范麗楨,陶文淵,張 曦,韓沁煜,徐 運(yùn)
(南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院神經(jīng)內(nèi)科,江蘇南京 210008)
腦卒中是全球致殘和致死的最常見(jiàn)疾病,分為缺血性腦卒中和出血性腦卒中,其中缺血性腦卒中占70%~80%。缺血性腦卒中可引發(fā)缺血級(jí)聯(lián)反應(yīng),最終導(dǎo)致神經(jīng)元功能障礙和死亡[1]。缺血級(jí)聯(lián)反應(yīng)通過(guò)破壞血腦屏障(blood brain barrier,BBB),促進(jìn)腦免疫炎癥反應(yīng)等引起卒中后腦損傷,并在亞急性期加重腦水腫和神經(jīng)功能損害[2],而這些早期的分子事件與慢性期的病情恢復(fù)和預(yù)后相關(guān)。缺血性腦卒中發(fā)生時(shí),腦部損傷區(qū)域主要分成兩種,一種為核心梗死區(qū)域,細(xì)胞即刻凋亡并壞死,此為不可逆過(guò)程;另一種為缺血半暗帶,該區(qū)域細(xì)胞將要發(fā)生凋亡但尚可逆[3],故有望通過(guò)逆轉(zhuǎn)缺血半暗帶細(xì)胞凋亡過(guò)程來(lái)治療缺血性腦卒中。
小膠質(zhì)細(xì)胞是神經(jīng)系統(tǒng)中參與免疫反應(yīng)的重要細(xì)胞,在大腦中分布廣泛,占腦內(nèi)膠質(zhì)細(xì)胞總數(shù)的5%~20%[4],分為M1型和M2型,M1型為經(jīng)典激活型,主要表達(dá)CD80、CD86和主要組織相容性復(fù)合體Ⅱ(major histocompatibility complexⅡ,MHCⅡ)等表面抗原,并可分泌白細(xì)胞介素-1(interleukin-1,IL-1)、IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)和干擾素-γ(interferon-γ,IFN-γ)等促炎因子,促進(jìn)誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)合成,對(duì)神經(jīng)元產(chǎn)生細(xì)胞毒性作用[5]。而M2型為替代激活型,主要表達(dá)Ym-1和CD206等表面抗原,并可分泌IL-10、轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)、IL-4、IL-3和胰島素樣生長(zhǎng)因子-1(insulin like growth factor-1,IGF-1)等抗炎因子[6],抑制炎癥反應(yīng),M2型小膠質(zhì)細(xì)胞同時(shí)還能分泌各種神經(jīng)營(yíng)養(yǎng)因子,在大腦缺血低氧時(shí)起神經(jīng)保護(hù)作用。M2型又分為M2a,M2b和M2c,M2a型主要參與細(xì)胞再生,而其他兩型主要參與吞噬和清除壞死組織[7]。將小膠質(zhì)細(xì)胞分為M1型和M2型雖過(guò)于簡(jiǎn)單,但這種分類方法有利于理解小膠質(zhì)細(xì)胞在各種腦部疾病中的功能[8-9]。
當(dāng)大腦受到缺血損傷的刺激時(shí),小膠質(zhì)細(xì)胞轉(zhuǎn)化為阿米巴狀,胞體變大,突起及分支增多,具有吞噬功能,并可吞噬血管內(nèi)皮細(xì)胞[10]。這種形態(tài)改變被認(rèn)為是一種高度激活狀態(tài),代表著小膠質(zhì)細(xì)胞對(duì)卒中免疫應(yīng)答事件的啟動(dòng)。引發(fā)小膠質(zhì)細(xì)胞活化的因素十分廣泛,如脂多糖、ATP以及iNOS等,這些配體與細(xì)胞表面受體結(jié)合,激活小膠質(zhì)細(xì)胞,并產(chǎn)生吞噬作用及一系列細(xì)胞因子,從而介導(dǎo)炎癥反應(yīng)[11]。另外,某些配體還能改變小膠質(zhì)細(xì)胞的分化方向。神經(jīng)元可溶性Fas配體(Fas ligand,F(xiàn)asL)在缺血性腦損傷后促進(jìn)小膠質(zhì)細(xì)胞向M1型分化。動(dòng)物實(shí)驗(yàn)和細(xì)胞實(shí)驗(yàn)同時(shí)證明可溶性FasL能誘導(dǎo)小膠質(zhì)細(xì)胞向M1型分化[12]。當(dāng)發(fā)生缺血性腦損傷后,F(xiàn)asL基因突變能減少動(dòng)物模型募集外周炎性細(xì)胞,抑制小膠質(zhì)細(xì)胞等固有膠質(zhì)細(xì)胞的活化,抑制Jun氨基端K激酶(Jun N-terminal K-kinase,JNK)信號(hào)通路。阻斷FasL有望抑制小膠質(zhì)細(xì)胞活化,并改善卒中患者的長(zhǎng)期預(yù)后[13]。
目前研究較多的小膠質(zhì)細(xì)胞活化受體是Toll樣受體(Toll-like receptor,TLR)家族。有研究顯示,缺血性腦卒中患者血漿TLR2和TLR4表達(dá)水平顯著增高,而TLR水平升高往往與不良預(yù)后密切相關(guān)[14]。應(yīng)用TLR4抑制劑TAK-242可顯著減輕腦缺血?jiǎng)游锬P蜕窠?jīng)功能缺損[15]。除此之外,其他TLR同樣參與了卒中后的炎癥反應(yīng)。動(dòng)物實(shí)驗(yàn)表明,腦缺血再灌注后神經(jīng)元和小膠質(zhì)細(xì)胞TLR9表達(dá)水平顯著上調(diào)[16]。小膠質(zhì)細(xì)胞也表達(dá)其他細(xì)胞因子受體,如TNF受體,而TNF受體激活會(huì)觸發(fā)NF-κB信號(hào)通路,促進(jìn)小膠質(zhì)細(xì)胞分泌TNF-α,并進(jìn)一步活化小膠質(zhì)細(xì)胞[17]。
當(dāng)發(fā)生缺血性腦卒中時(shí),損傷區(qū)域的小膠質(zhì)細(xì)胞遷移至損傷處,并分化為M1型和M2型二大類型,M1型,分泌IL-1,IL-6,TNF-α和IFN-γ等促炎因子,促進(jìn)炎癥反應(yīng)對(duì)神經(jīng)組織的損傷[5];M2型分泌IL-10,TGF-β,IL-4,IL-3,TGF-β和IGF-1等抗炎因子,以及腦源性神經(jīng)營(yíng)養(yǎng)因子(brain derived neurotrophic factor,BDNF)和神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)等營(yíng)養(yǎng)因子[6],抑制炎癥反應(yīng)的同時(shí),促進(jìn)神經(jīng)組織修復(fù)過(guò)程(圖1)。小膠質(zhì)細(xì)胞的活化調(diào)控機(jī)制還有待進(jìn)一步研究。
圖1 缺血性腦損傷中小膠質(zhì)細(xì)胞的活化過(guò)程.IL:白細(xì)胞介素;TNF-α:腫瘤壞死因子α;IFNγ:干擾素-γ;TGF-β:轉(zhuǎn)化生長(zhǎng)因子β;BDNF:腦源性神經(jīng)營(yíng)養(yǎng)因子;NGF:神經(jīng)生長(zhǎng)因子.
小膠質(zhì)細(xì)胞的活化在缺血性腦卒中的炎癥反應(yīng)中是一個(gè)動(dòng)態(tài)過(guò)程,并有一定的時(shí)序性。小膠質(zhì)細(xì)胞的活化是炎癥反應(yīng)的第一步,幾分鐘內(nèi)即可發(fā)生,缺血后2~3 d內(nèi)小膠質(zhì)細(xì)胞的活化和增殖狀態(tài)將達(dá)到頂峰,隨后的幾周內(nèi)持續(xù)下去[18]。相關(guān)研究顯示,發(fā)生缺血性腦卒中后,損傷區(qū)域內(nèi)活化的小膠質(zhì)細(xì)胞和巨噬細(xì)胞在早期主要表達(dá)M2信號(hào)基因,而在損傷后期它們主要表達(dá)M1信號(hào)基因。因此,小膠質(zhì)細(xì)胞在卒中后不同時(shí)間內(nèi)表現(xiàn)出不同的分化趨勢(shì)。在缺血性腦卒中急性期,小膠質(zhì)細(xì)胞主要向M2型轉(zhuǎn)化,但在亞急性和慢性期,則主要向M1型轉(zhuǎn)化[19],但具體的分化機(jī)制有待進(jìn)一步研究。小膠質(zhì)細(xì)胞在急性期參與炎癥反應(yīng)對(duì)神經(jīng)細(xì)胞的存活是有利的[20],而在慢性期,由于小膠質(zhì)細(xì)胞長(zhǎng)期過(guò)度激活,引起慢性炎癥反應(yīng),會(huì)造成神經(jīng)組織損傷,導(dǎo)致神經(jīng)退行性疾病的發(fā)生以及認(rèn)知障礙[21]。
缺血性腦卒中發(fā)生后,不同病變部位的小膠質(zhì)細(xì)胞活化不盡相同。在核心梗死區(qū)域,24 h內(nèi)若損傷區(qū)域獲得再灌注,小膠質(zhì)細(xì)胞發(fā)生活化和表型改變,若24 h內(nèi)未進(jìn)行再灌注治療,活化的小膠質(zhì)細(xì)胞很少,并表現(xiàn)出很強(qiáng)的吞噬作用[22]。而24 h后,M2型的表面抗原Ym-1和CD206表達(dá)增加,小膠質(zhì)細(xì)胞參與損傷組織的修復(fù)過(guò)程[23]。當(dāng)缺血性腦卒中情況惡化時(shí),于72 h后小膠質(zhì)細(xì)胞數(shù)量減少并開(kāi)始發(fā)生破碎,動(dòng)物實(shí)驗(yàn)已驗(yàn)證這一過(guò)程。利用化學(xué)誘導(dǎo)法建立持續(xù)性局灶腦缺血小鼠模型,7 d后小鼠的腦內(nèi)核心梗死區(qū)域小膠質(zhì)細(xì)胞發(fā)生崩解破碎,而此時(shí)缺血半暗帶的小膠質(zhì)細(xì)胞數(shù)量增加[24]。在卒中發(fā)生后3~7 d內(nèi),缺血半暗帶的小膠質(zhì)細(xì)胞數(shù)量逐漸增加,以CD68和MHCⅡ表面抗原陽(yáng)性的小膠質(zhì)細(xì)胞為主[25]??梢?jiàn)小膠質(zhì)細(xì)胞干預(yù)療法治療缺血性腦卒中應(yīng)考慮不同的腦損傷區(qū)域。
已有研究表明,小膠質(zhì)細(xì)胞是腦內(nèi)炎癥反應(yīng)的重要調(diào)節(jié)器。選擇性消除大腦中動(dòng)脈閉塞(middlecerebral artery occlusion,MCAO)小鼠的增殖狀態(tài)小膠質(zhì)細(xì)胞,小鼠的腦梗死面積增加,且IGF-1等抗炎因子的水平降低[18]。Szalay等[26]通過(guò)快速體內(nèi)雙光子活體鈣成像實(shí)驗(yàn)發(fā)現(xiàn),選擇性清除小膠質(zhì)細(xì)胞會(huì)顯著增加梗死面積。另一項(xiàng)研究結(jié)果顯示,將培養(yǎng)的小膠質(zhì)細(xì)胞移植入缺血損傷腦組織內(nèi)可減輕缺血性腦損傷和增強(qiáng)神經(jīng)修復(fù)的功能[27]。這些結(jié)果說(shuō)明,小膠質(zhì)細(xì)胞能減輕梗死區(qū)域的炎癥反應(yīng)和組織損傷。
小膠質(zhì)細(xì)胞對(duì)于缺血性腦卒中的神經(jīng)保護(hù)作用主要依靠M2型小膠質(zhì)細(xì)胞。M2型小膠質(zhì)細(xì)胞可分泌神經(jīng)營(yíng)養(yǎng)因子,如BDNF,TGF-β和NGF[28]。研究表明,發(fā)生缺血性腦卒中后,小膠質(zhì)細(xì)胞可通過(guò)分泌BDNF來(lái)發(fā)揮神經(jīng)保護(hù)作用。BDNF主要通過(guò)絲裂原活化蛋白激酶通路及磷酯酰肌醇3激酶通路發(fā)揮作用[29]。BDNF通過(guò)增加神經(jīng)元內(nèi)的Ca2+結(jié)合蛋白的表達(dá)來(lái)抑制Ca2+內(nèi)流,減少細(xì)胞內(nèi)Ca2+濃度,抑制Ca2+超載和神經(jīng)元凋亡,進(jìn)而減輕腦水腫和縮小腦梗死體積。TGF-β是一種多功能細(xì)胞因子,有3種亞型,其中TGF-β1分布廣泛且可調(diào)控機(jī)體多種細(xì)胞的生長(zhǎng)、分化、遷移、凋亡和細(xì)胞外基質(zhì)生成。在生理狀態(tài)下,中樞神經(jīng)系統(tǒng)(central nervous system,CNS)中TGF-β1含量較少,發(fā)生缺血性腦卒中后,TGF-β1顯著增加,既可促進(jìn)微血管再生和神經(jīng)組織重塑,也可通過(guò)抑制炎癥因子的釋放從而減輕CNS的炎癥反應(yīng),減輕腦水腫[30]。
研究表明,小膠質(zhì)細(xì)胞對(duì)缺血性腦卒中后的神經(jīng)保護(hù)作用不僅僅在于抑制炎癥反應(yīng)和減輕腦組織損傷,同時(shí)也能刺激神經(jīng)組織修復(fù)和缺血后神經(jīng)元的再生。迄今為止,臨床治療只能通過(guò)減輕缺血性腦卒中后的腦損傷來(lái)改善預(yù)后,腦損傷的核心梗死區(qū)域凋亡的神經(jīng)元雖無(wú)法修復(fù),但缺血半暗帶的神經(jīng)元尚可進(jìn)行修復(fù),還可挽救其神經(jīng)元功能。
多項(xiàng)研究發(fā)現(xiàn),大腦在廣泛的神經(jīng)元死亡后能自行修復(fù),而在腦卒中后也會(huì)出現(xiàn)代償性神經(jīng)元修復(fù)[31-32]。一般認(rèn)為,神經(jīng)元多發(fā)生于海馬體的顆粒下層和側(cè)腦室周圍的室管膜下層[33]。當(dāng)神經(jīng)元大量損傷時(shí),來(lái)源于顆粒下層和室管膜下層的神經(jīng)母細(xì)胞需要遷移到損傷區(qū)域并不斷分化為有功能的神經(jīng)元[34]。相關(guān)研究發(fā)現(xiàn),腦卒中后,激活的小膠質(zhì)細(xì)胞會(huì)伴隨神經(jīng)母細(xì)胞共同遷移至損傷區(qū)域[35],在腦卒中患者的缺血半暗帶區(qū)域發(fā)現(xiàn)新生的神經(jīng)元和小膠質(zhì)細(xì)胞[36],動(dòng)物實(shí)驗(yàn)也得出類似的結(jié)果[37-38]。因此,小膠質(zhì)細(xì)胞與神經(jīng)元的神經(jīng)交互作用可能在神經(jīng)修復(fù)的過(guò)程中發(fā)揮了重要作用。體外模型同樣能觀察到小膠質(zhì)細(xì)胞對(duì)神經(jīng)元的保護(hù)作用,并確定了TGF-β2是參與神經(jīng)保護(hù)的重要因子[20]。由此可見(jiàn),小膠質(zhì)細(xì)胞的遷移以及神經(jīng)母細(xì)胞的交互作用是小膠質(zhì)細(xì)胞發(fā)揮神經(jīng)元保護(hù)作用的基礎(chǔ),但具體機(jī)制尚未有明確定論。
此外,小膠質(zhì)細(xì)胞還能維持受損區(qū)域的微環(huán)境穩(wěn)態(tài)。M2型小膠質(zhì)細(xì)胞表達(dá)特定的細(xì)胞表面因子,如精氨酸酶-1,CD206和Ym1,可阻止細(xì)胞質(zhì)基質(zhì)的降解[39],在缺血性腦卒中小鼠模型中CD206和Ym1與腦組織修復(fù)有關(guān)[23]。研究發(fā)現(xiàn),M2型小膠質(zhì)細(xì)胞也可通過(guò)與Th2細(xì)胞的交互作用促進(jìn)神經(jīng)組織的修復(fù)。M2型小膠質(zhì)細(xì)胞產(chǎn)生抗炎因子并可促進(jìn)Th2細(xì)胞分泌IL-10和IL-13,為神經(jīng)組織修復(fù)提供了微環(huán)境。與M1型小膠質(zhì)細(xì)胞相比,M2型小膠質(zhì)細(xì)胞具有更高的吞噬活性[39],因此它可有效地消除細(xì)胞碎片,恢復(fù)受損組織內(nèi)穩(wěn)態(tài),減輕炎癥反應(yīng),促進(jìn)組織再生和修復(fù)以及細(xì)胞外基質(zhì)的重建。Wake等[40]發(fā)現(xiàn),在缺血期間,小膠質(zhì)細(xì)胞突起與突觸的接觸時(shí)間更長(zhǎng),隨后其中一些突觸被清除,表明小膠質(zhì)細(xì)胞能監(jiān)測(cè)突觸的功能狀態(tài),并可能有助于清除喪失功能的突觸。
經(jīng)典激活的M1型小膠質(zhì)細(xì)胞可分泌多種促炎因子,如IL-1,IL-6,TNF-α和IFN-γ等。其中,TNF-α在炎癥過(guò)程中發(fā)揮重要作用。在局部腦損傷區(qū)域,TNF-α主要由小膠質(zhì)細(xì)胞分泌,是介導(dǎo)缺血低氧損傷的重要因子,能刺激中性粒細(xì)胞等炎癥細(xì)胞促進(jìn)炎癥反應(yīng)[41]。TNF-α主要通過(guò)以下3種途徑促進(jìn)炎癥反應(yīng)并增強(qiáng)細(xì)胞毒性作用:①激活JNK通路,使c-Jun的Ser63和Ser73末端磷酸化,促進(jìn)c-myc和p53的活性,介導(dǎo)細(xì)胞凋亡。②促進(jìn)內(nèi)皮細(xì)胞和白細(xì)胞表面的黏附分子表達(dá)增高,加強(qiáng)內(nèi)皮細(xì)胞和白細(xì)胞之間的黏附作用,導(dǎo)致血管通透性增強(qiáng),加重腦水腫,同時(shí)細(xì)胞毒性因子更易進(jìn)入,進(jìn)一步加重?fù)p傷。③與p55和p75這2種TNF細(xì)胞表面受體(通常稱為TNFR1和TNFR2)發(fā)揮作用,TNFR1和TNFR2在神經(jīng)元和小膠質(zhì)細(xì)胞上均可表達(dá),尤其是缺血性卒中發(fā)生后數(shù)小時(shí)內(nèi),兩者的表達(dá)增加。另外,藥物、中和抗體或可溶性受體可抑制TNF-α信號(hào)傳導(dǎo),并可減少模型動(dòng)物腦損傷體積[42]。
腦缺血時(shí),小膠質(zhì)細(xì)胞表面的嘌呤受體P2X7與積聚在細(xì)胞外的ATP結(jié)合,使小膠質(zhì)細(xì)胞活化,并通過(guò)胱天蛋白酶1通路促進(jìn)小膠質(zhì)細(xì)胞分泌大量促炎因子IL-1β,導(dǎo)致更多神經(jīng)細(xì)胞死亡[43]。死亡的神經(jīng)細(xì)胞可釋放ATP,與P2Y12受體相互作用以誘導(dǎo)小膠質(zhì)細(xì)胞活化,小膠質(zhì)細(xì)胞可通過(guò)ATP的自分泌信號(hào)傳導(dǎo)進(jìn)一步放大活化過(guò)程。這種正反饋環(huán)將增加IL-1β和TNF-α的表達(dá)[44],并加劇炎癥反應(yīng)。
小膠質(zhì)細(xì)胞也能釋放基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP),主要包括MMP-3和MMP-9兩種。MMP能降解多種細(xì)胞外蛋白并參與細(xì)胞外基質(zhì)重塑,主要以非活性形式存在于細(xì)胞液中,并參與膠原蛋白的降解。當(dāng)缺血性腦損傷發(fā)生時(shí),MMP分泌增加,可引起CNS細(xì)胞外基質(zhì)的降解,使BBB通透性增加,導(dǎo)致缺血性腦卒中后損傷加重[45]。相關(guān)研究發(fā)現(xiàn),敲除小鼠MMP-3和MMP-9基因,并在急性期給予MMP抑制劑后,小鼠腦梗死面積減小,腦水腫程度減輕,神經(jīng)功能損傷減輕[46]。最新研究表明,在缺血性腦卒中期間,小膠質(zhì)細(xì)胞能活化組織型纖溶酶原激活物(tissue-type plasminogen activator,tPA)介導(dǎo)的血小板源性生長(zhǎng)因子-CC,并提高BBB的通透性,增加腦損傷[47]。
當(dāng)發(fā)生缺血性腦損傷時(shí),小膠質(zhì)細(xì)胞受到缺血刺激活化并能遷移到腦損傷區(qū)域[48]。大腦和部分外周器官均能表達(dá)單核細(xì)胞趨化蛋白-1(MCP-1)等趨化因子,并促進(jìn)小膠質(zhì)細(xì)胞和白細(xì)胞遷移到缺血區(qū),從而誘發(fā)炎癥反應(yīng)。凋亡神經(jīng)元釋放的趨化因子CX3CL1和ATP,與小膠質(zhì)細(xì)胞的表面受體結(jié)合誘導(dǎo)小膠質(zhì)細(xì)胞遷移。此外,在大腦中動(dòng)脈閉塞模型中,缺血部位的MCP-1表達(dá)水平升高,在2~3 d達(dá)到峰值。與此同時(shí),缺血部位的小膠質(zhì)細(xì)胞的表達(dá)水平也開(kāi)始出現(xiàn)峰值,說(shuō)明MCP-1在一定程度上可誘導(dǎo)小膠質(zhì)細(xì)胞遷移[49]。MCP-1基因敲除小鼠的缺血性損傷較輕,說(shuō)明缺乏MCP-1能減少小膠質(zhì)細(xì)胞遷移至缺血部位,相應(yīng)地減輕炎性損傷。
使用tPA進(jìn)行溶栓治療是迄今缺血性卒中唯一成功的治療方法,但存在治療時(shí)間窗(4.5 h)窄和安全性不穩(wěn)定等問(wèn)題[50],僅有不到5%患者能接受溶栓治療[51]。目前尚無(wú)針對(duì)卒中后免疫應(yīng)答的特定治療方法,小膠質(zhì)細(xì)胞的雙重作用使其成為潛在的治療靶點(diǎn)。
目前,所有小膠質(zhì)細(xì)胞激活的靶向藥物僅用于實(shí)驗(yàn)研究或臨床前試驗(yàn)。盡管其中一些已被用于治療自身免疫性疾病(例如TNF-α拮抗劑),但對(duì)于調(diào)節(jié)卒中后小膠質(zhì)細(xì)胞活化的有效藥物的探索性研究仍處于起步階段。
實(shí)驗(yàn)研究發(fā)現(xiàn),腺苷酸活化蛋白激酶激活劑二甲雙胍可通過(guò)誘導(dǎo)小膠質(zhì)細(xì)胞向M2分化來(lái)促進(jìn)卒中小鼠功能恢復(fù)和組織修復(fù)[52]。二甲雙胍通過(guò)抑制NF-κB介導(dǎo)的炎癥信號(hào)傳導(dǎo),使小膠質(zhì)細(xì)胞/巨噬細(xì)胞向M2表型轉(zhuǎn)化。他汀類藥物是一類降膽固醇藥物,在缺血性卒中中具有抗炎和保護(hù)作用。辛伐他汀能以膽固醇依賴方式改變小膠質(zhì)細(xì)胞因子(IL-1β和TNF-α)和BDNF的分泌。吲哚美辛是一種非甾體類抗炎藥物,可明顯減少小膠質(zhì)細(xì)胞的活化數(shù)量,在卒中后7 d可促進(jìn)神經(jīng)母細(xì)胞增殖[53]。頭蛋白(noggin)是一種骨形態(tài)發(fā)生蛋白的內(nèi)源性拮抗劑,可以預(yù)防缺血性腦損傷,這種作用可能與調(diào)節(jié)小膠質(zhì)細(xì)胞M1/M2活化有關(guān)。它可降低M1標(biāo)志物(IL-1β,TNF-α,IL-12,CCL2和CD86)的表達(dá),導(dǎo)致小膠質(zhì)細(xì)胞向M2分化[54],使M2標(biāo)志物(IL-1Ra,IL-10,Arg-1,CD206和Ym1)升高。IL-13基因免疫治療是在神經(jīng)炎癥過(guò)程中調(diào)節(jié)小膠質(zhì)細(xì)胞活化的潛在治療方法。在多發(fā)性硬化的小鼠模型中,慢病毒載體介導(dǎo)的IL-13調(diào)節(jié)小膠質(zhì)細(xì)胞向M2表型分化[55]。
中藥在缺血性腦損傷中發(fā)揮有效的抗炎作用,并能在炎癥級(jí)聯(lián)期激活神經(jīng)保護(hù)轉(zhuǎn)錄因子。穿心蓮內(nèi)酯是來(lái)自穿心蓮的主要活性化合物,可防止腦梗死,可以改善24 h動(dòng)物中動(dòng)脈缺血模型的神經(jīng)功能缺損。穿心蓮內(nèi)酯通過(guò)抑制局部缺血區(qū)的小膠質(zhì)細(xì)胞激活和小膠質(zhì)細(xì)胞介導(dǎo)的IL-1β和TNF-α的表達(dá)而發(fā)揮神經(jīng)保護(hù)作用[56]。葛根中分離的總異維生素可以顯著降低缺血2 h和再灌注48 h的腦梗死體積,小膠質(zhì)細(xì)胞在刺激下轉(zhuǎn)化為M2型,并分泌各種細(xì)胞因子以修復(fù)缺血性損傷,其作用涉及小膠質(zhì)細(xì)胞活化和抑制小膠質(zhì)細(xì)胞介導(dǎo)的IL-1β在缺血皮質(zhì)中的表達(dá)[57]。在中國(guó)草本植物坡壘中提取了一種天然抗氧化劑,稱為Malibatol A,能減少M(fèi)CAO動(dòng)物模型的腦梗塞面積并減輕腦缺血損害。并且,Malibatol A能降低M1型小膠質(zhì)細(xì)胞標(biāo)志物(CD86等)的表達(dá),升高M(jìn)2型標(biāo)志物(CD206,Ym-1)的表達(dá),還能促進(jìn)PPAPγ核受體的激活,以此來(lái)抑制炎癥反應(yīng)[58]。
目前尚缺乏有效的藥物來(lái)提高卒中后亞急性期和慢性期患者的生存率或改善生活質(zhì)量,大量研究聚焦到細(xì)胞療法。使用M2型小膠質(zhì)細(xì)胞療法可能是針對(duì)卒中的保護(hù)性治療策略,原因有三:首先,M2型小膠質(zhì)細(xì)胞分泌保護(hù)性重構(gòu)因子,從而通過(guò)組織(包括神經(jīng)元)和血管重塑促進(jìn)神經(jīng)元網(wǎng)絡(luò)恢復(fù);其次M2型小膠質(zhì)細(xì)胞可通過(guò)BBB或脈絡(luò)叢遷移到局部損傷區(qū)域;第三,在適當(dāng)?shù)臅r(shí)機(jī)進(jìn)行干預(yù),M2型小膠質(zhì)細(xì)胞可減輕炎癥誘導(dǎo)的繼發(fā)性腦損傷。
研究表明,慢性卒中患者接受髓鞘內(nèi)注射自體骨髓單個(gè)核細(xì)治療后可明顯改善步態(tài)和手部功能,加速康復(fù)進(jìn)程[59]。腦卒中患者接受鞘內(nèi)注射21.9×106個(gè)自體M2小膠質(zhì)細(xì)胞治療后,NIHSS評(píng)分在治療6個(gè)月后從11降至6,此外,患者體內(nèi)IL-8,IL-10和IL-4水平升高,IL-1b,TNF-α,IFN-γ和IL-6水平降低。由此可見(jiàn),腦卒中患者鞘內(nèi)給予自體M2小膠質(zhì)細(xì)胞治療是有一定療效的,但效果因人而異,往往與患者的自身免疫反應(yīng)水平有關(guān),內(nèi)源性免疫抑制機(jī)制較差、促炎反應(yīng)活躍的患者療效相對(duì)較好[60]。
綜上所述,小膠質(zhì)細(xì)胞的異?;罨c缺血性腦卒中存在著緊密聯(lián)系,對(duì)缺血性腦卒中的發(fā)生發(fā)展具有雙重作用。主要表現(xiàn)在M1型通過(guò)增加促炎因子的釋放,產(chǎn)生細(xì)胞毒性作用,并可改變BBB,從而加重缺血腦組織神經(jīng)損傷;而M2型則通過(guò)分泌抗炎及神經(jīng)營(yíng)養(yǎng)因子,從而起到了促進(jìn)神經(jīng)元修復(fù)和再生的作用。因此,調(diào)節(jié)小膠質(zhì)細(xì)胞的功能性分化至關(guān)重要,這包括抑制小膠質(zhì)細(xì)胞向M1型分化,誘導(dǎo)其向M2型分化,促進(jìn)M1型向M2型逆轉(zhuǎn)等,不僅能減少M(fèi)1型小膠質(zhì)細(xì)胞對(duì)腦組織的免疫損傷,而且能增強(qiáng)M2型小膠質(zhì)細(xì)胞的抗炎能力,促進(jìn)神經(jīng)元修復(fù)和再生,這可能成為臨床治療缺血性腦卒中的新策略和補(bǔ)充。然而缺血性腦卒中后小膠質(zhì)細(xì)胞的活化和調(diào)控機(jī)制異常復(fù)雜,還需要更多的研究進(jìn)一步明確兩者關(guān)系。
[1]Mehta SL,Manhas N,Raghubir R.Molecular targets in cerebral ischemia for developing novel therapeutics[J].Brain Res Rev,2007,54(1):34-66.
[2]Jin R,Yang G,Li G.Inflammatory mechanisms in ischemic stroke:role of inflammatory cells[J].J Leukoc Biol,2010,87(5):779-789.
[3]Lo EH.A new penumbra:transitioning from injury into repair after stroke[J].Nat Med,2008,14(5):497-500.
[4]Sieweke MH,Allen JE.Beyond stem cells:self-renewal of differentiated macrophages[J].Science,2013,342(6161):1242974.
[5]Lan X,Han X,Li Q,Yang QW,Wang J.Modulators of microglial activation and polarization after intracerebral haemorrhage[J].Nat Rev Neurol,2017,13(7):420-433.
[6]Xiong XY,Liu L,Yang QW.Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke[J].Prog Neurobiol,2016,142:23-44.
[7]Chhor V,Le Charpentier T,Lebon S,Oré MV,Celador IL,Josserand J,et al.Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro[J].Brain Behav Immun,2013,32:70-85.
[8]Han L,Cai W,Mao L,Liu J,Li P,Leak RK,et al.Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia[J].Stroke,2015,46(9):2628-2636.
[9]Hu X,Leak RK,Shi Y,Suenaga J,Gao Y,Zheng P,et al.Microglial and macrophage polarization-new prospects for brain repair[J].Nat Rev Neurol,2015,11(1):56-64.
[10]Jolivel V,Bicker F,Binamé F,Ploen R,Keller S,Gollan R,et al.Perivascular microglia promote blood vessel disintegration in the ischemic penumbra[J].Acta Neuropathol,2015,129(2):279-295.
[11]Iadecola C,Anrather J.The immunology of stroke:from mechanisms to translation[J].Nat Med,2011,17(7):796-808.
[12]Meng HL,Li XX,Chen YT,Yu LJ,Zhang H,Lao JM,et al.Neuronal soluble fas ligand drives M1-microglia polarization after cerebral ischemia[J].CNS Neurosci Ther,2016,22(9):771-781.
[13]Niu FN,Zhang X,Hu XM,Chen J,Chang LL,Li JW,et al.Targeted mutation of Fas ligand gene attenuates brain inflammation in experimental stroke[J].Brain Behav Immun,2012,26(1):61-71.
[14]Brea D,Sobrino T,Rodríguez-Yá?ez M,Ramos-Cabrer P,Agulla J,Rodríguez-González R,et al.Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke[J].Clin Immunol,2011,139(2):193-198.
[15]Zhang Y,Peng W,Ao X,Dai H,Yuan L,Huang X,et al.TAK-242,a Toll-like receptor 4 antagonist,protects against aldosterone-induced cardiac and renal injury[J].PLoS One, 2015, 10(11):e0142456.
[16]Ji Y,Zhou Y,Pan J,Li X,Wang H,Wang Y.Temporal pattern of Toll-like receptor 9 upregulation in neurons and glial cells following cerebral ischemia reperfusion in mice[J].Int J Neurosci,2016,126(3):269-277.
[17]Sriram K,Miller DB,O'Callaghan JP.Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity:role of tumor necrosis factor-alpha[J].J Neurochem,2006,96(3):706-718.
[18]Lalancette-Hébert M,Gowing G,Simard A,Weng YC,Kriz J.Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain[J].J Neurosci,2007,27(10):2596-2605.
[19]Hu X,Li P,Guo Y,Wang H,Leak RK,Chen S,et al.Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J].Stroke,2012,43(11):3063-3070.
[20]Polazzi E,Altamira LE,Eleuteri S,Barbaro R,Casadio C,Contestabile A,et al.Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death:role of transforming growth factor beta-2[J].J Neurochem,2009,110(2):545-556.
[21]Frank-Cannon TC,Alto LT,McAlpine FE,Tansey MG.Does neuroinflammation fan the flame in neurodegenerative diseases?[J].MolNeurodegener,2009,4:47.
[22]Lee Y,Lee SR,Choi SS,Yeo HG,Chang KT,Lee HJ.Therapeutically targeting neuroinflammation and microglia after acute ischemic stroke[J].Biomed Res Int,2014,2014:297241.
[23]Perego C,F(xiàn)umagalli S,De Simoni MG.Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice[J].J Neuroinflammation,2011,8:174.
[24]Fukumoto D,Hosoya T,Nishiyama S,Harada N,Iwata H,Yamamoto S,et al.Multiparametric assessment of acute and subacute ischemic neuronal damage:a small animal positron emission tomography study with rat photochemically induced thrombosis model[J].Synapse,2011,65(3):207-214.
[25]Walberer M,Rueger MA,Simard ML,Emig B,Jander S,F(xiàn)ink GR,et al.Dynamics of neuroinflammation in the macrosphere model of arterio-arterial embolic focal ischemia:an approximation to human stroke patterns[J].Exp Transl Stroke Med,2010,2(1):22.
[26]Szalay G,Martinecz B,Lénárt N,K?rnyei Z,OrsolitsB, JudákL, etal.Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke[J].Nat Commun,2016,7:11499.
[27]Kitamura Y,Takata K,Inden M,Tsuchiya D,Yanagisawa D,Nakata J,et al.Intracerebroventricular injection of microglia protects against focal brain ischemia[J].J Pharmacol Sci,2004,94(2):203-206.
[28]Lee EJ,Moon PG,Baek MC,Kim HS.Comparison of the effects of matrix metalloproteinase inhibitors on TNF-α release from activated microglia and TNF-α converting enzyme activity[J].Biomol Ther(Seoul),2014,22(5):414-419.
[29]Kim GS,Cho S,Nelson JW,Zipfel GJ,Han BH.TrkB agonist antibody pretreatment enhances neuronal survival and long-term sensory motor function following hypoxic ischemic injury in neonatal rats[J].PLoS One,2014,9(2):e88962.
[30]Dobolyi A,Vincze C,Pál G,Lovas G.The neuroprotective functions of transforming growth factor beta proteins[J].Int J Mol Sci,2012,13(7):8219-8258.
[31]Tobin MK,Bonds JA,Minshall RD,Pelligrino DA,Testai FD,Lazarov O.Neurogenesis and inflammation after ischemic stroke:what is known and where we go from here[J].J Cereb Blood Flow Metab,2014,34(10):1573-1584.
[32]Lin R,Cai J,Nathan C,Wei X,Schleidt S,Rosenwasser R,et al.Neurogenesis is enhanced by stroke in multiple new stem cell niches along the ventricular system at sites of high BBB permeability[J].Neurobiol Dis,2015,74:229-239.
[33]Zhao C,Deng W,Gage FH.Mechanisms and functional implications of adult neurogenesis[J].Cell,2008,132(4):645-660.
[34]Kerschensteiner M,Meinl E,Hohlfeld R.Neuroimmune crosstalk in CNS diseases[J].Results Probl Cell Differ,2010,51:197-216.
[35]Thored P,Heldmann U,Gomes-Leal W,Gisler R,Darsalia V,Taneera J,et al.Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke[J].Glia,2009,57(8):835-849.
[36]Jin K,Wang X,Xie L,Mao XO,Zhu W,Wang Y,et al.Evidence for stroke-induced neurogenesis in the human brain[J].Proc Natl Acad Sci USA,2006,103(35):13198-13202.
[37]Tang Y,Wang J,Lin X,Wang L,Shao B,Jin K,et al.Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis[J].J Cereb Blood Flow Metab,2014,34(7):1138-1147.
[38]Nada SE,Tulsulkar J,Shah ZA.Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761?) afterpermanentischemic stroke in mice[J].Mol Neurobiol,2014,49(2):945-956.
[39]Tang Y,Le W.Differential roles of M1 and M2 microglia in neurodegenerative diseases[J].Mol Neurobiol,2016,53(2):1181-1194.
[40]Wake H,Moorhouse AJ,Jinno S,Kohsaka S,Nabekura J.Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals[J].J Neurosci,2009,29(13):3974-3980.
[41]Wang J,Yang Z,Liu C,Zhao Y,Chen Y.Activated microglia provide a neuroprotective role by balancing glial cell-line derived neurotrophic factor and tumor necrosis factor-α secretion after subacute cerebral ischemia[J].Int J Mol Med,2013,31(1):172-178.
[42]Chen Y,Won SJ,Xu Y,Swanson RA.Targeting microglial activation in stroke therapy:pharmacological tools and gender effects[J].Curr Med Chem,2014,21(19):2146-2155.
[43]Katayama T,Kobayashi H,Okamura T,Yamasaki-Katayama Y,Kibayashi T,Kimura H,et al.Accumulating microglia phagocytose injured neurons in hippocampal slice cultures:involvement of p38 MAP kinase[J].PLoS One,2012,7(7):e40813.
[44]Giraldi-Guimar?es A,de Freitas HT,Coelho Bde P,Macedo-Ramos H,Mendez-Otero R,Cavalcante LA,et al.Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia[J].Brain Res,2012,1452:173-184.
[45]Miao XY,Liu XB,Yue Q,Qiu N,Huang WD,Wang JJ,et al.Deferoxamine suppresses microglia activation and protects against secondary neural injury after intracerebral hemorrhage in rats[J].J South Med Univ(南方醫(yī)科大學(xué)學(xué)報(bào)),2012,32(7):970-975.
[46]Chen Z,Jalabi W,Shpargel KB,F(xiàn)arabaugh KT,Dutta R,Yin X,et al.Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4[J].J Neurosci,2012,32(34):11706-11715.
[47]SuEJ, CaoC, FredrikssonL, NilssonI,Stefanitsch C,Stevenson TK,et al.Microglialmediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke[J].Acta Neuropathol,2017,134(4):585-604.
[48]Boscia F,Esposito CL,Casamassa A,de Franciscis V,Annunziato L,Cerchia L.The isolectin IB4 binds RET receptor tyrosine kinase in microglia[J].J Neurochem,2013,126(4):428-436.
[49]Wolf SA,Gimsa U,Bechmann I,Nitsch R.Differential expression of costimulatory molecules B7-1 and B7-2 on microglial cells induced by Th1 and Th2 cells in organotypic brain tissue[J].Glia,2001,36(3):414-420.
[50]Hacke W,Kaste M,Bluhmki E,Brozman M,Dávalos A,Guidetti D,et al.Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J].N Engl J Med,2008,359(13):1317-1329.
[51]Fonarow GC,Smith EE,Saver JL,Reeves MJ,Bhatt DL,Grau-Sepulveda MV,et al.Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke:patient characteristics,hospital factors,and outcomes associated with door-toneedle times within 60 minutes[J].Circulation,2011,123(7):750-758.
[52]Jin Q,Cheng J,Liu Y,Wu J,Wang X,Wei S,et al.Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation ofmicroglia/macrophages and increased angiogenesis and neurogenesis following experimentalstroke [J].BrainBehavImmun,2014,40:131-142.
[53]LopesRS, CardosoMM, SampaioAO,Barbosa MS Jr,Souza CC,DA Silva MC,et al.Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia[J].J Biosci,2016,41(3):381-394.
[54]Shin JA,Lim SM,Jeong SI,Kang JL,Park EM.Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice[J].Brain Behav Immun,2014,40:143-154.
[55]GuglielmettiC, Le Blon D, SantermansE,Salas-Perdomo A,Daans J,De Vocht N,et al.Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages[J].Glia,2016,64(12):2181-2200.
[56]Sun K,F(xiàn)an J,Han J.Ameliorating effects of traditional Chinese medicine preparation,Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage[J].Acta Pharm Sin B,2015,5(1):8-24.
[57]Miyamoto A,Wake H,Ishikawa AW,Eto K,Shibata K,Murakoshi H,et al.Microglia contact induces synapse formation in developing somatosensory cortex[J].Nat Commun,2016,7:12540.
[58]Pan J,Jin JL,Ge HM,Yin KL,Chen X,Han LJ,et al.Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner[J].J Neuroinflammation,2015,12:51.
[59]Sharma A,Sane H,Gokulchandran N,Khopkar D,Paranjape A,Sundaram J,et al.Autologous bone marrow mononuclear cells intrathecal transplantation in chronic stroke[J].Stroke Res Treat,2014,2014:234095.
[60]Chernykh ER, Shevela EY, Starostina NM,Morozov SA,Davydova MN,Menyaeva EV,et al.Safety and therapeutic potential of M2 macrophages in stroke treatment[J].Cell Transplant,2016,25(8):1461-1471.