǎn)奶量為(15.43 ± 2.10) kg,即將干乳的妊娠后期健康中國荷斯坦奶牛20頭。干乳開始當(dāng)天記為第0天,分別采集第0、1、3、5、7、9和11天奶牛尾靜脈血,ELISA法檢測血清中GH、INS、HC、TGF-β1和IGF-1含量并對結(jié)果進(jìn)行統(tǒng)計(jì)學(xué)處理,分析其在奶?;厝檫^程中的變化規(guī)律及其相關(guān)性。結(jié)果顯示,回乳期奶牛血清GH、INS、HC和TGF-β1含量在第0至1天變化不顯著(P>0.05);血清GH和HC含量第3至11天依次降低且差異均極顯著(P<0.01),其中血清HC含量第3天極顯著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差異均極顯著(P<0.01);血清TGF-β1含量第3至11天差異性均不顯著(P>0.05);血清IGF-1含量依次呈階梯式下降趨勢,第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間均差異不顯著(P>0.05),但第0至1天、第3至5天、第7至11天3階段之間差異極顯著(P<0.01)?;厝槠谀膛Q錑H、INS、TGF-β1和IGF-1含量變化兩兩間呈極顯著相關(guān)(P<0.01);HC含量變化與GH、INS和IGF-1含量變化均呈極顯著相關(guān)(P<0.01),與TGF-β1含量變化呈顯著負(fù)相關(guān)(P<0.05)。

      回乳期奶牛;生長激素;胰島素;氫化可的松;轉(zhuǎn)化生長因子β1;胰島素樣生長因子1

      激素在哺乳動(dòng)物生長發(fā)育過程中具有不可替代的調(diào)控作用,其中直接調(diào)控乳腺發(fā)育和泌乳的激素主要有生長激素(growth hormone,GH)、胰島素(insulin,INS)、氫化可的松(hydrocortisone,HC)、催乳素(prolactin, PRL)、雌激素(estrogen, E)和孕酮(progesterone,P4)等[1-2],它們通過與轉(zhuǎn)化生長因子β1(transforming growth factor β1,TGF-β1)、胰島素樣生長因子1(insulin-like growth factor 1,IGF-1)、信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子5(signal transduction and transcriptional activation factor of 5,STAT5)等[3]細(xì)胞因子相互作用而形成乳腺發(fā)育和泌乳的調(diào)控網(wǎng)絡(luò)。泌乳相關(guān)激素對人、小鼠、奶牛等動(dòng)物泌乳期的影響已有研究,并顯示均與泌乳量呈一定的相關(guān)性[4-6]。由于奶牛經(jīng)過泌乳期,消耗大量能量和營養(yǎng)物質(zhì),在妊娠后期,為保證胎犢宮內(nèi)生長發(fā)育及分娩后再次泌乳做充分準(zhǔn)備,奶牛需要經(jīng)過一段時(shí)間的回乳期后進(jìn)入干乳期,使乳房更新乳腺組織,另外,不適當(dāng)?shù)幕厝榉椒〞?huì)增加干乳期及分娩后奶牛乳房炎的發(fā)生率,而目前關(guān)于回乳期奶牛泌乳相關(guān)激素和因子的變化規(guī)律及其相關(guān)性研究尚未見報(bào)道。因此,本試驗(yàn)旨在探究回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化規(guī)律及其相關(guān)性,以進(jìn)一步研究回乳期奶牛相關(guān)泌乳激素的調(diào)控機(jī)理,以及為尋求更安全有效的回乳技術(shù)提供理論依據(jù)。

      1 材料與方法

      1.1 材料

      1.1.1 試驗(yàn)動(dòng)物

      試驗(yàn)選擇四川省某規(guī)?;膛霭敕忾]統(tǒng)一舍飼,體質(zhì)量(582±41)kg、2~4胎中國荷斯坦奶牛51頭。從中選擇體況良好,臨床檢查健康,乳房、乳汁均正常,即將進(jìn)入回乳期,產(chǎn)奶量為(15.43±2.10)kg的妊娠后期奶牛20頭。

      1.1.2 試驗(yàn)試劑

      牛GH、INS、HC、TGF-β1和IGF-1雙抗體夾心酶聯(lián)免疫吸附檢測(ELISA)試劑盒,均由美國RD公司提供。

      1.2 試驗(yàn)方法

      1.2.1 回乳方式

      采用逐漸干奶法[7-8],方法:停喂多汁飼料,減少精料喂量,以青干草為主,控制飲水,適當(dāng)加強(qiáng)運(yùn)動(dòng)。在回乳第1天,擠奶次數(shù)由3次改為2次,第2天改為1次,逐漸減少擠奶次數(shù),當(dāng)奶牛日產(chǎn)奶量為3~4 kg時(shí),停止擠奶。

      1.2.2 血清收集

      奶?;厝殚_始當(dāng)天記為第0天,依次采集第0、1、3、5、7、9和11天尾靜脈血10 mL,置于未加抗凝劑的離心管中,室溫下靜置1 h,離心力352g離心10 min,轉(zhuǎn)移上層血清于EP管中,-20 ℃凍存,待檢。

      1.2.3 ELISA檢測

      采用雙抗體夾心酶聯(lián)免疫吸附技術(shù)(ELISA)測定牛GH、INS、HC、TGF-β1和IGF-1含量,步驟嚴(yán)格按照說明書進(jìn)行。

      1.3 統(tǒng)計(jì)分析

      采用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,K-S檢驗(yàn)計(jì)量資料是否服從正態(tài)分布,以平均數(shù)±標(biāo)準(zhǔn)差(Mean ± SD)表示,兩組間采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,相關(guān)性分析采用雙變量Pearson相關(guān)分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

      2 結(jié)果與分析

      2.1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

      由表1可知,回乳期血清GH、INS、HC、TGF-β1和IGF-1含量在第0至1天變化均不顯著(P>0.05);血清GH和HC含量第3至11天依次降低且差異均極顯著(P<0.01),其中血清HC含量第3天極顯著高于其余各天(P<0.01);血清INS含量第3至11天依次升高且差異均極顯著(P<0.01);血清TGF-β1含量第3至11天差異性均不顯著(P>0.05);血清IGF-1含量依次呈階梯式下降趨勢,但第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間差異均不顯著(P>0.05),而第0至1天、第3至5天、第7至11天3個(gè)階段之間差異極顯著(P<0.01)。

      2.2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相關(guān)性

      由表2可知,回乳期奶牛血清GH、INS、TGF-β1和IGF-1含量變化兩兩間呈極顯著相關(guān)(P<0.01),其中血清GH與HC和IGF-1、INS與TGF-β1極顯著正相關(guān)(P<0.01),血清GH與INS和TGF-β1、INS與HC和IGF-1、TGF-β1與IGF-1極顯著負(fù)相關(guān)(P<0.01),血清HC與TGF-β1顯著負(fù)相關(guān)(P<0.05)。

      表1 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量

      Table 1 Levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

      時(shí)間Time指標(biāo)Index(n=20)GH/(ng·mL-1)INS/(nIU·mL-1)HC/(ng·mL-1)TGF-β1/(ng·mL-1)IGF-1/(ng·mL-1)第0天0thday360.90±11.61Aa421.76±33.53F958.90±40.92B184.20±12.38B56.04±3.81A第1天1stday349.96±16.33Aa430.35±26.56F946.20±54.49B183.72±9.68B54.88±3.93A第3天3rdday328.12±11.57Ab482.43±11.67E1181.77±67.44A236.38±14.34A49.03±1.53B第5天5thday287.75±14.07B535.81±18.20D855.35±46.27C231.87±10.44A46.78±1.70B第7天7thday247.75±15.45C593.19±21.36C752.94±26.60D243.56±23.85A43.25±2.59Ca第9天9thday210.74±15.50D638.95±20.62B689.82±27.15E229.95±15.66A42.20±2.76Cab第11天11thday177.14±12.89E702.92±27.26A556.67±25.27F237.68±15.00A38.20±1.08Cb

      同列數(shù)據(jù)后無相同大、小寫字母的分別表示處理間差異極顯著(P<0.01)與顯著(P<0.05)。

      Data followed by no same uppercase or lowercase letters within the same column indicated significant difference atP<0.01 andP<0.05, respectively.

      表2 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1的相關(guān)性

      Table 2 Correlation between levels of GH, INS, HC, TGF-β1 and IGF-1 in cows’ serum during milk withdrawal period

      指標(biāo)IndexGHr值rvalueP值PvalueINSr值rvalueP值PvalueHCr值rvalueP值PvalueTGF-β1r值rvalueP值PvalueIGF-1r值rvalueP值PvalueGH——-0.956**<0.0010.824**<0.001-0.606**<0.0010.901**<0.001INS——-0.812**<0.0010.634**<0.001-0.885**<0.001HC——-0.296*0.0390.893**<0.001TGF-β1——-0.706**<0.001IGF-1——

      r,相關(guān)系數(shù);*與**分別代表相關(guān)性顯著(P<0.05)與極顯著(P<0.01)。

      r, Correlation coefficient; * and ** indicated statistically significant correlation atP<0.05 andP<0.01, respectively.

      3 討論

      3.1 回乳期奶牛血清GH含量的變化

      GH是一種由腦垂體分泌的單一肽鏈蛋白質(zhì)激素,具有促進(jìn)生長發(fā)育、調(diào)控泌乳等作用[9-10]。運(yùn)用牛生長素可調(diào)節(jié)奶牛機(jī)體物質(zhì)代謝,提高飼料轉(zhuǎn)化率,增加產(chǎn)奶量[11-12]。Macrina[13]研究表明,GH可提高奶牛總血流量并增加肝臟丙酸異生成糖的能力,降低總氧化量,提高乳腺血流量,促使奶牛動(dòng)用機(jī)體儲(chǔ)存物質(zhì),增加葡萄糖利用率。對早期泌乳奶牛注射GH可提高乳房利用營養(yǎng)物質(zhì)合成牛奶的效率,增加產(chǎn)奶量。Hadi等[14]和Kawashima等[15]均發(fā)現(xiàn),奶牛GH受體和IGF-1表達(dá)量越高,產(chǎn)奶量越高,主要通過JAK2/STAT5信號通路、IGF-1和GH受體等增加乳腺血流量,降低外周組織對INS的應(yīng)答,使?fàn)I養(yǎng)成分向乳腺聚集,促進(jìn)乳腺泌乳[16]。本研究結(jié)果顯示,在奶?;厝檫^程中,GH含量呈下降趨勢,可能是減少了擠奶刺激,乳房GH受體表達(dá)受到抑制,進(jìn)而反饋性的抑制垂體分泌GH,也可能是由于懷孕末期,為滿足胎犢宮內(nèi)快速發(fā)育需求導(dǎo)致。

      3.2 回乳期奶牛血清INS含量的變化

      INS具有加強(qiáng)糖原合成、維持血糖恒定并調(diào)控泌乳等作用[17]。其可激活胰島素亞基受體I(IRS-I),通過配體約束力和自動(dòng)磷酸化的誘導(dǎo),促使INS受體蛋白位點(diǎn)生成,從而調(diào)控乳腺上皮細(xì)胞乳糖、乳脂的生物合成[18]。但I(xiàn)NS對反芻動(dòng)物乳腺發(fā)育的作用仍存在爭議,佟慧麗等[19]使用INS處理奶山羊乳腺上皮細(xì)胞,發(fā)現(xiàn)細(xì)胞活力無明顯變化。陳建暉等[20]使用INS對奶牛乳腺上皮細(xì)胞進(jìn)行類似處理后細(xì)胞活力下降。田青等[21]表示INS對奶牛泌乳細(xì)胞生長及分化均有促進(jìn)作用。本研究結(jié)果顯示,在奶?;厝檫^程中,血清INS含量在第0至1天變化不顯著(P>0.05),在第3至11天依次升高且差異均極顯著(P<0.01),可能由于回乳期間GH含量降低,減少其對INS的抑制作用,并且由于懷孕后期宮內(nèi)胎犢發(fā)育需要大量糖脂沉積,共同促進(jìn)機(jī)體釋放INS。

      3.3 回乳期奶牛血清HC含量的變化

      HC是哺乳動(dòng)物腎上腺皮質(zhì)分泌的主要糖皮質(zhì)激素之一,近年來,關(guān)于HC對提高奶牛泌乳量及改善乳品質(zhì)逐漸成為研究熱點(diǎn)。HC主要通過結(jié)合乳腺細(xì)胞胞內(nèi)核受體,啟動(dòng)并調(diào)控泌乳相關(guān)基因表達(dá)和乳蛋白合成等相關(guān)基因組機(jī)制來實(shí)現(xiàn)其生理和藥理功能[22-23]。Kabotanski等[24]發(fā)現(xiàn),HC能夠增強(qiáng)PRL對酪蛋白mRNAs累積,進(jìn)而對奶牛乳腺上皮細(xì)胞增殖起重要調(diào)控。本研究結(jié)果顯示,在奶?;厝檫^程中,血清HC含量在第0至1天差異性不顯著(P>0.05),第3天極顯著高于其余各天(P<0.01),可能是由于奶牛飼糧成分和飼養(yǎng)環(huán)境等改變造成的應(yīng)激使HC含量升高。第3至11天依次降低且差異均極顯著(P<0.01),推測在奶牛回乳過程中,PRL表達(dá)量下降[25],促使乳腺減少其泌乳細(xì)胞胞內(nèi)核受體表達(dá)量,反饋抑制腎上腺皮質(zhì)分泌HC,降低產(chǎn)奶量,也從正面表明了HC在奶牛回乳中的重要作用。

      3.4 回乳期奶牛血清TGF-β1含量的變化

      TGF-β1是一種多效的細(xì)胞因子,可影響上皮細(xì)胞增殖、凋亡并維持細(xì)胞外基質(zhì)穩(wěn)態(tài),對于乳腺形態(tài)發(fā)生及分泌功能有重要作用。已有研究表明,TGF-β1可誘導(dǎo)乳腺上皮干細(xì)胞群衰老,抑制乳腺發(fā)育[26],并與乳腺泌乳的終止信號密切相關(guān)[27]。另外,TGF-β1可減少乳腺上皮細(xì)胞由PRL誘導(dǎo)的β-酪蛋白mRNA和蛋白表達(dá)水平,且對蛋白水平的抑制更明顯[28],說明,TGF-β1在牛乳腺退化過程中對抑制細(xì)胞生長起重要調(diào)控作用[29],Vries等[30]指出TGF-β1在奶牛回乳后1周內(nèi)達(dá)到最高,本研究發(fā)現(xiàn),在奶?;厝檫^程中,血清TGF-β1含量在第0至1天變化均不顯著(P>0.05),第0至1天極顯著低于第3至11天,且第3至11天差異性均不顯著(P>0.05),與上述研究結(jié)果趨勢一致,可能是由于奶牛GH降低,增強(qiáng)TGF-β1前體相關(guān)肽活性[31],促進(jìn)乳腺中TGF-β1的表達(dá),減少β-酪蛋白mRNA和蛋白水平,降低奶牛泌乳量。

      3.5 回乳期奶牛血清IGF-1含量的變化

      IGF-1是一類功能復(fù)雜的多肽因子,可促進(jìn)乳腺泌乳,特別是介導(dǎo)GH的催乳作用[3]。研究表明,乳腺組織中存在IGF-1及其受體,對早期泌乳奶牛注射GH,增加了IGF-1及其受體表達(dá)量[13]。另外,IGF-1可直接通過其受體作用于乳腺,對乳腺最終分化完全、發(fā)育成熟、乳汁生成以及新生兒的生長發(fā)育有調(diào)控作用[32],Murney等[33]和Hernndez等[34]也均表示IGF-1與奶牛產(chǎn)奶量相關(guān)性顯著。本研究指出,在奶牛回乳過程中,血清IGF-1含量依次呈階梯式下降,而第0天和第1天、第3天和第5天、第7天和第9天、第9天和第11天之間差異均不顯著(P>0.05),但第0至1天、第3至5天、第7至11天三階段之間差異極顯著(P<0.01),與上述結(jié)果趨勢一致,可能是由于GH降低,其與IGF-1結(jié)合減少,反饋抑制乳腺泌乳細(xì)胞泌乳。表明奶牛IGF-1不僅在奶牛青春期乳腺生長和泌乳期起正向調(diào)控,且在奶?;厝槠诳赏ㄟ^降低IGF-1含量的方法,促進(jìn)奶?;厝?。

      3.6 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1間的相關(guān)性

      神經(jīng)內(nèi)分泌的多種激素與乳腺外組織及乳腺分泌的多種生長因子相互協(xié)同,以內(nèi)分泌、旁分泌和自分泌等方式共同調(diào)節(jié)乳腺的生長發(fā)育和泌乳[2]。Rhoads等[12]研究表明,泌乳主要受GH調(diào)控,其主要通過IGF-1介導(dǎo)發(fā)揮泌乳作用[3],且在注射GH后,可提高奶牛產(chǎn)奶量[13]。本研究中,奶?;厝槠贕H含量與IGF-1含量均降低,且呈極顯著正相關(guān)(P<0.01),表明在奶?;厝檫^程中,IGF-1和GH相互影響,協(xié)同調(diào)控奶牛泌乳,降低產(chǎn)奶量。另有研究資料表明,HC通過促進(jìn)GH對葡萄糖的攝取方式,增加泌乳量[35],但I(xiàn)NS與GH在泌乳過程中存在拮抗作用,當(dāng)血清INS含量較高時(shí),INS競爭性抑制GH表達(dá),并調(diào)控葡萄糖轉(zhuǎn)運(yùn)至非乳腺組織,使乳腺對葡萄糖攝取不敏感,而血清INS含量較低時(shí),GH呈高表達(dá),共同調(diào)節(jié)乳腺與乳腺外組織的營養(yǎng)競爭,使?fàn)I養(yǎng)向乳腺轉(zhuǎn)移,促進(jìn)乳腺發(fā)育和乳的合成[36]。本研究顯示,奶?;厝槠?,GH與HC呈極顯著正相關(guān),而與INS呈極顯著負(fù)相關(guān)(P<0.01),表明奶?;厝闀r(shí),GH、HC均降低,而INS與GH仍存在明顯拮抗。有研究指出,在乳腺退化過程中,TGF-β1在轉(zhuǎn)錄水平及蛋白水平的表達(dá)均增加[37],抑制GH受體、IGF-1表達(dá),減少HC活性[38],在INS促使機(jī)體營養(yǎng)物質(zhì)不向乳腺聚集的基礎(chǔ)上,誘導(dǎo)乳腺導(dǎo)管快速退化[37]。本研究結(jié)果顯示,在奶?;厝檫^程中,TGF-β1含量與GH、IGF-1含量呈極顯著負(fù)相關(guān)(P<0.01),與HC含量呈顯著負(fù)相關(guān)(P<0.05),與INS含量呈極顯著正相關(guān)(P<0.01),表明在奶?;厝槠?,GH、HC和IGF-1是奶?;厝榈呢?fù)調(diào)控因子,而INS和TGF-β1是奶?;厝榈恼{(diào)控因子。

      [1] 文靜,卜登攀, 王建發(fā), 等. 激素調(diào)控乳蛋白合成的作用及其分子機(jī)制[J]. 華北農(nóng)學(xué)報(bào), 2012, 27(增刊):111-115. WEN J, BU D P, WANG J F, et al.Progress in the regulation role of lactoprotein synthesis by hormone and its molecular mechanism[J].ActaAgriculturaeBoreali-Sinica, 2012, 27(Suppl.): 111-115.(in Chinese with English abstract)

      [2] OGATA Y, YU G M, HIDAKA T, et al. Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation [J].Theriogenology, 2016, 86(6):1421-1426

      [3] BACH L A. Insulin-like growth factor binding proteins—an update [J].PediatricEndocrinologyReviews:Per, 2015, 13(2):521-530.

      [4] WANG J F, FU S P, LI S N, et al. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells [J].InternationalJournalofMolecularSciences, 2013, 14(11):21474-21488.

      [5] 苗培. 催乳素及其受體的研究進(jìn)展[J]. 中國畜牧獸醫(yī)文摘, 2016, 32(3):55. MIAO P. The research progress of prolactin and its receptor [J].ChinaAnimalHusbandryandVeterinaryAbstract, 2016, 32(3):55.(in Chinese)

      [6] 黃利,李利民,劉之恒,等. 乳癖2號湯對乳腺增生豚鼠雌孕激素水平及病理形態(tài)的影響[J]. 四川中醫(yī), 2013, 31(1):61-63. HUANG L, LI L M, LIU Z H, et al. Breast 2 soup for hyperplasia of mammary glands guinea pig female progesterone level and the influence of the pathologic morphology [J].JournalofSichuanofTraditionalChineseMedicine, 2013, 31(1):61-63.(in Chinese)

      [7] ZOBEL G, LESLIE K. Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off [J].JournalofDairyScience, 2013, 96(8):5064-5071.

      [8] TUCKER C B, LACY-HULBERT S J, WEBSTER J R. Effect of milking frequency and feeding level before and after dry off on dairy cattle behavior and udder characteristics[J].JournalofDairyScience, 2009, 92(7):3194-3203.

      [9] STEYN F J. Nutrient sensing overrides somatostatin and growth hormone-releasing hormone to control pulsatile growth hormone release [J].JournalofNeuroendocrinology, 2015, 27(7):577-587.

      [10] BROWN-BORG H M. Reduced growth hormone signaling and methionine restriction: Interventions that improve metabolic health and extend life span [J].AnnalsoftheNewYorkAcademyofSciences, 2015, 1363(1):40-49.

      [11] FORSYTH I A, WALLIS M. Growth hormone and prolactin-molecular and functional evolution [J].JournalofMammaryGlandBiologyandNeoplasia, 2002, 7(3):291-312.

      [12] RHOADS M L, MEYER J P, KOLATH S J, et al. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows [J].JournalofDairyScience, 2008, 91(5):1802-1813.

      [13] MACRINA A L, KAUF A C W, KENSINGER R S. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health [J].JournalofDairyScience, 2011, 94(9):4566-4573.

      [14] HADI Z, ATASHI H, DADPASAND M, et al. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein Dairy Cows [J].IranianJournalofVeterinaryResearch, 2015, 16(3):294-298.

      [15] KAWASHIMA C, MUNAKATA M, MATSUI M, et al. Polymorphism in promoter region of growth hormone receptor is associated with potential production capacity of insulin-like growth factor-1 in pre-pubertal Holstein heifers [J].JournalofAnimalPhysiologyandAnimalNutrition, 2016, 100(6):1037-1040.

      [16] LUNDBERG E, KRISTROM B, JONSSON B, et al. Growth hormone (GH) dose-dependent IGF-I response relates to pubertal height gain [J].BMCEndocrineDisorders, 2015, 15(1):1-14.

      [17] RIEHLE C, ABEL E D. Insulin signaling and heart failure [J].CirculationResearch, 2016, 118(7):1151-1169.

      [18] AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].JournalofDairyScience, 2006, 89(4):1222-1234.

      [19] 佟慧麗,高學(xué)軍,李慶章,等. 胰島素、催乳素對奶山羊乳腺上皮細(xì)胞泌乳功能的影響[J]. 畜牧獸醫(yī)學(xué)報(bào), 2008, 39(6):721-725. TONG H L, GAO X J, LI Q Z, ea al. Impacting of insulin and prolactin on mammary gland epithelial cell line [J].ChineseJournalofAnimalandVeterinarySciences, 2008, 39(6):721-725.(in Chinese with English abstract)

      [20] 陳建暉,佟慧麗,李慶章,等. 胰島素、催乳素和孕酮對奶牛乳腺上皮細(xì)胞泌乳功能的影響[J]. 中國奶牛, 2008(8):9-13. CHEN J H, DONG H L, LI Q Z, et al. Influence of insulin, prolactin and progesterone on milk-secretion of mammary gland epithelial cell in dairy cow [J].ChinaDairyCattle, 2008, 8: 9-13.(in Chinese with English abstract)

      [21] 田青,季昀,龐學(xué)燕,等. 胰島素對奶牛乳腺上皮細(xì)胞酪蛋白合成調(diào)節(jié)機(jī)理的研究[J]. 動(dòng)物營養(yǎng)學(xué)報(bào), 2013, 25(3):550-560. TIAN Q, JI Y, PANG X Y, et al. A study of insulin action mechanism on casein synthesis of bovine mammary epithelial cells [J].ChineseJournalofAnimalNutrition, 2013, 25(3):550-560.(in Chinese with English abstract)

      [22] 李敏. 新型糖皮質(zhì)激素對肥大細(xì)胞脫顆粒的快速作用及其機(jī)制研究[D]. 上海:第二軍醫(yī)大學(xué), 2010. LI M. New glucocorticoid on mast cell degranulation quick effect and its mechanism [D]. Shanghai: Second Military Medical University, 2010.(in Chinese with English abstract)

      [23] SHEEHY P A, NICHOLAS K R,WYNN P C. An investigation of the role of insulin in bovine milk protein gene expression in mammary explant culture [J].AsianAustralasianJournalofAnimalSciences, 2000, 13:272-275.

      [24] KABOTYANSKI E B, RIJNKELS M, FREEMANZADROWSKI C, et al. Lactogenic hormonal induction of long distance interactions between Β-casein gene regulatory elements [J].JournalofBiologicalChemistry, 2009, 284(34):22815-22824.

      [25] LITTLEJOHN M D, HENTY K M, TIPLADYi K, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle [J].NatureCommunications, 2014, 5(4):5861-5861.

      [26] YANG G, ZHOU J, TENG Y, et al. Mesenchymal TGF-β signaling orchestrates dental epithelial stem cell homeostasis through wnt signaling [J].StemCells, 2014, 32(11):2939-2948.

      [27] GRONER B. Transcription factor regulation in mammary epithelial cells [J].DomesticAnimalEndocrinology, 2002, 23(23):25-32.

      [28] KLLEINBERG D L, FELDMAN M, RUAN W. IGF-1: An essential factor in terminal end bud formation and ductal morphogenesis [J].JournalofMammaryGlandBiology&Neoplasia, 2000, 5(1):7-17.

      [29] ZARZYNSKA J, GAJKOWSKA B, WOJEWODZKA U, et al. Apoptosis and autophagy in involuting bovine mammary gland is accompanied by up-regulation of TGF-beta1 and suppression of somatotropic pathway [J].PolishJournalofVeterinarySciences, 2007, 10(1):1-9.

      [30] VRIES L D D, CASEY T, DOVER H, et al. Effects of transforming growth factor-β on mammary remodeling during the dry period of dairy cows [J].JournalofDairyScience, 2011, 94(12):6036-6046.

      [31] ZHANG Y, MORGAN R, CHEN C, et al. Abstract A120: Tumor-educated B cells acquire LAP/TGF-β1 and PD-L1 expression and suppress antitumor immune response [J].CancerImmunologyResearch, 2016, 4(Suppl. 1):16-19.

      [32] NAWATHE A R, CHRISTIAN M, KIM S H, et al. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders [J].ClinicalEpigenetics, 2016, 8(1):1-13.

      [33] MURNEY R, STELWAGEN K, WHEELER T T, et al. The effects of milking frequency on insulin-like growth factor 1 signaling within the mammary gland of dairy cows [J].JournalofDairyScience, 2015, 98(8):5422-5428.

      [34] HEERNANDEZ H, FLORES J A, DELGADILLO J A, et al. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats [J].AnimalScienceJournal, 2015, 87(4):484-491.

      [35] 李蔚輝,魏學(xué)鑫. 糖皮質(zhì)激素的信號轉(zhuǎn)導(dǎo)系統(tǒng)[J]. 亞太傳統(tǒng)醫(yī)藥, 2007, 3(12):21-25. LI W H, WEI X J. Signal transduction system of glucocorticoid [J].Asia-PacificTraditionalMedicine, 2007, 3(12):21-25.(in Chinese)

      [36] 趙國麗,宮艷斌,韓元,等. 激素和生長因子調(diào)控奶牛乳腺發(fā)育的研究進(jìn)展[J]. 中國奶牛, 2011 (6):25-30. ZHAO G L, GONG Y B, HAN Y, et al. Advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows [J].ChinaDairyCattle, 2011 (6):25-30.(in Chinese with English abstract)

      [37] WUU W J, LEE C F, HSIN C H, et al. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism [J].JournalofCellularBiochemistry, 2008, 104(5):1647-1659.

      [38] SEERRA R, CROWLEY M R. Mouse models of transforming growth factor β impact in breast development and cancer [J].EndocrineRelatedCancer, 2006, 12(4):749-760.

      (責(zé)任編輯 盧福莊)

      Changes of GH, INS, HC, TGF-β1 and IGF-1 levels in cows’ serum during milk withdrawal period

      SHEN Liuhong1, WU Xiaofeng1, XIAO Jinbang1, JIANG Sixun1, DENG Junliang1, ZUO Zhicai1, FU Hongqing2, CAO Suizhong1, YU Shumin1,*, ZHANG Yourui3

      (1.TheKeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince,TheMedicalResearchCenterforCowDisease,CollegeofVeterinaryMedicine,SichuanAgriculturalUniversity,Chengdu611130,China; 2.JiangsuAgri-animalHusbandryVocationalCollege,Taizhou225300,China; 3.AgriculturalBureauofLangfangCity,Langfang065000,China)

      In order to explore the changes and correlation among the levels of growth hormone (GH), insulin (INS), hydrocortisone (HC), TGF-β1 and IGF-1 in cows’ serum during the period of milk withdrawal. Twenty healthy Chinese Holstein cows in late pregnancy that gave (15.43±2.10) kg milk per day were used, which were ready to dry milk. The day when cows began to dry milk was recorded as the 0 d. The cows’ venous blood from the tail on the day 0, 1, 3, 5, 7, 9 and 11 were collected. ELISA was used to evaluate the levels of GH, INS, HC, TGF-β1 and IGF-1 in serum to analyze the changes and correlation among them. The results showed that, during the period of milk withdrawal, the changes of GH, INS, HC and TGF-β1 levels in serum were not obvious from the day 0 to the day 1 (P>0.05). The levels of GH and HC in serum were both on the decline and had significant difference from the day 3 to the day 11 (P<0.01), and the levels of GH in serum on the day 3 was significantly higher than those on the other days (P<0.01). The levels of INS in serum was on the rise and had significant (P<0.01) difference from the day 3 to the day 11, while the levels of TGF-β1 in serum had no significant (P>0.05) difference from the day 3 to the day 11. The levels of IGF-1 in serum showed downward trend in ladder type, and the difference among levels of IGF-1 in serum on the day 0 and day 1, day 3 and day 5, day 7 and day 9, day 9 and day 11 were not obvious (P>0.05), while IGF-1 levels among 0-1 d, 3-5 d and 7-11 d had significant (P<0.01) difference. There was significant (P<0.01) correlation among the levels of GH, INS, TGF-β1 and IGF-1 in cows’ serum separately during the period of milk withdrawal. The HC levels showed significant (P<0.01) correlation with GH, INS and IGF-1 levels, while it showed significant (P<0.05) negative correlation with TGF-β1 levels.

      cows in milk withdrawal period; GH; INS; HC; TGF-β1; IGF-1

      http://www.zjnyxb.cn

      10.3969/j.issn.1004-1524.2017.04.05

      2016-11-01

      四川省教育廳重點(diǎn)項(xiàng)目(15ZA0024);江蘇農(nóng)牧科技職業(yè)學(xué)院產(chǎn)業(yè)發(fā)展關(guān)鍵技術(shù)創(chuàng)新項(xiàng)目(NSF201604);四川農(nóng)業(yè)大學(xué)雙支計(jì)劃項(xiàng)目

      沈留紅(1979—),男,江蘇如皋人,副教授,博士研究生,從事反芻動(dòng)物疾病及繁殖新技術(shù)研究,E-mail:shenlh@sicau.edu.cn

      *通信作者,余樹民,E-mail:yayushumin@163.com

      S857.2;[S811.2]

      A

      1004-1524(2017)04-0548-07

      浙江農(nóng)業(yè)學(xué)報(bào)ActaAgriculturaeZhejiangensis, 2017,29(4): 548-554

      沈留紅,巫曉峰,肖勁邦,等. 回乳期奶牛血清GH、INS、HC、TGF-β1和IGF-1含量變化[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(4): 548-554.

      猜你喜歡
      天和產(chǎn)奶量泌乳
      答案
      提高母豬產(chǎn)奶量的方法
      母豬泌乳量不足的危害及提高措施
      不來月經(jīng)加上泌乳,說不定是腦子長瘤了
      荷斯坦牛各胎次產(chǎn)奶量規(guī)律研究及相關(guān)性分析
      中國奶牛(2019年12期)2020-01-08 07:15:38
      不來月經(jīng)加上泌乳,說不定是腦子長瘤了
      不同泌乳階段駝乳理化指標(biāo)和體細(xì)胞數(shù)的測定分析
      在疏離與沖突的世界中尋找意義
      文教資料(2016年26期)2017-02-22 19:31:08
      瘤胃可降解纈氨酸對泌乳后期奶牛產(chǎn)奶量的影響
      飼料博覽(2016年3期)2016-04-05 16:07:52
      包頭地區(qū)荷斯坦奶牛產(chǎn)奶量和乳成分的季節(jié)性變化規(guī)律
      全椒县| 江陵县| 江都市| 稷山县| 灵川县| 称多县| 大港区| 武城县| 名山县| 墨脱县| 西和县| 两当县| 万荣县| 利川市| 柘荣县| 丹棱县| 合川市| 惠东县| 吉隆县| 遂昌县| 马鞍山市| 循化| 肃宁县| 阿瓦提县| 夏邑县| 三都| 云霄县| 黔西| 雷山县| 肃宁县| 柳河县| 石屏县| 荥阳市| 都匀市| 宁强县| 寿宁县| 盖州市| 阳西县| 静安区| 中山市| 尖扎县|