劉羽,劉盛雨,盧娟芳,于慶帆,席萬鵬,2,4
(1西南大學(xué)園藝園林學(xué)院,重慶 400716;2石河子大學(xué)農(nóng)學(xué)院,新疆石河子 832000;3新疆兵團(tuán)第四師農(nóng)科所,新疆伊犁 835000;4南方山地園藝學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
新疆紅肉蘋果3個(gè)品系的風(fēng)味品質(zhì)與抗氧化能力評(píng)價(jià)
劉羽1,劉盛雨1,盧娟芳1,于慶帆3,席萬鵬1,2,4
(1西南大學(xué)園藝園林學(xué)院,重慶 400716;2石河子大學(xué)農(nóng)學(xué)院,新疆石河子 832000;3新疆兵團(tuán)第四師農(nóng)科所,新疆伊犁 835000;4南方山地園藝學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
【目的】明確新疆紅肉蘋果風(fēng)味物質(zhì)組成與含量特征,了解其營(yíng)養(yǎng)品質(zhì)狀況,為開發(fā)利用提供信息?!痉椒ā糠謩e采用高效液相色譜(High Performance Liquid Chromatography,HPLC)和氣相色譜-質(zhì)譜聯(lián)用(Gas Chromatography-Mass Spectrometer,GC-MS)技術(shù),以富士蘋果‘長(zhǎng)富2號(hào)’為對(duì)照,檢測(cè)分析3個(gè)新疆紅肉蘋果品系果皮和果肉的糖、酸和揮發(fā)性成分的組成及含量,并測(cè)定評(píng)價(jià)其提取物的總酚、總黃酮的含量以及抗氧化活性?!窘Y(jié)果】3個(gè)供試品系的可滴定酸含量為21.01—27.71 mg·mL-1,是對(duì)照的3.68—4.85倍,pH為3.12—3.39,顯著低于對(duì)照(P<0.05)。共檢測(cè)到果糖、葡萄糖、蔗糖3種可溶性糖,其中以果糖(56.71%—64.07%)為主,蔗糖的含量最低,僅僅占總糖含量的 8.89%—31.12%。供試品系中可溶性糖的含量均顯著低于對(duì)照;果肉中果糖的含量顯著高于果皮,而葡萄糖和蔗糖的含量無顯著差異(P<0.05)。共檢測(cè)到5種有機(jī)酸,包括檸檬酸、酒石酸、草酸、蘋果酸和奎寧酸,以蘋果酸(56.53%—95.07%)的含量最高,其次為檸檬酸(2.11%—40.72%),其他酸的含量均低于0.6 mg·g-1FW,奎寧酸只在‘13-3’中檢測(cè)到。果皮、果肉中,蘋果酸含量分別是對(duì)照的6.56—8.99倍和5.58—6.61倍,檸檬酸的含量是對(duì)照的16.80—117倍和4.50—16.17倍;果肉中蘋果酸的含量顯著高于果皮,而檸檬酸的含量顯著低于果皮(P<0.05)。共檢測(cè)到85種揮發(fā)性成分,醛類、酯類和萜類的含量最為豐富,共占總香氣物質(zhì)的 92.32%—97.84%?!?3-3’與對(duì)照相似,以酯類和萜類為主,丁酸乙酯、2-甲基丁酸乙酯、己酸甲酯、乙酸己酯是主要酯,蘇合香烯、D-檸檬烯、α-法尼烯是主要萜,而‘P3’和‘新農(nóng)’以醛類和萜類為主,己醛和反-2-己醛是主要的醛。果皮中揮發(fā)性成分的含量顯著高于果肉(P<0.05)。果皮中總酚、總黃酮的含量分別是對(duì)照的2.31—2.65倍和1.23—1.61倍,果肉中分別是對(duì)照的5.53—16倍和1.43—3.49倍,3種自由基清除能力也顯著高于對(duì)照。果皮的總酚、總黃酮含量均高于果肉,且抗氧化活性也遠(yuǎn)高于果肉,‘13-3’的總酚、總黃酮及抗氧化能力最高。【結(jié)論】3個(gè)供評(píng)價(jià)的品系材料均屬于新疆紅肉蘋果中的高酸類型;低可溶性糖、高蘋果酸、高檸檬酸、低總糖蘋果酸比,以及特征香氣成分己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯在其獨(dú)特的風(fēng)味品質(zhì)決定中有重要作用,‘P3’和‘新農(nóng)’屬“青香型”蘋果,‘13-3’屬“果香型”。供試品系風(fēng)味特征鮮明、營(yíng)養(yǎng)價(jià)值高,是研究風(fēng)味品質(zhì)及選育功能性加工蘋果的良好材料,其中‘13-3’的表現(xiàn)最優(yōu)。
新疆紅肉蘋果;糖;酸;香氣物質(zhì);抗氧化活性
【研究意義】蘋果是世界第一大水果,中國(guó)是全球第一大蘋果生產(chǎn)國(guó)和消費(fèi)國(guó)[1-2]。2014年中國(guó)蘋果產(chǎn)量已達(dá)到4.09×107t,約占全球產(chǎn)量的1/2(FAO)[3]。目前,‘富士’系蘋果是中國(guó)的主栽品種,占栽培蘋果的50%以上,栽培品種比較單一,專用加工品種也比較缺乏。盡管許多品種果實(shí)色澤等外觀品質(zhì)較好,但風(fēng)味、營(yíng)養(yǎng)等內(nèi)在品質(zhì)不佳。新疆紅肉蘋果(Malus sieversii f. neidzwetzkyana(Dieck)Langenf)是新疆野蘋果的變型,也是世界上許多栽培蘋果的祖先種,不僅遺傳多樣性豐富,而且果實(shí)多酚及Ca等功能成分含量均高于其他品種,是蘋果品質(zhì)育種和種質(zhì)創(chuàng)新的重要材料[4-5]。新疆紅肉蘋果中,部分類型由于酸度高和富含類黃酮等特點(diǎn)成為提純天然蘋果酸、加工蘋果醋和生產(chǎn)調(diào)味品的良好材料,為未來選育風(fēng)味良好、功能型加工蘋果的珍貴資源提供參考?!厩叭搜芯窟M(jìn)展】風(fēng)味是蘋果的重要品質(zhì)因子之一,由可溶性糖、有機(jī)酸和香氣物質(zhì)等共同決定[6-8]。迄今,有關(guān)蘋果風(fēng)味品質(zhì)的研究并不鮮見。王海波等[9]研究了‘早豐甜’‘早金冠’‘岱綠’等6個(gè)早熟蘋果品種的糖、酸組成情況和‘皇家嘎拉’‘茂利元帥’等中早熟品種的風(fēng)味品質(zhì)[10];車根等[11]評(píng)價(jià)了‘太平洋嘎啦’蘋果的風(fēng)味品質(zhì);ANTONIO等[12]鑒定分析了‘金冠’蘋果的揮發(fā)性成分。王巖等[13]比較了‘富士’‘國(guó)光’‘花?!汀鸸凇O果果皮和果肉的抗氧化活性;王燕等[14]評(píng)價(jià)了‘紫紅 1號(hào)’果肉的抗氧化能力。【本研究切入點(diǎn)】盡管已經(jīng)有較多研究涉及蘋果風(fēng)味和營(yíng)養(yǎng)品質(zhì),但未見新疆紅肉蘋果風(fēng)味品質(zhì)的生化基礎(chǔ)和營(yíng)養(yǎng)品質(zhì)的相關(guān)報(bào)道?!緮M解決的關(guān)鍵問題】本研究以 3個(gè)新疆紅肉蘋果品系的果皮及果肉為材料,以富士系品種‘長(zhǎng)富 2號(hào)’為對(duì)照,采用色譜技術(shù)檢測(cè)分析果實(shí)中可溶性糖、有機(jī)酸、香氣物質(zhì)、總酚、總黃酮的含量與組成情況,評(píng)價(jià)果實(shí)提取物的總抗氧化能力,摸清供試品系風(fēng)味物質(zhì)組成與含量特征,并初步探討其營(yíng)養(yǎng)品質(zhì)狀況,為功能型蘋果育種和風(fēng)味品質(zhì)調(diào)控提供依據(jù)。
試驗(yàn)于2015年10—12月在西南大學(xué)南方山地園藝學(xué)教育部重點(diǎn)實(shí)驗(yàn)室進(jìn)行。
1.1 材料
供試材料為‘P3’‘13-3’‘新農(nóng)’3個(gè)從新疆野生蘋果中選育出的新品系,對(duì)照為富士系蘋果‘長(zhǎng)富2號(hào)’(圖1)。種植于新疆生產(chǎn)建設(shè)兵團(tuán)農(nóng)四師農(nóng)科所試驗(yàn)園(49°09' N,81°07' E)。果園土壤類型為沙壤土,有機(jī)質(zhì)含量1.18%,堿解氮45 mg·kg-1,速效磷42.5 mg·kg-1,速效鉀97.6 mg·kg-1。栽植株行距為2 m×3 m,砧木為八棱海棠[Malus robusta (Carr.) Rehder],樹齡6年,畝產(chǎn)量約1 200 kg,樹形為紡錘形,樹體健壯,營(yíng)養(yǎng)狀況基本一致。土、肥、水管理,樹體修剪和病蟲害防治統(tǒng)一按照試驗(yàn)園栽培管理技術(shù)流程進(jìn)行。2014年春季每個(gè)品種選擇樹勢(shì)相對(duì)一致的6棵樹進(jìn)行標(biāo)記,于2015年10月果實(shí)成熟期,在樹冠中外圍中上部隨機(jī)挑選大小、成熟度一致的果實(shí)作為試驗(yàn)材料。采摘當(dāng)天運(yùn)抵實(shí)驗(yàn)室進(jìn)行取樣和相關(guān)鮮樣指標(biāo)的測(cè)定。每20個(gè)果實(shí)為一個(gè)重復(fù),共60個(gè)果實(shí)。測(cè)定色差、硬度等生理指標(biāo)后,將果皮和果肉分開并迅速用液氮冷凍,置于-80℃超低溫冰箱中冷凍保存?zhèn)溆谩?/p>
1.2 方法
1.2.1 基本生理指標(biāo)測(cè)定 使用CR-400色差儀(日本Konica Minolta公司)測(cè)定果實(shí)色差。用GY-4 硬度計(jì)(石家莊世亞科技有限公司)8 mm直徑的頭測(cè)定果實(shí)硬度。采用日本愛宕數(shù)字手持式折射儀AYAGO PAL-1測(cè)定果實(shí)可溶性固形物(TSS)。用滴定法測(cè)定果實(shí)可滴定酸(TA),10 mL離心后的果漿中加入1%的酚酞指示劑,用0.2 mol·L-1NaOH滴定至pH=8.2,將滴定結(jié)果換算成當(dāng)量蘋果酸。使用FE20-SevenEasy? pH計(jì)(梅特勒托利多儀器有限公司)測(cè)定pH。上述生理指標(biāo)每10個(gè)果實(shí)為一個(gè)重復(fù),共設(shè)3個(gè)重復(fù)。
圖1 不同蘋果品種(系)果實(shí)Fig. 1 Fruits of apple cultivars/lines used in the study
1.2.2 糖、酸物質(zhì)的提取與測(cè)定 稱取3 g果皮或果肉凍樣研磨后加入5 mL 80%乙醇,35℃水浴提取20 min,4℃下10 000 r/min離心15 min,吸取上清液,重復(fù)提取3 次,合并上清液,并定容至20 mL。取3 mL提取液10 000 r/min離心5 min,將上清液用氮吹儀吹干。殘?jiān)?.5 mL雙蒸水溶解,經(jīng)過0.22 μm的水膜過濾純化后待測(cè)。每組樣品重復(fù)3次。
參考ZHANG等[15]的高效液相色譜法測(cè)定可溶性糖和有機(jī)酸。使用島津(4.6 mm×250 mm),0.5 μm的NH2柱分離可溶性糖,以乙腈﹕水=7﹕3為流動(dòng)相,流速為1.2 mL·min-1,等度洗脫,柱溫40℃,載氣流速設(shè)為40 P,漂移管溫度為65℃。使用ODS(4.6 mm ×250 mm),0.5 μm的C18柱分離有機(jī)酸,流動(dòng)相為50 mmol·L-1(NH2)2HPO4,以H2PO3為緩沖液調(diào)節(jié)至pH=2.7,流速為 0.5 mL·min-1,等度洗脫,柱溫為25℃,檢測(cè)波長(zhǎng)210 nm。含量以mg·g-1FW表示,每組樣品重復(fù)3次。
1.2.3 香氣物質(zhì)的分離與鑒定 參照XI等[16]的方法進(jìn)行。稱取5 g果皮或果肉凍樣研磨成粉末后加入5 mL飽和氯化鈉,混勻后加入10 μL內(nèi)標(biāo)物壬酸乙酯(5.77 mg·mL-1),使用DVD/ Carboxen/ PDMS(50/30 μm)針40℃下萃取35 min。用Rt×21MS 毛細(xì)管色譜柱(30 m×0.25 mm×0.25 μm)檢測(cè),進(jìn)樣口溫度250℃。升溫程序:34℃保持3 min,以3℃·min-1升至50℃,再以6℃·min-1升至140℃,最后以10℃·min-1升至230℃,保持4 min。質(zhì)譜載氣為He氣,流量0.8 mL·min-1,電離方式EI,電子能量70 eV。不分流進(jìn)樣1 μL,離子源溫度200℃。檢測(cè)出的化合物質(zhì)譜圖經(jīng)計(jì)算機(jī)NISTLibrary 質(zhì)譜庫(kù)匹配,選出相似度大于90%的物質(zhì),并結(jié)合文獻(xiàn)進(jìn)行圖譜解析,確定香氣成分。使用內(nèi)標(biāo)物法進(jìn)行定量。含量以μg·kg-1FW表示,每組樣品重復(fù)3次。
1.2.4 總酚、總黃酮及抗氧化活性的測(cè)定 總酚的測(cè)定參照 ORTHOFER等[17]的方法進(jìn)行。稱取樣品0.45 g于三角瓶中,加入8 mL甲醇,50℃超聲30 min,5 000 r/min離心15 min,重復(fù)3次,合并上清液,定容至25 mL。取0.25 mL提取液于10 mL離心管中,加入純水0.75 mL,福林酚試劑1.0 mL,暗處放置5 min后加入1.0 mL 5% Na2CO3溶液,充分混合后,室溫放置60 min,于765 nm處測(cè)吸光值。以沒食子酸制作標(biāo)準(zhǔn)曲線,含量以沒食子酸當(dāng)量 GAE(Gallic acid equivalent)表示,每組樣品重復(fù)3次。
總黃酮的測(cè)定參照KIM等[18]的方法,取0.5 mL提取液于10 mL離心管中,加入純水0.7 mL,混勻后加0.2 mL 5% NaNO2,靜置5 min,加入0.2 mL 10% Al(NO3)3搖勻后靜置 6 min,加入 2 mL 1 mol·L-1NaOH,再加1.4 mL純水定容至5 mL,搖勻后靜置15 min,于500 nm處測(cè)吸光值。以蘆丁制作標(biāo)準(zhǔn)曲線,含量用蘆丁當(dāng)量RE(Rutin Equivalent)表示,每組樣品重復(fù)3次。
二苯代苦味?;杂苫宄Γ―PPH)測(cè)定參照GORINSTEIN等[19]的方法,取0.5 mL提取液和3.5 mL DPPH溶液,避光反應(yīng)30 min后在517 nm處測(cè)定吸光值。鐵離子還原力(FRAP)測(cè)定參照 BENZIE等[20]的方法,取0.1 mL提取液加入1.9 mL FRAP試劑中反應(yīng)15 min,于593 nm處測(cè)定吸光值。2,2-聯(lián)氮-二(3-乙基苯并噻唑-6-磺酸)二銨鹽清除力ABTS測(cè)定參照ALMEIDA等[21]的方法,分別取0.2 mL各部位提取液,加入3.8 mL ABTS試劑反應(yīng)10 min后于734 nm處測(cè)定吸光值。以溶于80%甲醇的Trolox為標(biāo)樣做標(biāo)準(zhǔn)曲線,結(jié)果用 Trolox當(dāng)量 TE(Trolox Equivalent)表示,每組樣品重復(fù)3次。
2.1 果實(shí)基本生理指標(biāo)
從表1可以看出,3個(gè)供試材料L*值為30.36—40.56,果實(shí)色澤較深;a*均為正值,果實(shí)為紅色。供試品系的單果重遠(yuǎn)遠(yuǎn)小于對(duì)照品種,其中單果重最大的‘新農(nóng)’也僅為47 g左右,3個(gè)品系果實(shí)的橫徑均在40 mm左右,顯著小于‘長(zhǎng)富2號(hào)’,屬于小果型品系(圖 1)。供試品系的 TSS為 11.37%—13.47%,可滴定酸含量較高,為 21.01—27.71 mg·mL-1,是對(duì)照的3.68—4.85倍,pH為3.12—3.39,顯著低于對(duì)照(P<0.05)。
2.2 果實(shí)可溶性糖和有機(jī)酸組成
pH-1)酸定滴g·mL可(mTA物形固性S(%)溶TS可度硬Hardness(N)h c*alues maticvroChb*差色esofapplefruita*標(biāo)指L*理生本siologyindex基實(shí)果果Basicphy1 蘋表Table1種品Cultivars .29a3.96±0.12c±05.711.26a 0±13.11.78b .08±20c 1.55.87±193.11a 45.54±a 0.87.53±152.19a 8±42.72.13a 43.67±gfu2Chan號(hào)2富長(zhǎng)3.21±0.41ba 0.37.03±25a 0.82.00±13b 2.21.32±191.34b .86±222.77b 37.89±a 1.09.85±142.15b 2±34.81.89c 36.71±P33.12±0.18ba 0.37.71±270.76b .37±11b 1.32.67±191.31d .32±151.32c 23.41±b 0.326.24±3.24c 4±22.42.75d 30.36±13-3b 0.253.39±b 0.45.01±21a 0.58.47±13a 0.69.74±22a 2.45.79±33c 3.2126.62±a 0.78.3±143.06c 7±21.82.69b 40.56±g onXinn農(nóng)新.05<0nificantlydifferentatPnfollowedbydifferentlettersaresigesinacolumValu.05)<0(P著顯異差間理處示表母字同不列同
lpPuong 肉果Xinn農(nóng)新Peel皮果Pulp肉果-313Peel皮果lpPulefruit肉果PeelP3皮果例比與量lp含Pu、成肉果組angfu2的Ch酸號(hào)機(jī)ratioofsolublesugarsandorganicacidsinapp2有富和長(zhǎng)Peel糖皮性果溶可中實(shí)果果Composition,contentand2 蘋nds Table2物mpou表合化Co例)比Ratio (%t量含ntenCog·g-1) (m例)比Ratio (%t量含ntenCog·g-1) (m例比Ratio) (%量含Content g·g-1) (m例比Ratio) (%量含Content g·g-1) (m例)比Ratio (%量含Content g·g-1) (m例)比Ratio (%量含Content g·g-1) (m例比Ratio) (%t量含ntenCog·g-1) (m例)比Ratio (%量含Content g·g-1) (mars lublesugSo糖性溶可1.09b64.07.31±509 59.1d 2.79.24±36.81 57e 0.80.76±31.71 562.78f .01±271 62.40.56d .99±38.54 595.49d 36.11±.57 58a 4.31.93±593.99c44.32.23±44Fructose糖果0.73b27.04.23±21.94 281.22c 17.72±.89 12.17d7.09±0.17 12.44d±05.781 24.2c 0.23.13±15.44 252.22c 15.43±.34 15c 1.38.71±154.99a23.48.13±24Glucose糖萄葡8.89.13d6.99±07 11.8.51d7.27±0.30 29c 0.41.10±16.12 311.62c .83±147 13.3.13d±08.35.02 159.11±1.21d.09 26b 2.97.70±262.01a33.76.18±32crose Su糖蔗Organicacids酸機(jī)有0.66.01a0.08±00.221b0.03±0.00 nd0 nd0.17.01b±00.020.251b0.04±0.02.220.02a 6±2.190.0.01b0.04±0alicacid Ox酸草4.431a0.54±0.02.53.04b0.35±02.21.02b±00.282.12.06c0.18±03.35.03b±00.391.980.32±0.07b.48 10.04b0.34±04.01.05b2±00.31Tartaricacid酸石酒0 nd0 nd0.62.06c0.08±02.47.21b±00.210 nd0 nd.41 12.07a0.31±01.46.03b1±00.21inicacid Qu酸寧奎0.25b87.69.69±10.53 567.83±0.47c.07 95a 0.19.18±12.55 85.30c±07.285 88.10.13b .27±10.6619.98±1.28b.62 72.21d1.84±09.5 .13d5±01.11Malicacid酸果蘋7.222b0.88±0.02 40.7.28a5.64±02.13.03c±00.279.87.002b ±00.848.33.04b±00.97.17 365.86±0.74a2.27.02c0.06±02.85.01c0.05±0Citricacid酸檬檸easbelowhesameansnotdetectable.T.05.ndm<0ifferentlettersaresignificantlydifferentatPbydContentsinarow同下。到測(cè)檢未。nd:.05)<0(P著顯異差間理處示表母字同不中行一同
從供試品系中,共檢測(cè)到3種可溶性糖,包括果糖、葡萄糖和蔗糖(表2)。其中,果糖的含量最高,果皮、果肉中,果糖的含量分別為27.01—36.24 mg·g-1和 31.76—50.31 mg·g-1,分別占總糖含量的56.71%—59.54%和57.80%—64.07%。供試品系的果糖含量顯著低于對(duì)照‘長(zhǎng)富 2號(hào)’(P<0.05),3個(gè)品系中‘新農(nóng)’的果糖含量最高;果肉中果糖的含量顯著高于果皮中的。葡萄糖是供試品系的第二大糖,果皮、果肉中的含量分別為5.78—17.72 mg·g-1和7.09—21.23 mg·g-1,分別占總糖含量的12.17%—28.94%和12.89%—27.04%,供試品系的葡萄糖含量也顯著低于‘長(zhǎng)富2號(hào)’,其中‘新農(nóng)’的含量最高;‘13-3’和‘新農(nóng)’果肉中葡萄糖的含量顯著高于果皮,與‘P3’及對(duì)照的趨勢(shì)相反。蔗糖是含量最低的糖,果皮、果肉中分別占總糖含量的11.87%—31.12%和 8.89%—29.30%,對(duì)照果皮、果肉中蔗糖含量分別是供試品系的 2.17—4.43倍和1.66—3.82倍;果皮中蔗糖的含量顯著高于果肉(P<0.05)。
從供試品系中共檢測(cè)到草酸、酒石酸、奎寧酸、蘋果酸和檸檬酸5種有機(jī)酸,蘋果酸的含量最為豐富,檸檬酸次之(表 2)。果皮、果肉中,蘋果酸的含量分別為7.28—9.98 mg·g-1和10.27—12.81 mg·g-1,分別占總酸含量的56.53%—85.54%和87.69%—95.07%,果皮、果肉中蘋果酸含量分別是對(duì)照的6.56—8.99倍和5.58—6.61倍,其中‘13-3’的含量最高;果肉中蘋果酸的含量均高于果皮。果皮、果肉中檸檬酸的含量為0.84—5.86 mg·g-1和0.26—0.97 mg·g-1,分別占總酸含量的9.87%—40.72%和2.11%—8.33%,果皮、果肉中檸檬酸的含量分別是對(duì)照的 16.80—117倍和4.50—16.17倍,‘P3’檸檬酸的含量最高;果皮中檸檬酸的含量都顯著高于果肉中(P<0.05)。供試品系中草酸、酒石酸和奎寧酸的含量均低于0.6 mg·g-1,酒石酸和草酸的含量與對(duì)照無顯著差異;果肉中酒石酸的含量高于果皮中。
2.3 果實(shí)香氣成分
從供試蘋果中,共檢測(cè)到85種揮發(fā)性成分,包括醛類11種、醇類5種、酮類12種、酯類27種、萜類25種(其中單萜12種,倍半萜13種)和萜類化合物5種。醛類、酯類和萜類的含量最為豐富(電子版附表 1)。供試品系果皮總香氣物質(zhì)含量在1 142.14—1 334.37 μg·kg-1,顯著低于對(duì)照(P<0.05)。醛類是‘P3’和‘新農(nóng)’的主要香氣物質(zhì),其中己醛的含量最為豐富?!甈3’果皮、果肉中醛類分別占總香氣物質(zhì)的75.52%和72.71%,‘新農(nóng)’中分別占81.63%和51.04%。其次是反-2-己烯醛,在‘P3’和‘新農(nóng)’果皮中的含量分別為 330.43 μg·kg-1和372.26 μg·kg-1?!?3-3’果皮、果肉中醛類物質(zhì)相對(duì)較少,僅分別占13.79%和5.80%。果皮中醛類物質(zhì)的含量均顯著高于果肉中(P<0.05)。與對(duì)照‘長(zhǎng)富2號(hào)’相似,‘13-3’主要香氣物質(zhì)為酯類,果皮、果肉中分別占總香氣物質(zhì)的43.34%和66.15%?!甈3’及‘新農(nóng)’酯類含量則顯著低于對(duì)照(P<0.05)。酯類中含量較高的有丁酸乙酯、2-甲基丁酸乙酯和己酸乙酯,在‘13-3’果皮中的含量分別為 182.49、100.92和116.38 μg·kg-1。果皮中酯類的含量均顯著高于果肉(P<0.05)。供試品系中,萜類含量也較為豐富,‘P3’和‘新農(nóng)’的萜類含量相對(duì)較低,而‘13-3’果皮、果肉的萜類含量占總香氣物質(zhì)的35.19%和20.68%。其中含量較高的有蘇合香烯、D-檸檬烯和α-法尼烯,其中α-法尼烯的含量最高,該成分在‘13-3’果皮中的含量高達(dá) 207.36 μg·kg-1。果皮中萜類的含量均顯著高于果肉(P<0.05)。與對(duì)照相同,供試品系中,醇類、酮類的含量也較少,醇類的含量?jī)H占總香氣物質(zhì)的0.26%—4.43%,酮類占1.90%—5.35%。果皮中醇類、酮類的含量均顯著高于果肉(P<0.05)。
2.4 果實(shí)總酚、總黃酮以及抗氧化活性
果皮、果肉中,總酚含量分別為5.79—7.99 mg GAE·g-1和1.44—4.16 mg GAE·g-1,分別是對(duì)照的2.32—3.20倍和5.44—16倍,‘13-3’的總酚含量最高,果皮中總酚含量均顯著高于果肉(P<0.05)(表3)。果皮、果肉中,總黃酮含量為8.58—11.22 mg RE·g-1和2.14—11.22 mg RE·g-1,分別是對(duì)照的1.23—1.61倍和 1.43—3.49倍,‘13-3’的總黃酮含量最高,果皮中總黃酮的含量均顯著高于果肉中(P<0.05)。
果皮、果肉提取物的DPPH、FRAP和ABTS清除率均顯著高于對(duì)照(P<0.05),果皮中,DPPH、FRAP和 ABTS分別是對(duì)照的 1.76—1.98倍、1.14—2.39倍和1.54—1.93倍,果肉中分別是對(duì)照的3.12—5.76倍、1.32—4.09倍和2.44—5.29倍,‘13-3’的3種自由基清除活性最高,果皮自由基清除速率顯著高于果肉(P<0.05)。
表3 蘋果果實(shí)中總酚、總黃酮及抗氧化活性Table 3 Total phenolic, total flavonoid contents and antioxidant activities of apple fruit
依據(jù)TA含量可以將蘋果按酸度高低劃分為低酸(<3.0 mg·mL-1)、中等(3.0—10.0 mg·mL-1)和高酸(>10.0 mg·mL-1)3種類型[22]。有關(guān)桃的研究認(rèn)為,pH在4.0以上的桃果實(shí)屬低酸類型,而3.9以下為正常果實(shí)[23]。本研究發(fā)現(xiàn),供試品系均屬于高酸蘋果,而對(duì)照‘長(zhǎng)富2號(hào)’屬于正常果實(shí)。新疆紅肉蘋果是中國(guó)蘋果中的稀有品種,目前有6種類型:酸甜紅肉蘋果、甜紅肉蘋果、金沙伊拉木、酸紅肉蘋果、夏紅果子和那色匍,供評(píng)價(jià)的品系屬于新疆紅肉蘋果里面的高酸類型。
大量研究表明,蘋果的主要可溶性糖為果糖、其次為葡萄糖和蔗糖,有機(jī)酸主要組分為蘋果酸,其次為檸檬酸、草酸、酒石酸、琥珀酸等[10,24]。本研究發(fā)現(xiàn),3個(gè)供試品系的糖、酸組成與主栽品種‘長(zhǎng)富2號(hào)’相似,為果糖、葡萄糖和蔗糖,主要有機(jī)酸為蘋果酸,其次為檸檬酸、草酸、酒石酸、奎寧酸;但在糖酸含量上與主栽品種差異較大。大量研究報(bào)道中,普通栽培品種的總可溶性糖含量為83.04—122.76 mg·g-1,有機(jī)酸含量為 2.48—5.64 mg·g-1[9-11]。本研究發(fā)現(xiàn),主栽品種‘長(zhǎng)富2號(hào)’果肉的總可溶性糖含量為102.33 mg·g-1,有機(jī)酸含量為2.53 mg·g-1,供試品系的總可溶性糖和有機(jī)酸含量分別為54.94—78.53 mg·g-1和8.52—16.20 mg·g-1,其可溶性糖含量明顯低于對(duì)照,而有機(jī)酸含量是對(duì)照的 3.39—9.22倍。在可溶性糖中,果糖與蔗糖的差異貢獻(xiàn)最大,有機(jī)酸中,以蘋果酸和檸檬酸的差異貢獻(xiàn)最大,果肉中蘋果酸含量分別是對(duì)照的 5.58—6.61倍,檸檬酸的含量是對(duì)照的4.50—16.17倍。大量研究表明,蘋果的風(fēng)味不僅跟可溶性糖和有機(jī)酸含量的絕對(duì)值有關(guān),也取決于糖酸比[25],特別是糖總量與蘋果酸的比值[10,26]。本研究發(fā)現(xiàn),鮮食品種‘長(zhǎng)富2號(hào)’的總糖蘋果酸比為55.62,而供試品系僅為4.51—7.34。因此,低可溶性糖、高蘋果酸、高檸檬酸、低總糖蘋果酸比在供試的新疆紅肉蘋果的風(fēng)味形成中有重要作用。
可溶性糖和有機(jī)酸形成果實(shí)的背景風(fēng)味,而特征香氣成分賦予果實(shí)個(gè)性化風(fēng)味[27]。目前已經(jīng)報(bào)道的蘋果香氣成分超過 300種,但對(duì)其果實(shí)香味影響較大的只有約20種[28]。大部分鮮食蘋果品種主要以積累酯類和萜類為主[10]。本研究發(fā)現(xiàn),對(duì)照‘長(zhǎng)富2號(hào)’以積累酯類物質(zhì)為主,占總香氣成分的50.01%。趙勝亭等[29]在富士系蘋果中共檢測(cè)到 50種香氣物質(zhì),其中以乙酸己酯、3-甲基甲酸丁酯為主的酯類物質(zhì)占總香氣成分的59.15%?,F(xiàn)有研究證明,不同類型蘋果在香氣成分上有較大差異,特征性香氣成分不盡相同。王海波等[30]對(duì)‘早豐甜’、‘貝拉’及‘遼伏’等 3種早熟品種的揮發(fā)性物質(zhì)進(jìn)行分析,共發(fā)現(xiàn)了136種香氣成分,1-己醇、(E)-2-己烯醛、乙酸丁酯、乙酸己酯等的含量占總香氣物質(zhì)的93.81%,β-大馬酮及草蒿腦為‘早豐甜’所特有,基于香氣組分特征,將‘早豐甜’與‘貝拉’分別劃為“酯香型”和“醇香型”蘋果。本研究從供評(píng)價(jià)的品系材料中共檢測(cè)出85種香氣成分,其中,醛類、酯類和萜類是含量最豐富的香氣物質(zhì),共占總香氣物質(zhì)的92.32%—97.84%。因此,盡管供試品系與主栽品種在香氣物質(zhì)的組成上并無明顯差別,但主要香氣物質(zhì)的種類和特征成分明顯不同,‘P3’和‘新農(nóng)’的醛類物質(zhì)含量顯著高于‘長(zhǎng)富2號(hào)’,其中以己醛和 2-己烯醛含量最高,這兩種成分的嗅感閾值分別為10.5及17[7,31],嗅感分別為“青草味”和“綠蘋果味”[7,32-33],‘13-3’的香氣物質(zhì)的組成與‘長(zhǎng)富 2號(hào)’相似,酯類物質(zhì)含量最高,萜類物質(zhì)次之,以丁酸乙酯、2-甲基丁酸乙酯、己酸乙酯和α-法呢烯為主要香氣成分,丁酸乙酯和己酸乙酯的嗅感閾值為 1,2-甲基丁酸乙酯的嗅感閾值僅為0.006[7,32],這些物質(zhì)閾值極低,嗅感顯著,被描述為“果香味”[7,34]。據(jù)此,己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯為供試品系的主要特征香氣成分,‘P3’及‘新農(nóng)’為“青香型”蘋果,‘13-3’與‘長(zhǎng)富2號(hào)’相同,屬“果香型”。
本研究還發(fā)現(xiàn),供評(píng)價(jià)品系果皮和果肉中,總酚和總黃酮含量均顯著高于鮮食品種‘長(zhǎng)富2號(hào)’,抗氧化能力也顯著高于對(duì)照;且果皮提取物的總酚、總黃酮及抗氧化能力顯著高于果肉,這與前人發(fā)現(xiàn)的結(jié)果相一致[35]。蘋果多酚和黃酮類成分與抗氧化活性呈極顯著的正相關(guān)關(guān)系[13,36-37]。本研究中 3個(gè)供試品系材料的總酚和總黃酮含量與抗氧化活性高度一致,表明總酚和總黃酮含量對(duì)其總抗氧化活性有重要貢獻(xiàn),但發(fā)揮抗氧化活性的具體成分及其貢獻(xiàn)大小還有待進(jìn)一步研究。
3個(gè)供試品系的可滴定酸顯著高于鮮食品種‘長(zhǎng)富2號(hào)’,而pH顯著低于對(duì)照,屬于新疆紅肉蘋果中的高酸類型,果糖和蘋果酸是其主要可溶性糖和有機(jī)酸,有機(jī)酸含量遠(yuǎn)高于對(duì)照,可溶性糖含量顯著低于對(duì)照,其風(fēng)味物質(zhì)特點(diǎn)為低可溶性糖,高蘋果酸、檸檬酸,低總糖蘋果酸比。從供試品系中共檢測(cè)到 85種香氣物質(zhì),主要以醛類、萜類和酯類為主。盡管供試蘋果品系與主栽品種在香氣物質(zhì)的組成成分上并無明顯差別,但其主要香氣物質(zhì)的種類上明顯不同?!甈3’和‘新農(nóng)’中,己醛的含量最豐富,屬“青香型”;‘13-3’與對(duì)照相似,以酯類和萜類為主,丁酸乙酯和α-法尼烯的含量最為豐富,屬‘果香型’。供試材料的特征香氣成分為己醛、2-己烯醛、丁酸乙酯、己酸乙酯、乙酸己酯、2-甲基丁酸乙酯。供評(píng)價(jià)的3個(gè)新疆紅肉蘋果品系總酚、總黃酮及抗氧化能力顯著高于對(duì)照‘長(zhǎng)富2號(hào)’,營(yíng)養(yǎng)價(jià)值高,是研究果實(shí)風(fēng)味品質(zhì)及選育功能型蘋果的良好材料,其中‘13-3’表現(xiàn)較優(yōu)。
[1] 聶繼云. 蘋果的營(yíng)養(yǎng)與功能. 保鮮與加工, 2013, 13(6): 56-59.
NIE J Y. Nutritional components of apple and their physiological functions to human health. Storage and Process, 2013, 13(6): 56-59. (in Chinese)
[2] 陳學(xué)森, 韓明玉, 蘇桂林, 劉鳳之, 過國(guó)南, 姜遠(yuǎn)茂, 毛志泉, 彭福田, 束懷瑞. 當(dāng)今世界蘋果產(chǎn)業(yè)發(fā)展趨勢(shì)及我國(guó)蘋果產(chǎn)業(yè)優(yōu)質(zhì)高效發(fā)展意見. 果樹學(xué)報(bào), 2010, 27(4): 598-604.
CHEN X S, HAN M Y, SU G L, LIU F Z, GUO G N, JIANG Y M, MAO Z Q, PENG F T, SHU H R. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese)
[3] 張放. 2012年全球主要水果生產(chǎn)變化簡(jiǎn)析(一). 統(tǒng)計(jì)分析, 2014, 31(2): 23-32.
ZHANG F. Analysis of changes of global main fruit production in 2012 (one). China Fruit News, 31(2): 23-32. (in Chinese)
[4] 陳學(xué)森, 張晶, 劉大亮, 冀曉昊, 張宗營(yíng), 張芮, 毛志泉, 張艷敏,王立霞, 李敏. 新疆紅肉蘋果雜種一代的遺傳變異及功能型蘋果優(yōu)株評(píng)價(jià). 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(11): 2193-2204.
CHEN X S, ZHANG J, LIU D L, JI X H, ZHANG Z Y, ZHANG R, MAO Z Q, ZHANG Y M, WANG L X, LI M. Genetic variation of F1 population between Malus sieversii f. neidzwetzkyana and apple varieties and evaluation on fruit characters of functional apple excellent strains. Scientia Agricultura Sinica, 2014, 47(11): 2193-2204. (in Chinese)
[5] 王延玲. 新疆紅肉蘋果紅色發(fā)育機(jī)理的初步研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2011.
WANG Y L. Preliminary study on the red development mechanism of Xinjiang Red-fleshed apple [D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese)
[6] 聶繼云, 董雅鳳. 果品質(zhì)量安全標(biāo)準(zhǔn)與評(píng)價(jià)指標(biāo). 北京: 中國(guó)農(nóng)業(yè)出版社, 2014: 10-38.
NIE J Y, DONG Y F. Standards and Evaluation Indices for Fruit Quality and Safety. Beijing: China Agriculture Press, 2014: 10-38. (in Chinese)
[7] LóPEZ M L, VILLATORO C, FUENTES T, GRAELL J, LARA I, ECHEVERRíA G. Volatile compounds, quality parameters and consumer acceptance of ‘Pink Lady?’ apples stored in different conditions. Postharvest Biology and Technology, 2007, 43: 55-66.
[8] BULT J H F, SCHIFFERSTEIN H N J, ROOZEN J P, BORONAT E D, VORAGEN A G J, KROEZE J H A. Sensory evaluation of character impact components in an apple model mixture. ChemicalSenses, 2002, 27: 485-494.
[9] 王海波, 陳學(xué)森, 辛培剛, 張小燕, 慈志娟, 石俊, 張紅. 幾個(gè)早熟蘋果品種果實(shí)糖酸組分及風(fēng)味品質(zhì)的評(píng)價(jià). 果樹學(xué)報(bào), 2007, 24(4): 513-516.
WANG H B, CHEN X S, XIN P G, ZHANG X Y, CI Z J, SHI J, ZHANG H. Study on sugar and acid constituents in several early apple cultivars and evaluation of their flavor quality. Journal of Fruit Science, 2007, 24(4): 513-516. (in Chinese)
[10] 王海波, 李林光, 陳學(xué)森, 李慧峰, 楊建明, 劉嘉芬, 王超. 中早熟蘋果品種果實(shí)的風(fēng)味物質(zhì)和風(fēng)味品質(zhì). 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(11): 2300-2306.
WANG H B, LI L G, CHEN X S, LI H F, YANG J M, LIU J F, WANG C. Flavor compounds and flavor quality of fruits of mid-season apple cultivars. Scientia Agricultura Sinica, 2010, 43(11): 2300-2306. (in Chinese)
[11] 車根, 劉曉, 竇同考. 太平洋嘎拉蘋果果實(shí)風(fēng)味評(píng)價(jià). 山東農(nóng)業(yè)科學(xué), 2011(1): 44-46.
CHE G, LIU X, DOU T K. The evaluation of flavor in “Pacific Gala”apple fruit. Shandong Agricultural Sciences, 2011(1): 44-46. (in Chinese)
[12] ANTONIO R, ANTONIO D A, FEDERICO M, REMO B. Effect of soil nutrition on aroma compound formation in organically Grown Apples (cv. Golden Delicious). Flavour Science, 2014, 33: 173-176.
[13] 王巖, 裴世春, 王存堂, 高建偉, 王偉, 薄力影, 郭怡璠. 蘋果果皮、果肉多酚含量測(cè)定及抗氧化能力研究. 食品研究與開發(fā), 2015, 16(15): 1-8.
WANG Y, PEI S C, WANG C T, GAO J W, WANG W, BO L Y, GUO Y F. Study on polyphenol contents and antioxidant capacity of apple peel and pulp from different varieties. Food Research and Development, 2015, 16(15):1-8. (in Chinese)
[14] 王燕, 陳學(xué)森, 劉大亮, 王傳增, 宋楊, 陳曉流, 張艷敏. “紫紅 1號(hào)”紅肉蘋果果肉抗氧化性及花色苷分析. 園藝學(xué)報(bào), 2012, 39(10): 1991-1998. WANG Y, CHEN X S, LIU D L, WANG C Z, SONG Y, CHEN X L, ZHANG Y M. Antioxidant activity and anthocyanins analysis of pulp in ‘Zihong 1’ red-flesh apple. Acta Horticulturae Sinica, 2012, 39(10): 1991-1998. (in Chinese)
[15] ZHANG W S, CHEN K S, ZHANG B, SUN C D, CAI C, ZHOU C H, XU W P, ZHANG W Q, FERGUSON I B. Postharvest responses of Chinese bayberry fruit. Postharvest Biology and Technology, 2005, 37(3): 241-251.
[16] XI W P, ZHANG Q Y, LU X Y, WEI C Q, YU S L, ZHOU ZQ. Improvement of flavor quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chemistry, 2014, 164: 219-227.
[17] ORTHOFER R, LAMUELA-RAVENTOS R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu, s reagent. Method Enzyme, 1999, 299: 152-178.
[18] KIM D O, JEONG S W, LEE C Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 2003, 81(3): 321-326.
[19] GORINSTEIN S, HARUENKIT R, PARK YS, JUNG S T, ZACHWIEJA Z, JASTRZEBSKI Z, KATRICH E, TRAKHTENBERG S, BELLOSO O M. Bioactive compounds and antioxidant potential in fresh and dried Jaffa? sweeties, a new kind of citrus fruit. Journal of the Science of Food and Agriculture, 2004, 84(12): 1459-1463.
[20] BENZIE I F F, STRAIN J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 1996, 239(1): 70-76.
[21] ALMEIDA M M B, DE SOUSA P H M, ARRIAGA ? M C, DO PRADO G M, DE CARVALHO MAGALH?ES C E, MAIA GA, DE LEMOS T L G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 2011, 44(7): 2155-2159.
[22] YANG B, LAURA D, LAI L C, GANYUAN Z, KENONG X. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genomics, 2015, 16: 612.
[23] DIRLEWANGER E, COSSON P, BOUDEHR K. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006(3): 1-13.
[24] RóTH E, BERNA A, BEULLENS K, YARRAMRAJU S, LAMMERTYN J, SCHENK A, NICOLA? B. Postharvest quality of integrated and organically produced apple fruit. Postharvest Biology and Technology, 2007, 45: 11-19.
[25] 鄭麗靜, 聶繼云, 李明強(qiáng), 康艷玲, 匡立學(xué), 葉孟亮. 蘋果風(fēng)味評(píng)價(jià)指標(biāo)的篩選研究. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(14): 2796-2805.
ZHENG J L, NIE J Y, LI M Q, KANG Y L, KANG L X, YE M S. Study on Screening of Taste Evaluation Indexes for Apple. Scientia Agricultura Sinica. 2015, 48(14): 2796-2805. (in Chinese)
[26] HARKER F R, MARSH K B, YOUNG H, MURRAY S H, GUNSON F A, WALKER S B. Sensory interpretation of instrumental measurements 2: sweet and acid taste of apple fruit. Postharvest Biology and Technology, 2002, 24: 241-250.
[27] 席萬鵬, 郁松林, 周志欽. 桃果實(shí)香氣物質(zhì)生物合成研究進(jìn)展. 園藝學(xué)報(bào), 2013, 40(9): 1679-1690.
XI W P, YU S L, ZHOU Z Q. Advances in aroma compounds biosynthesis of peach fruit. Acta Horticulturae Sinica, 2013, 40(9): 1679-1690. (in Chinese)
[28] DIXON J, HEWETT E W. Factors affecting apple aroma/flavor volatile concentration: A review. New Zealand Journal of Crop and Horticultural Science, 2000, 28: 155-173.
[29] 趙勝亭, 齊偉, 徐順利. 煙臺(tái)富士蘋果香氣成分的氣相色譜-質(zhì)譜測(cè)定. 安徽農(nóng)業(yè)科學(xué), 2005, 33(4): 632-633.
ZHAO T S, QI W, XU S L. Preliminary Study On the Aroma Components of FUJI Apple in Yantai. Journal of Anhui Agricultural Sciences, 2005, 33(4): 632-633. (in Chinese)
[30] 王海波, 陳學(xué)森, 辛培剛, 馮濤, 石俊, 慈志娟. 幾個(gè)早熟蘋果品種香氣成分的GC-MS分析. 果樹學(xué)報(bào), 2007, 24(1): 11-15.
WANG H B, CHEN X S, XIN P G, FENG T, SHI J, CI Z J. GC-MS analysis of Volatile components in several early apple cultivars. Joumal of Fruit Science, 2007, 24(1): 11-15. (in Chinese)
[31] ECHEVERRíA G, FUENTES T, GRAELL J, LARA I, LóPEZ M L. Aroma volatile compounds of ‘Fuji’ apples in relation to harvest date and cold storage technology: A comparison of two seasons. Postharvest Biology and Technology, 2004, 32: 29-44.
[32] YAHIA E M. Apple favor. Horticultural Reviews, 1994, 16: 197-234.
[33] PLOTTO A M, DANIEL M R. Characterization of Gala apple aroma and flavor differences between controlled atmosphere and air storage. Journal of the American Society for Horticultural Science, 1999, 124(4): 416-423.
[34] MEHINAGIC E, ROYER G, SYMONEAUX R, JOURJON F, PROST C. Characterization of odor-active volatiles in apples: Influence of cultivar and maturity stage. Journal of Agricultural and Food Chemistry, 2006, 54: 2678-2687.
[35] 陳瑋琦, 郭玉蓉, 張娟, 竇姣, 張曉瑞. 干燥方式對(duì)蘋果幼果干酚類物質(zhì)及其抗氧化性的影響. 食品科學(xué), 2015(5): 33-37.
CHEN Y Q, GUO Y R, ZHANG J, DOU J, ZHANG X R. Effect of drying methods on polyphenol contents and antioxidant activities of unripe apple fruits. Food Science, 2015(5): 33-37. (in Chinese)
[36] 黃閃閃, 李赫宇, 王磊, 趙玲. 蘋果多酚抗氧化特性研究進(jìn)展. 食品研究與開發(fā), 2014, 35(24): 159-162.
HUANG S S, LI H Y, WANG L, ZHAO L. Research progress of antioxidant properties of apple polyphenols. Food Research and Development, 2014, 35(24): 159-162. (in Chinese)
[37] 徐穎, 樊明濤, 冉軍艦, 程拯艮, 戚一曼. 不同品種蘋果籽總酚含量與抗氧化相關(guān)性研究. 食品科學(xué), 2015(1): 79-83.
XU Y, FAN M T, RAN J J, CHENG Z G, QI Y M. Study of different varieties of apple seed total phenolic content and antioxidant correlation. Food Science, 2015(1): 79-83. (in Chinese)
(責(zé)任編輯 趙伶俐)
Evaluation of Flavor Quality and Antioxidant Capacity of Apple Fruits from Three Xinjiang Red-Flesh Lines
LIU Yu1, LIU ShengYu1, LU JuanFang1, YU QingFan2, XI WanPeng1,3
(1College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716;2Agricultural College, Shihezi University, Shihezi 832003, Xinjiang;3Agricultural Science Institute of Agricultural Four Division, the Xinjiang Production and Construction Corps, Yili 841600, Xinjiang;4Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715)
Xinjiang red-flesh apple; sugar; acid; aroma volatiles; antioxidant activity
2016-08-22;接受日期:2017-01-20
國(guó)家自然科學(xué)基金(31260467)
聯(lián)系方式:劉羽,E-mail:452056558@qq.com。通信作者席萬鵬,E-mail:xwp1999@zju.edu.cn
Abstract:【Objective】In order to characterize the flavor quality of Xinjiang red-flesh apple, the composition and content of flavor compounds were analyzed and a preliminary evaluation on nutritional quality of these fruits was made, which will provide useful information for exploitation and utilization of these apple fruits.【Method】High performance liquid chromatography (HPLC) and gas chromatography-mass spectrometer (GC-MS) were employed to detect and analyze sugars, organic acids and volatile compounds in the peels and pulps of three Xinjiang red-flesh apple lines, and compared with the control Fuji apple ‘Changfu 2’. The contents of total phenols (TP), total flavonoids (TF) and antioxidant activity were also measured and evaluated. 【Result】The titratable acid (TA) of apple tested were 21.01-27.71 mg·mL-1, which were 3.68-4.85 times of the control. The pH values were 3.12-3.19, which was significantly lower than the control (P<0.05). Fructose, glucose and sucrose were identified in these fruits, fructose was the dominant sugar (56.71%-64.07%), while sucrose content was the least and it only accounted for 8.89%-31.12% of total sugar. The contents of soluble sugars in three Xinjiang red-flesh apple were significantly lower than those in the control. Fructose in pulps was higher than those in peels, while no significant differences of glucose and sucrose were found between them (P<0.05). Five organic acids, including oxalic acid, tartaric acid, malic acid, citric acid, and quinic acid, were identified from the lines tested. Malic acid (56.51%-95.11%) was the richest component, followed by citric acid (2.07%-40.72%). The contents of other acids were less than 0.6 mg·g-1fresh weight (FW). Quinic acid was only detected in ‘13-3’. The content of malic acid in peels and pulps was 6.56-8.99 times and 5.58-6.61 times as much as that in control, and the content of citric acid was 16.80-117 times and 4.50-16.17 times of that in control, respectively. The content of malic acid in pulps was significantly higher than that in peels,while citric acid in pulps is significantly lower than that of peels (P<0.05). Totally, 85 volatile compounds were identified from the fruits tested. Aldehydes, esters and terpenes were the most abundant components, accounting for 92.32%-97.84% of the total volatile compounds. Similar with the control,‘13-3’ was characterized by esters and terpenes. Ethyl butyrate, ethyl 2-methylbutyrate, methyl hexanoate and hexyl acetate were the main esters, while styrene, D-limonene and α-farnesene were the dominant terpenes. ‘P3’ and ‘Xinnong’ were mainly characterized by aldehydes and terpenes, hexanal and (E)-2-hexenal were the main aldehydes. The content of volatile components in peels were significantly higher than those in pulps (P<0.05). The contents of TP and TF in peels and pulps of three Xinjiang red-flesh apple lines were 2.31-2.65 times and 1.23-1.61 times as that of the control, and as 5.53-16 times and 1.43-3.49 times as that of the control, respectively. Free radical scavenging ability of extraction from these fruits were also significantly higher than the control. The contents of TP and TF in peels were higher than those in pulps, and its antioxidant capacity were significantly higher than those in pulps. Among the tested lines, ‘13-3’ presented the highest TP and TF contents and antioxidant capacity. 【Conclusion】 The apple lines tested belong to the high-acid type of Xinjiang red-flesh apple. Low soluble sugar, high malic acid and citric acid, low ratio of total sugar to malic acid and the characteristic aroma components, such as hexanal, (E)-2-hexenal, ethyl butyrate, ethyl hexanoate, hexyl acetate and ethyl 2-methylbutyrate, play an important role in flavor quality decision. ‘13-3’ belongs to “fruity odor” fruit, while ‘P3’ and ‘Xinnong’ are the “grassy odor” type. The three lines tested presented characteristic flavor and high nutritional quality, which could be good materials for studying flavor quality and breeding functional processing apple, and ‘13-3’ is the optimal.