陸澤琦 陳立群 ,?,2)
?(上海大學(xué)上海市應(yīng)用數(shù)學(xué)和力學(xué)研究所,上海200072)?(上海大學(xué)力學(xué)系,上海200444)
非線性被動(dòng)隔振的若干進(jìn)展1)
陸澤琦?陳立群?,?,2)
?(上海大學(xué)上海市應(yīng)用數(shù)學(xué)和力學(xué)研究所,上海200072)?(上海大學(xué)力學(xué)系,上海200444)
工程中航空航天、船舶與海洋結(jié)構(gòu)物及其上裝備和精密儀器易受極端環(huán)境干擾和破壞,使得非線性隔振理論在近十年來迅猛發(fā)展;針對(duì)日益嚴(yán)峻的隔振和抗沖擊等要求,工程師和科學(xué)家們已發(fā)展出各種不同的非線性隔振系統(tǒng),包括主動(dòng)、半主動(dòng)、被動(dòng)和復(fù)合隔振.利用非線性改善的被動(dòng)隔振兼具傳統(tǒng)被動(dòng)隔振的魯棒性和主動(dòng)隔振的高效性成為振動(dòng)控制領(lǐng)域的先進(jìn)技術(shù).本文主要綜述了非線性隔振理論和應(yīng)用的近十年進(jìn)展,包括非線性隔振設(shè)計(jì)、建模、分析、仿真和實(shí)驗(yàn).在隔振系統(tǒng)的構(gòu)建中,既考慮了剛度非線性又考慮了阻尼非線性;動(dòng)力學(xué)響應(yīng)的研究中,既有確定性分析又有隨機(jī)分析.首先提出了適用于非線性隔振系統(tǒng)改進(jìn)的評(píng)價(jià)方式;其次綜述了高靜態(tài)低動(dòng)態(tài)剛度隔振及其加強(qiáng)形式非線性阻尼加強(qiáng)和雙層非線性隔振,混沌反控制技術(shù)、內(nèi)共振影響、非線性能量阱應(yīng)用等振動(dòng)機(jī)制利用型隔振和非線性隔振功能材料.最后,對(duì)非線性隔振研究發(fā)展的熱點(diǎn)和關(guān)鍵性問題進(jìn)行了分析和展望.
隔振,非線性振動(dòng),高靜態(tài)低動(dòng)態(tài)剛度,非線性阻尼,隔振材料
在絕大多數(shù)工程振動(dòng)系統(tǒng)中,振動(dòng)都被認(rèn)為是有害的,機(jī)械振動(dòng)會(huì)導(dǎo)致軸承磨損過大、緊固件松動(dòng)、結(jié)構(gòu)性或機(jī)構(gòu)性失效和降低效率.很多方法可以用來減小傳遞到被激振結(jié)構(gòu)的振動(dòng).理想的方法是設(shè)計(jì)低噪聲機(jī)械設(shè)備,或者通過加入外部設(shè)備,比如動(dòng)力吸振器來減少振動(dòng)響應(yīng).其中在振源和接受結(jié)構(gòu)之間引入隔振元件的方法是目前最為關(guān)注的振動(dòng)控制方法,即通過改變傳遞途徑的方式達(dá)到隔離振動(dòng)的目的,如圖1所示.
圖1 隔振問題Fig.1 Schematic diagram of vibration isolation
被動(dòng)隔振器是一個(gè)承載并且消耗能量的元件,它結(jié)構(gòu)簡(jiǎn)單,不需要外部能量,并具一定經(jīng)濟(jì)性優(yōu)勢(shì),因此在很多情況下成為解決工程振動(dòng)傳遞問題的首選方案[1].Piersol[2]和Rivin[3]對(duì)被動(dòng)隔振系統(tǒng)作了全面闡述和分析.但目前廣泛使用的被動(dòng)隔振存在兩個(gè)自身的缺點(diǎn):一方面,對(duì)于低頻外擾的隔振,在實(shí)現(xiàn)時(shí)會(huì)遇到靜變形過大和失穩(wěn)的問題;另一方面,阻尼可以減少共振頻率下的響應(yīng),但會(huì)降低隔振區(qū)的隔振效率.被動(dòng)隔振對(duì)低頻振動(dòng)控制不足,可以通過主動(dòng)隔振來克服,但主動(dòng)控制技術(shù)結(jié)構(gòu)復(fù)雜、能耗大、成本較高,并且存在作動(dòng)器輸出力與響應(yīng)時(shí)間的限制、傳感器探測(cè)的信號(hào)在測(cè)量和傳輸過程中的遲滯等問題[46].除了主動(dòng)隔振以外,被動(dòng)隔振的第一個(gè)缺點(diǎn)可以通過引入具有高靜態(tài)、低動(dòng)態(tài)剛度的非線性隔振元件來克服,這類系統(tǒng)是通過彈簧的特定幾何構(gòu)型來獲得較低的動(dòng)剛度和固有頻率,同時(shí)具有較小的靜態(tài)變形[7].第二個(gè)缺點(diǎn)可以通過非線性阻尼隔振克服,例如庫倫阻尼、冪函數(shù)阻尼、平方/立方阻尼、遲滯阻尼[8],從而實(shí)現(xiàn)在振動(dòng)位移較大時(shí)(比如共振頻率處)阻尼較大、在振動(dòng)位移較小時(shí)(比如在高頻處)阻尼也較小的目的.
環(huán)境激勵(lì)導(dǎo)致結(jié)構(gòu)振動(dòng)隔離的復(fù)雜性.被保護(hù)結(jié)構(gòu)服役期間通常會(huì)受到幾類環(huán)境激勵(lì).這些激勵(lì)通常是自然和動(dòng)態(tài)的,會(huì)導(dǎo)致結(jié)構(gòu)部件的振動(dòng)和破壞[9-10]:
(1)引起船舶與海洋結(jié)構(gòu)振動(dòng),如動(dòng)態(tài)波浪、風(fēng)、洋流、冰或地震等載荷[10];
(2)引起航天器微振動(dòng),如火箭發(fā)動(dòng)機(jī)振動(dòng)、太陽能帆板展開和收縮等沖擊載荷、晝夜溫差引起載荷、空間的不穩(wěn)定輻射干擾等[9].
利用非線性以提高被動(dòng)隔振系統(tǒng)的性能,是隔振領(lǐng)域一個(gè)重要的研究方向.特別是在過去十年間非線性隔振在工程各個(gè)領(lǐng)域得到廣泛應(yīng)用.但是除了2008年Ibriham發(fā)表相關(guān)綜述[7]外,再?zèng)]有新的文章總結(jié)在非線性隔振方面取得的最新成績(jī)和進(jìn)展.本文總結(jié)了非線性隔振近十年的研究成果,尤其是高靜態(tài)低動(dòng)態(tài)系統(tǒng)方面的成果,也包括作者的工作.
1.1 航天器隔振
航天器結(jié)構(gòu)在對(duì)接過程中會(huì)產(chǎn)生振動(dòng)和沖擊環(huán)境,另外在發(fā)射過程中火箭發(fā)動(dòng)機(jī)推進(jìn)不可能一直是穩(wěn)定狀態(tài),發(fā)射過程中的振動(dòng)也會(huì)對(duì)航天器結(jié)構(gòu)造成影響,甚至其振動(dòng)會(huì)對(duì)航天器結(jié)構(gòu)的運(yùn)行及穩(wěn)定性產(chǎn)生致命影響[9,11].因此航天器結(jié)構(gòu)振動(dòng)控制對(duì)其操作性和穩(wěn)定性有重要意義,減振設(shè)計(jì)已成為航天器平臺(tái)設(shè)計(jì)的重要內(nèi)容之一.事實(shí)上,由于航天器結(jié)構(gòu)應(yīng)用環(huán)境的特殊性及其振動(dòng)精度要求的極端重要性,在應(yīng)用振動(dòng)控制技術(shù)解決航天器振動(dòng)控制和結(jié)構(gòu)探測(cè)問題時(shí),相當(dāng)一部分工程問題受到實(shí)際條件的制約,由此引出諸多技術(shù)難題,形成了當(dāng)前航天器結(jié)構(gòu)振動(dòng)控制技術(shù)前沿的重要組成部分[12].Zheng等[13]針對(duì)整星結(jié)構(gòu)提出Octo-strut主被動(dòng)一體化非線性隔振平臺(tái),其原理是應(yīng)用氣動(dòng)主、被動(dòng)一體化技術(shù)實(shí)現(xiàn)結(jié)構(gòu)的振動(dòng)抑制.Zhang等[1419]研究了星上擾振部件與隔振系統(tǒng)的耦合問題,提出被動(dòng)隔振裝置參數(shù)設(shè)計(jì)方法,以及振動(dòng)抑制和姿態(tài)控制聯(lián)合方法,提高了高精度、高穩(wěn)定度航天器的姿態(tài)快速機(jī)動(dòng)與快速穩(wěn)定的能力.
1.2 船舶與海洋結(jié)構(gòu)物隔振
各種環(huán)境激勵(lì)引起海洋結(jié)構(gòu)振動(dòng),降低了海洋平臺(tái)的生產(chǎn)能力和安全性,影響了海洋結(jié)構(gòu)物的操縱性;在過去幾十年里已成為船舶與海洋工程結(jié)構(gòu)的事故和破壞的主要因數(shù)[2022].由于自激的非線性水動(dòng)力、大變形和強(qiáng)非線性響應(yīng),船舶與海洋工程振動(dòng)控制已成為新的挑戰(zhàn).一般振動(dòng)控制策略已得到廣泛研究并認(rèn)為能有效緩解結(jié)構(gòu)振動(dòng),但強(qiáng)調(diào)特定方法的船舶與海洋工程結(jié)構(gòu)振動(dòng)設(shè)計(jì)存在局限性.Kandasamy等[10]綜述了振動(dòng)控制方法以及在船舶與海洋工程中的應(yīng)用;被動(dòng)、主動(dòng)、半主動(dòng)和復(fù)合控制的各種傳統(tǒng)策略和方法以及針對(duì)船舶與海洋工程結(jié)構(gòu)振動(dòng)控制方法.船舶與海洋工程振動(dòng)控制結(jié)構(gòu)包括夾套結(jié)構(gòu)[23]、張力腿平臺(tái)[24]、柱狀支撐結(jié)構(gòu)、浮式生產(chǎn)儲(chǔ)油輪、卸油輪和立管結(jié)構(gòu)[25].
2.1 非線性振動(dòng)傳遞率
振動(dòng)傳遞率是評(píng)價(jià)隔振系統(tǒng)效能的關(guān)鍵參數(shù).線性系統(tǒng)力傳遞率定義為傳遞力(ft)與激勵(lì)力(fe)的幅值比;位移傳遞率定義為被保護(hù)結(jié)構(gòu)位移(xt)與基礎(chǔ)位移(xe)的幅值比.線性系統(tǒng)力和位移傳遞率的數(shù)學(xué)表達(dá)式是相同的,表示為
其中,ζ為阻尼比,Ω為無量綱激勵(lì)頻率.而非線性系統(tǒng)在諧波激勵(lì)下,力和位移響應(yīng)存在除基礎(chǔ)頻率以外的頻率成分.它可能是周期、準(zhǔn)周期或混沌響應(yīng).因此幅值比用于定義傳遞率存在局限性.Lu等[26]提出了響應(yīng)與激勵(lì)的均方根值之比作為傳遞率的定義
改進(jìn)的定義有利于保能,因?yàn)橥ㄟ^均方根值可以計(jì)及響應(yīng)的其他頻率成分,這將減少能量在定義時(shí)的損失.Lu等[26]對(duì)雙層非線性隔振系統(tǒng)展開傳遞率定義的適用性研究,用近似方法和數(shù)值方法定量研究高階諧波對(duì)傳遞率的影響.最后改進(jìn)的傳遞率推廣到準(zhǔn)周期、混沌響應(yīng).
2.2 功率流指標(biāo)
在很多情況下隔振基礎(chǔ)具有柔性特征,隔振器和基礎(chǔ)之間存在強(qiáng)烈的耦合效應(yīng).剛性基礎(chǔ)假設(shè)的系統(tǒng)建模忽略了振源和基礎(chǔ)間耦合,導(dǎo)致以往研究不夠精準(zhǔn)[27-28].
功率流分析考慮了力、速度和它們之間的相位關(guān)系;作為一個(gè)獨(dú)立描述系統(tǒng)響應(yīng)的參數(shù),用來評(píng)價(jià)隔振,可以得到更豐富的動(dòng)力學(xué)特性[29].因此,研究非線性隔振系統(tǒng)功率流很必要.馬業(yè)忠等[30]將柔性基礎(chǔ)簡(jiǎn)化為矩形薄板,運(yùn)用諧波平衡和Newton迭代法研究非線性剛度和阻尼對(duì)隔振系統(tǒng)功率流的影響.高書磊等[31]將柔性基礎(chǔ)看作柔性梁,用功率流評(píng)價(jià)隔振效果,運(yùn)用諧波平衡和Newton迭代法研究了系統(tǒng)參數(shù)對(duì)功率流的影響.Royston等[32]考察了通過非線性隔振器的功率流;建立了振源--非線性路徑--接收結(jié)構(gòu)的運(yùn)動(dòng)方程,運(yùn)用諧波平衡結(jié)合弧長(zhǎng)延伸算法研究了穩(wěn)態(tài)響應(yīng),結(jié)構(gòu)噪聲產(chǎn)生于次噪聲頻率激勵(lì);基礎(chǔ)模型為多自由度,振動(dòng)諧次與接收結(jié)構(gòu)頻率相符,較高諧次會(huì)傳遞較高幅值振動(dòng).Xiong等[33]研究了非線性耦合系統(tǒng)的功率流特征,這類系統(tǒng)包括機(jī)器、非線性隔振器和受海浪激勵(lì)的柔性船;剛度和阻尼非線性度為p和q階,運(yùn)用諧波平衡法分析穩(wěn)態(tài)響應(yīng),研究了由于海浪引起的振源對(duì)輸入到整個(gè)系統(tǒng)功率流的影響.Kerschen等[34]運(yùn)用功率流方法研究了非線性保守系統(tǒng)的非線性模態(tài)和頻率能量依賴特點(diǎn).Yang等[35]運(yùn)用平均法研究了具有負(fù)剛度特征的隔振系統(tǒng)功率流特性.提出了非線性隔振系統(tǒng)優(yōu)化設(shè)計(jì)以達(dá)到最小亞諧波共振.Yang等[36]研究了達(dá)芬振子功率流動(dòng)力學(xué)行為,揭示了由于非線性引起的不同功率輸入和耗散特性,運(yùn)用諧波平衡和龍格庫塔數(shù)值方法研究了平均輸入功率;超/亞諧波周期響應(yīng)能增加平均輸入功率,輸入功率幅值依賴于初始條件.Yang等[37]基于平均法比較了考慮非線性基礎(chǔ)的非線性隔振器功率流和傳遞率,并得到數(shù)值驗(yàn)證.無論是漸軟還是漸硬基礎(chǔ),漸軟非線性隔振器優(yōu)于漸硬隔振器.
3.1 確定性分析
Ibrahim[7]對(duì)高靜態(tài)低動(dòng)態(tài)非線性剛度隔振做了綜述,比較了許多不同非線性隔振器的優(yōu)劣和發(fā)展,尋找高效緊湊的負(fù)剛度結(jié)構(gòu)成為實(shí)現(xiàn)高靜態(tài)低動(dòng)態(tài)非線性剛度隔振的關(guān)鍵[3839].Robertson[40]等提出了磁懸浮隔振系統(tǒng),通過磁鐵布置產(chǎn)生負(fù)剛度來降低懸浮系統(tǒng)的固有頻率,并討論了磁鐵作用面積和間隙對(duì)剛度曲線的影響,為研究磁鐵型高靜態(tài)低動(dòng)態(tài)隔振系統(tǒng)提供了設(shè)計(jì)基礎(chǔ)[41].彭超等[42]研制了一種新型高靜態(tài)低動(dòng)態(tài)剛度隔振系統(tǒng),由3個(gè)特定形狀的片彈簧對(duì)稱分布構(gòu)成,可顯著降低系統(tǒng)起始隔振頻率;建立了隔振實(shí)驗(yàn)平臺(tái),驗(yàn)證了理論結(jié)果.路純紅等[43]通過分析正負(fù)剛度并聯(lián)機(jī)理,也設(shè)計(jì)了一種新型超低頻被動(dòng)隔振系統(tǒng).Carrella等[44]研究了準(zhǔn)零剛度(qausi zero sti ff ness,QZS)隔振系統(tǒng),它是由一個(gè)豎直彈簧和兩個(gè)水平彈簧(與傳遞振動(dòng)的方向垂直的普通線性彈簧)組成,豎直彈簧作為靜變形的支撐剛度,兩個(gè)水平彈簧在平衡位置處預(yù)壓產(chǎn)生負(fù)剛度,由三彈簧組成的隔振系統(tǒng)性能優(yōu)于線性隔振系統(tǒng),而且具有較低的靜態(tài)變形,如圖2所示.在豎直方向上作用力與產(chǎn)生位移間關(guān)系可寫為
圖2 準(zhǔn)零剛度模型[44]Fig.2 QZS model[44]
Kovacic等[45]和Carrella等[4647]利用三彈簧結(jié)構(gòu)建立了高靜態(tài)低動(dòng)態(tài)剛度隔振系統(tǒng),如圖3所示.水平放置的彈簧引入了幾何非線性剛度,調(diào)節(jié)水平彈簧剛度以減少系統(tǒng)固有頻率,隔振的頻率范圍往低頻擴(kuò)展.隔振器的受力--位移關(guān)系可以寫成多項(xiàng)式形式
其中,k1=kv1-2(lo/l-1)kh1,k3=lo/l3kh1,lo是水平彈簧的初始長(zhǎng)度,l是當(dāng)它處于水平位置時(shí)的長(zhǎng)度.當(dāng)lo>l時(shí),水平彈簧kh1可以減小隔振系統(tǒng)線性剛度,讓其小于線性剛度kv1,減小系統(tǒng)的固有頻率,但同時(shí)引入立方剛度項(xiàng).水平彈簧作用包括擴(kuò)大隔振頻率范圍以及產(chǎn)生漸硬非線性,會(huì)導(dǎo)致潛在跳躍現(xiàn)象.
圖3 高靜態(tài)低動(dòng)態(tài)隔振系統(tǒng)示意圖[46]Fig.3 Schematic of nonlinear vibration isolation system with high-static-low-dynamic sti ff ness[46]
微振動(dòng)時(shí)(x≤0.2l),圖3所示的非線性隔振系統(tǒng)運(yùn)動(dòng)方程可以近似并無量綱化為
徐道臨等[48]在磁力式QZS隔振系統(tǒng)中加入調(diào)節(jié)技術(shù)可以適應(yīng)于不同加載質(zhì)量.Sun等[49]在準(zhǔn)零剛度隔振系統(tǒng)中加入時(shí)滯反饋的主動(dòng)控制策略,時(shí)滯反饋控制不但提高了系統(tǒng)的魯棒性,同時(shí)提高了隔振性能.Li等[50]提出了構(gòu)建負(fù)剛度的有效方法,通過設(shè)計(jì)實(shí)驗(yàn)臺(tái)實(shí)驗(yàn)研究了磁力式負(fù)剛度隔振器,磁彈簧和橡膠相耦合時(shí)產(chǎn)生較低固有頻率和較大靜載能力,固有頻率可達(dá)到1.5Hz,在0~100Hz傳遞率最大下降40dB.Huang等[51]使用光滑梁作為負(fù)剛度設(shè)計(jì)了極低固有頻率的隔振系統(tǒng),隔振器剛度和外載缺陷會(huì)導(dǎo)致動(dòng)力學(xué)響應(yīng)呈現(xiàn)出漸軟、漸硬和軟硬共存特性,外載缺陷會(huì)使系統(tǒng)呈現(xiàn)漸軟特性,增加剛度缺陷會(huì)弱化外載缺陷所引起的漸軟特性,增加激勵(lì)幅值會(huì)使隔振在不同的剛度特征間復(fù)雜轉(zhuǎn)遷[52].引入剪刀形元件(scissor-like structure,SLS)作為產(chǎn)生幾何非線性特性的構(gòu)件開始受到關(guān)注[53];Zhang等[54]分析和研究了SLS的非線性剛度特性和隔振性能,SLS在機(jī)械工程、結(jié)構(gòu)工程和宇航工程中廣泛存在,具有較高剛度和阻尼非線性,以及很高的承載能力和較優(yōu)的平衡穩(wěn)定性;采用攝動(dòng)法和平均法研究了SLS的不同構(gòu)型特點(diǎn),在沒有改變整體結(jié)構(gòu)和外部尺寸下,SLS能顯著地調(diào)節(jié)非線性剛度等非線性特征,可以滿足宇航工程對(duì)隔振結(jié)構(gòu)的嚴(yán)格要求.Friswell等[55]通過調(diào)節(jié)軸向靜載以幾何非線性形式改變梁的力位移特征曲線,實(shí)現(xiàn)高靜態(tài)低動(dòng)態(tài)剛度隔振,提出了兩種調(diào)節(jié)方式:一是通過端部作動(dòng)器改變軸向位移和轉(zhuǎn)角,二是改變復(fù)合梁的初始熱應(yīng)力.Trung等[56]研究了QZS隔振器的Lyapunov函數(shù)主動(dòng)控制方法,控制力加載在水平方向以抵消豎直方向的振動(dòng),基于Lyapunov函數(shù)發(fā)展了QZS隔振主動(dòng)控制的非線性算法;實(shí)驗(yàn)結(jié)果表明,非直接激勵(lì)的水平作動(dòng)器可以通過非線性作用有效抑制豎直方向振動(dòng).Le和Ahn[57]使用負(fù)剛度主動(dòng)控制系統(tǒng)成功實(shí)現(xiàn)低于5Hz的主動(dòng)控制,設(shè)計(jì)模糊滑??刂?FSMC)提高了負(fù)剛度主動(dòng)系統(tǒng)的隔振性能;基于Lyapunov穩(wěn)定性理論建立模糊控制準(zhǔn)則,通過設(shè)計(jì)實(shí)驗(yàn)研究了FSMC控制在不同激勵(lì)環(huán)境下對(duì)系統(tǒng)的有效性.Danh和Ahn[58]針對(duì)車輛座椅的低頻振動(dòng)問題,設(shè)計(jì)了基于準(zhǔn)零剛度的主動(dòng)控制系統(tǒng),利用自適應(yīng)控制算法解決了該系統(tǒng)的時(shí)變和非線性問題,實(shí)現(xiàn)了高效隔振.多向準(zhǔn)零剛度隔振器拓展了準(zhǔn)零剛度隔振器的研究[59].徐鑒等[60]研究了多方向準(zhǔn)零剛度隔振系統(tǒng),并加入時(shí)滯主動(dòng)控制,有效地抑制了多方向振動(dòng)[6162].Zhou等[63]設(shè)計(jì)了6自由度剛體QZS隔振平臺(tái),運(yùn)用諧波平衡法得到幅頻關(guān)系;與線性6自由度隔振平臺(tái)相比,能有更高效的低頻隔振特性.雙穩(wěn)板材質(zhì)輕,可操作性強(qiáng),近些年倍受到隔振實(shí)驗(yàn)研究者們的青睞和關(guān)注.Shaw等[6465]用雙穩(wěn)復(fù)合板制作了質(zhì)輕而有效的高靜態(tài)低動(dòng)態(tài)剛度的隔振系統(tǒng),用實(shí)驗(yàn)的方法證明此系統(tǒng)比等價(jià)的線性系統(tǒng)具有更大的隔振區(qū)域以及更低的固有頻率.
圖4 不同非線性剛度下力傳遞率幅值|TF|[47]Fig.4 E ff ect on the force transmissibility when the nonlinear sti ff ness is changed[47]
3.2 隨機(jī)分析
針對(duì)實(shí)際環(huán)境中隨機(jī)非平穩(wěn)的激勵(lì)源,有學(xué)者提出了在隨機(jī)白噪聲激勵(lì)下的非線性隔振系統(tǒng)模型[7].彈簧位移的概率密度方程可以通過???-普朗克--柯爾莫哥洛夫(Fokker-Planck-Kolmogorov,F(xiàn)PK)方程的解析解獲得,位移或加速度響應(yīng)的均方根值被用來評(píng)價(jià)3類不同的非線性剛度:(a)立方漸硬彈簧;(b)立方漸軟彈簧;(c)正切彈簧.立方漸軟彈簧能有效減少振動(dòng)傳遞率.Le和Ahn[66]用數(shù)值方法研究了車輛座椅在隨機(jī)激勵(lì)下時(shí)域響應(yīng),額外加入與正剛度彈簧平行的負(fù)剛度結(jié)構(gòu),建立了在低頻激勵(lì)下非線性隔振模型,并比較了單頻、多頻以及隨機(jī)3種情況下隔振性能.結(jié)果表明,隔振頻帶均比未加入負(fù)剛度時(shí)寬,并用實(shí)驗(yàn)的方法驗(yàn)證了這一結(jié)果.橡膠隔振在工程結(jié)構(gòu)中受到廣泛使用,針對(duì)不同激勵(lì)環(huán)境呈現(xiàn)出非線性和不確定因素.采用單自由度質(zhì)量--彈簧--阻尼模型來簡(jiǎn)化橡膠隔振系統(tǒng),其中剛度和阻尼是關(guān)于相對(duì)位移的多項(xiàng)式,多項(xiàng)式系數(shù)通過實(shí)驗(yàn)數(shù)據(jù)識(shí)別;主分量分析和蒙特卡洛仿真研究了系數(shù)不確定度,仿真和理論結(jié)果都表明,多項(xiàng)式非線性剛度非線性阻尼模型和不確定評(píng)價(jià)可以有效地預(yù)報(bào)振動(dòng)特性和隔振系統(tǒng)不確定度[67].然而,很難獲得非線性系統(tǒng)在隨機(jī)激勵(lì)下動(dòng)力學(xué)分析的頻域解析解,尤其是阻尼、剛度同為非線性的情況.因此,關(guān)于高靜態(tài)低動(dòng)態(tài)隔振系統(tǒng)的隨機(jī)動(dòng)力學(xué)行為的研究較少.
3.3 抗沖擊性能
在水下潛器和航天器的振動(dòng)抑制中,隔振器的抗沖擊性能和隔振作用同等重要[68].沖擊具有激勵(lì)幅值高和瞬時(shí)特點(diǎn),若不隔離會(huì)導(dǎo)致較大傳遞力和位移.傳統(tǒng)沖擊隔離是通過剛度元件變形吸收能量和阻尼耗散殘余振動(dòng)實(shí)現(xiàn).Ledezma-Ramirez等[69]利用非線性剛度特別是低動(dòng)態(tài)剛度實(shí)現(xiàn)沖擊隔離,非線性剛度能減小絕對(duì)位移和加速度響應(yīng).非線性抗沖也可通過Euler屈曲梁實(shí)現(xiàn),調(diào)節(jié)屈曲梁的曲率可以使隔振器處于QZS,Duffing型和Helmholtz-Duffing型3種工作模式,在較小激勵(lì)下,與其他兩類隔振模式相比,QZS并不是隔離沖擊的最優(yōu)形式,Duffing型含有微小正剛度能提高沖擊隔離能力,Helmholtz-Duffing型隔離沖擊會(huì)隨著外載增加而惡化[70].
4.1 剛度線性
Peng等[7172]和Guo等[73]使用輸出頻響函數(shù)較為系統(tǒng)地研究了立方非線性阻尼隔振器的力傳遞率,增加立方非線性阻尼能夠減小共振頻率處的力傳遞率并且在其他頻區(qū)不受影響.Laalej等[74]實(shí)驗(yàn)研究了隔振系統(tǒng)中非線性阻尼的作用.Peng,Guo和Laalej的研究結(jié)果與Lang等[75]在早些年的研究結(jié)論相一致.Tang和Brennan[76]比較了水平阻尼(與傳遞振動(dòng)方向垂直放置的線性阻尼[77])和立方非線性阻尼兩類不同非線性阻尼的單層隔振系統(tǒng)的傳遞率特征,對(duì)于力傳遞率,兩類阻尼都比線性阻尼具有更好的隔振特性;但對(duì)于位移傳遞率,水平阻尼相比立方非線性阻尼具有更多優(yōu)良的特性.Xiao等[78]對(duì)比了有與沒有線性項(xiàng)的立方非線性阻尼對(duì)單層隔振的影響,沒有阻尼線性項(xiàng)的單純立方非線性阻尼有更好的隔振特性,它能讓力和位移傳遞率的共振峰壓低成類似過阻尼的線性隔振系統(tǒng).Lang等[79]將非線性黏性阻尼加入多自由度隔振系統(tǒng),它可以描述為樓層型剪切模型,基于輸出頻響函數(shù)法,首次將線性黏性阻尼多自由度隔振推廣到非線性情況,得到了與先前研究單自由度一致的結(jié)論.Peng等[80-81]運(yùn)用輸出頻響函數(shù)的概念研究了多自由度隔振系統(tǒng)中不對(duì)稱非線性阻尼作用,也得出了類似的結(jié)論.L¨u等[82]在非線性阻尼隔振的基礎(chǔ)上,研究了周期解的穩(wěn)定性.Huang等[83]研究了同時(shí)依賴速度和位移的非線性阻尼(VDD),分別用位移和力傳遞率評(píng)價(jià)了VDD隔振系統(tǒng)性能,單自由度基礎(chǔ)激勵(lì)實(shí)驗(yàn)驗(yàn)證了理論結(jié)果.Lu等[84]實(shí)驗(yàn)研究了非線性阻尼的推廣的麥克斯韋模型(generalized maxwell model,GMM),阻尼非線性是通過流體阻尼的長(zhǎng)沖程實(shí)現(xiàn),GMM模型是彈簧和阻尼串聯(lián)的模型.實(shí)驗(yàn)結(jié)果表明,GMM模型在仿真流體阻尼時(shí)在很寬的頻帶上都非常精確,然而麥克斯韋模型和黏滯阻尼模型只在特定頻率下比較精確;進(jìn)行了振動(dòng)臺(tái)測(cè)試實(shí)驗(yàn),流體阻尼作為隔振系統(tǒng)的補(bǔ)充阻尼,GMM能夠更準(zhǔn)確地預(yù)測(cè)阻尼的能量耗散和峰值偏移.Mokni等[85]引入時(shí)滯非線性阻尼以加強(qiáng)隔振性能,時(shí)滯非線性阻尼通過快速參變阻尼以減小傳遞率,非線性阻尼能提高隔振性能.為了對(duì)非線性隔振狀態(tài)監(jiān)測(cè),需要實(shí)驗(yàn)識(shí)別.Mu等[86]綜述和比較了幾種非線性阻尼隔振系統(tǒng)的結(jié)構(gòu)故障診斷.
4.2 剛度非線性
Kovacic和Brennan[8]綜述了具有非線性阻尼的3類達(dá)芬系統(tǒng)(漸硬、漸軟和雙穩(wěn))動(dòng)力學(xué)特性;指出了冪函數(shù)非線性阻尼對(duì)分岔結(jié)構(gòu)和通向混沌途徑的影響依賴于非線性剛度特征;非線性阻尼對(duì)漸軟Duffing系統(tǒng)的諧波響應(yīng)和分岔結(jié)構(gòu),隨著激勵(lì)幅值的增加,兩條分離的幅頻曲線聚合并只存在上跳頻率;上跳頻率對(duì)阻尼的非線性階次不敏感,而在較高階次下,下跳頻率隨阻尼系數(shù)發(fā)生劇烈地改變,因此可以通過增加阻尼階次來消除小阻尼帶來的不穩(wěn)定諧波響應(yīng);對(duì)稱與不對(duì)稱系統(tǒng)在非線性阻尼情況下,系統(tǒng)共振所屬的分岔結(jié)構(gòu)不受阻尼階次影響,但是發(fā)生不同類型分岔的臨界參數(shù)依賴于阻尼系數(shù)和階次;漸硬Duffing振子在庫倫阻尼作用下存在一些有趣的響應(yīng)特征.Awrejcewicz等[87]運(yùn)用諧波平衡法研究了逃脫頻率(break-loose frequency),發(fā)現(xiàn)激勵(lì)頻率大于逃脫頻率時(shí)會(huì)持續(xù)較長(zhǎng)一段時(shí)間的黏滑運(yùn)動(dòng)(stick-slip motion)[88].Cveticanin[89]用諧波平衡法和數(shù)值方法分別研究了正負(fù)阻尼系數(shù)與非線性階次對(duì)振動(dòng)頻率的相互影響,以及極限環(huán)運(yùn)動(dòng)的參數(shù)邊界對(duì)非線性階次的依賴關(guān)系,數(shù)值與理論相吻合.Sharma等[90]研究了非線性阻尼對(duì)強(qiáng)迫達(dá)芬系統(tǒng)分岔與混沌特性的影響,研究結(jié)果表明,非線性阻尼能使系統(tǒng)首次進(jìn)入混沌狀態(tài)的閾值減小,并且能夠增加發(fā)生混沌的參數(shù)空間,影響系統(tǒng)進(jìn)入混沌的途徑.Ho等[91]用輸出頻響函數(shù)法研究了非線性剛度和非線性阻尼對(duì)Duffing系統(tǒng)在不同頻率范圍內(nèi)的影響.非線性黏性阻尼能夠抑制共振頻率處的響應(yīng),同時(shí)對(duì)高頻處的響應(yīng)影響較小.盡管非線性阻尼、非線性剛度系統(tǒng)在理論和數(shù)值上都得到了大量的研究,并且發(fā)現(xiàn)了一些特殊的動(dòng)力學(xué)現(xiàn)象,但不涉及到隔振應(yīng)用.
針對(duì)同時(shí)應(yīng)用非線性阻尼和非線性剛度在諧波激勵(lì)下的隔振問題,Ho等[92]研制了單自由度非線性阻尼、非線性剛度隔振系統(tǒng),比較了線性和非線性阻尼對(duì)傳遞力曲線的不同影響,如圖5所示.隨著線性阻尼的增加,傳遞率峰值減小,但是高頻傳遞率增加;隨著非線性阻尼的增加,傳遞率峰值和跳躍頻率減小,同時(shí)保持較優(yōu)的高頻特性[93].
圖5 比較線性和非線性阻尼對(duì)傳遞率的影響Fig.5 Comparison of e ff ect on transmissibility between linear and nonlinear damping
雙層隔振系統(tǒng)由于具有一些較突出的特性得到了廣泛的應(yīng)用[1-3,94].與單層隔振系統(tǒng)相比,雙層隔振系統(tǒng)有額外的質(zhì)量與剛度,因此也就有了額外的共振頻率(圖6).對(duì)于單層隔振系統(tǒng),傳遞的振動(dòng)在大于隔振開始頻率時(shí)以40dB/oct下降,而對(duì)于雙層隔振系統(tǒng),它的下降率卻達(dá)到80dB/oct.非線性剛度隔振系統(tǒng)有相對(duì)較好的低頻隔振效率、較小的靜態(tài)變形、不失穩(wěn)性的特點(diǎn),非線性阻尼能有效減小共振頻率附近響應(yīng),同時(shí)對(duì)隔振區(qū)的傳遞率沒有影響的優(yōu)點(diǎn).在雙層線性隔振系統(tǒng)的上、下兩層引入非線性剛度和非線性阻尼對(duì)隔振效率的影響的研究具有重要的工程與學(xué)術(shù)價(jià)值.
圖6 單層與雙層隔振系統(tǒng)力傳遞率比較(單層:紅色實(shí)線,雙層:藍(lán)色虛線)[95]Fig.6 Comparison of the transmissibility of a single-stage and a two-stage linear isolator(single-stage:red solid line,two-stage:blue dashed line)[95]
Lu等[95]將高靜態(tài)剛度引入到雙層隔振系統(tǒng)中,以克服大的靜態(tài)變形以及在高頻處傳遞率曲線下降速率較緩的問題.這些幾何非線性剛度是通過加入與承載剛度垂直的附加彈簧獲得的,這些彈簧起負(fù)剛度的作用,因此對(duì)隔振的有效頻帶產(chǎn)生影響.這里只考慮水平彈簧能使隔振系統(tǒng)表現(xiàn)為漸硬特征的情況[95].用諧波平衡法得到單純高靜態(tài)低動(dòng)態(tài)剛度雙層隔振系統(tǒng)的力與位移傳遞率解析表達(dá)式,該系統(tǒng)的隔振效率優(yōu)于雙層線性隔振系統(tǒng).隔振系統(tǒng)運(yùn)動(dòng)方程的矩陣形式為
微振動(dòng)情況下可以近似為兩個(gè)耦合的達(dá)芬(Duffing)方程,無量綱矩陣形式如下
運(yùn)用諧波平衡法,假設(shè)無量綱位移的向量具有如下形式
幅頻矩陣方程可以表示為
其中
Yang等[96]研究了雙層隔振系統(tǒng)的穩(wěn)態(tài)性能,它由雙穩(wěn)層和線性層組成,以隔振為出發(fā)點(diǎn),增加雙穩(wěn)層的阻尼可以改善單周期和阱內(nèi)行為,但是未得到有關(guān)隔振加強(qiáng)的非線性正效應(yīng).Lu等[9798]在將上層非線性剛度連接到中間質(zhì)量而非基礎(chǔ)上,建立了改進(jìn)的雙層非線性隔振系統(tǒng)模型,如圖7所示.與原雙層非線性隔振系統(tǒng)相比,原系統(tǒng)只有改變下層的非線性剛度對(duì)改善隔振效率有效,而變化改進(jìn)系統(tǒng)上、下層的非線性剛度對(duì)改善隔振效率均有效.雙層非線性隔振兼具較低的隔振開始頻率和較高隔振區(qū)傳遞率下降速率,受到了許多隔振研究者的關(guān)注[99].Lu等[100]還構(gòu)建了緊湊的雙穩(wěn)復(fù)合板型負(fù)剛度單元,并將它引入到雙層隔振系統(tǒng),通過實(shí)驗(yàn)方法研究了雙層高靜態(tài)低動(dòng)態(tài)隔振系統(tǒng)的隔振性能.每一層含有高靜態(tài)低動(dòng)態(tài)剛度;每一層中正剛度是由金屬板提供,相應(yīng)負(fù)剛度是由C-F雙穩(wěn)復(fù)合板提供.除去隔振系統(tǒng)中雙穩(wěn)復(fù)合板退化成線性雙層線性隔振系統(tǒng),與線性系統(tǒng)相比,雙層非線性隔振系統(tǒng)在100Hz處下降13dB.
圖7 改進(jìn)的雙層非線性隔振系統(tǒng)模型Fig.7 Improved two-stage nonlinear isolation system
圖7 改進(jìn)的雙層非線性隔振系統(tǒng)模型(續(xù))Fig.7 Improved two-stage nonlinear isolation system(continued)
6.1 混沌隔振
混沌是非線性系統(tǒng)特有的動(dòng)力學(xué)行為[101].當(dāng)隔振系統(tǒng)的參數(shù)處于混沌范圍時(shí),會(huì)處于混沌狀態(tài)下工作.在單頻激勵(lì)下,非線性系統(tǒng)在較寬頻帶內(nèi)呈現(xiàn)混沌動(dòng)力學(xué)行為.Lou和Zhu[102]利用混沌進(jìn)行隔振器設(shè)計(jì),討論了如何減小水下潛器的輻射噪聲線譜;為確保系統(tǒng)處于混沌態(tài)工作,確定了設(shè)計(jì)參數(shù)可取范圍;傳統(tǒng)方法是運(yùn)用非線性理論分析系統(tǒng)和預(yù)測(cè)混沌參數(shù)的范圍;但由于非線性系統(tǒng)的復(fù)雜性,預(yù)測(cè)參數(shù)和實(shí)際參數(shù)存在顯著差別;因此有必要設(shè)置隔振系統(tǒng)參數(shù)可調(diào).Liu等[103]為了確保系統(tǒng)在混沌狀態(tài)下有效工作,提出混沌反控制方法;提出非線性隔振系統(tǒng)反饋模型,分析了倍周期分叉特性,通過仿真得出不同參數(shù)下多種動(dòng)力學(xué)行為,最后結(jié)合混沌識(shí)別技術(shù)實(shí)驗(yàn)研究了自制臺(tái)架(圖8)在混沌狀態(tài)下的隔振性能[103].
Lou和Zhu[104]還評(píng)估了非線性隔振器在混沌狀態(tài)下的隔振性能,發(fā)現(xiàn)線譜幅值明顯減少.非線性阻尼可以作為被動(dòng)裝置來抑制振動(dòng),Harvey等[105]提出了滾動(dòng)擺隔振系統(tǒng)的非線性模型,研究了特定參數(shù)的滾動(dòng)擺隔振系統(tǒng)在諧波激勵(lì)下的混沌行為,并對(duì)激勵(lì)幅值與激勵(lì)頻率的影響展開了研究.他們發(fā)現(xiàn),在大幅值低頻率激勵(lì)下會(huì)出現(xiàn)混沌行為,沖擊會(huì)導(dǎo)致周期放大和反對(duì)稱分叉.最后從工程的角度提出避免隔振系統(tǒng)出現(xiàn)混沌的方法,一方面增加隔振系統(tǒng)可發(fā)生的位移容量,另一方面通過增加阻尼來減小實(shí)際振動(dòng)位移.Farshi等[106]發(fā)展了混沌隔振系統(tǒng),使用一些線性彈簧逐次進(jìn)入作用的方法提供系統(tǒng)分段非線性,通過判斷Lyapunov指數(shù)以描述系統(tǒng)混沌行為;通過算法比較,連續(xù)Simplex算法為結(jié)構(gòu)修改的最優(yōu)算法.
圖8 混沌反控制隔振實(shí)驗(yàn)臺(tái)[103]Fig.8 Nonlinear vibration isolation experimental rig for chaos anti-control technology[103]
6.2 內(nèi)共振隔振
內(nèi)共振是典型的非線性振動(dòng)現(xiàn)象[107]. 涉及內(nèi)共振的非線性動(dòng)力系統(tǒng)的隔振問題得到了廣泛研究[7],這些文獻(xiàn)都考察了達(dá)芬型剛度基礎(chǔ)和裝置剛性假設(shè)的非線性隔振系統(tǒng)動(dòng)力學(xué)響應(yīng),剛度非線性能夠在系統(tǒng)模態(tài)間引起耦合.1:1內(nèi)共振混合模態(tài)的周期性響應(yīng)會(huì)出現(xiàn)與線性和非線性模態(tài)共存的現(xiàn)象.Chen等[108]使用了增量諧波平衡法研究了非線性隔振系統(tǒng)的傳遞率和參數(shù)影響.三自由度隔振系統(tǒng)剛體瞬態(tài)非線性振動(dòng)存在2:1:1的內(nèi)共振[109],該內(nèi)共振是由于剛體的豎直振動(dòng)、水平振動(dòng)和繞質(zhì)心轉(zhuǎn)動(dòng)三個(gè)自由度耦合產(chǎn)生.當(dāng)不平衡轉(zhuǎn)子的轉(zhuǎn)速達(dá)到一定值時(shí),通過共振的剛體振動(dòng)非常明顯.
6.3 非線性能量阱隔振
非線性能量阱(NES)是種有發(fā)展前景的減振技術(shù)[110111].當(dāng)NES應(yīng)用于基礎(chǔ)激勵(lì)系統(tǒng)的減振時(shí),客觀上起到了隔振的作用.Yang等分別對(duì)單自由度[112]和多自由度系統(tǒng)[113]提出了一種基于非線性輸出頻響函數(shù)的振動(dòng)傳遞率表達(dá)式,首次在頻域內(nèi)使用該傳遞率概念評(píng)價(jià)NES的減振效果.研究系統(tǒng)為一個(gè)安裝有NES的兩自由度系統(tǒng),對(duì)該系統(tǒng)進(jìn)行了數(shù)值仿真分析.另外,還考察了NES的參數(shù)對(duì)該非線性系統(tǒng)振動(dòng)傳遞率的影響.通過增大NES的質(zhì)量和黏性阻尼,同時(shí)減小其非線性剛度,可以在所有的共振頻率處減小該系統(tǒng)的振動(dòng)傳遞率.因此,給出了一種在頻域內(nèi)設(shè)計(jì)NES非線性減振器的隔振思路.Yang等[114]針對(duì)帶適配器的整星系統(tǒng),設(shè)計(jì)了NES減振器;對(duì)實(shí)驗(yàn)縮比模型系統(tǒng)進(jìn)行了有限元建模,并根據(jù)有限元模型得到了等效低維模型.實(shí)驗(yàn)結(jié)果、有限元仿真、基于等效模型的能量分析和非線性輸出響應(yīng)函數(shù)分析均表明,NES減振器能夠有效減少基礎(chǔ)激勵(lì)向星體傳遞.
非線性隔振功能材料是非線性隔振的載體[115116],目前在隔振領(lǐng)域較為關(guān)注的功能材料有形狀記憶合金[117121]、雙穩(wěn)復(fù)合板[122]、電流和磁流變液[123127]和壓電晶體等.形狀記憶合金等智能材料由于它的超彈性和形狀記憶作用特征彌補(bǔ)了傳統(tǒng)材料在隔振中的缺陷,目前使用形狀記憶合金代替橡膠用于高速橋梁隔振已取得顯著效果.通過非線性隨機(jī)振動(dòng)分析,形狀記憶合金隔振能最小化隔振器位移的同時(shí)最大化隔振效率.參數(shù)研究表明,這類隔振系統(tǒng)還具有較強(qiáng)的魯棒性[120].Xia等[119]實(shí)驗(yàn)研究了相位可變NiTi形狀記憶合金弦線非線性扭轉(zhuǎn)振動(dòng)的動(dòng)力學(xué)響應(yīng),通過同步獲取外激勵(lì)下扭角和溫度以測(cè)量NiTi弦線作為非線性阻尼彈簧的熱機(jī)響應(yīng),固定激勵(lì)幅值測(cè)量頻率響應(yīng)曲線(FRCs),固定激勵(lì)頻率測(cè)量幅值響應(yīng)曲線(ARCs),隨著NiTi弦線變形進(jìn)入漸軟非線性相位轉(zhuǎn)遷區(qū)域,在FRCs或ARCs分支上的穩(wěn)定響應(yīng)會(huì)逐漸變得不穩(wěn)定并進(jìn)入到新的其他任意分支;利用實(shí)驗(yàn)識(shí)別了FRCs和ARCs任意穩(wěn)定狀態(tài)間的跳躍現(xiàn)象和上下跳躍遲滯.通過實(shí)驗(yàn)識(shí)別穩(wěn)定區(qū)域使得避免NiTi弦線作為非線性阻尼彈簧振動(dòng)系統(tǒng)出現(xiàn)不期望的動(dòng)力學(xué)響應(yīng).Ozbulut提出了形狀記憶合金彈簧隔振[128],使用形狀記憶合金彈性元件實(shí)現(xiàn)多自由度剪切振動(dòng)隔振.Choi等[129]使用形狀記憶合金提出了高速橋梁的隔振軸承,通過1:1尺度模型實(shí)驗(yàn)研究了形狀記憶合金隔振的有效性.Ozbulut等[130]綜述了基于形狀記憶合金的隔振系統(tǒng),以及形狀記憶合金在被動(dòng)隔振中的應(yīng)用.束立紅等[131]研究了聚氨酯隔振器的彈性、彈塑性和黏彈性特點(diǎn),分析了激振幅值、激振頻率和預(yù)加載情況對(duì)隔振器靜動(dòng)態(tài)特性的影響;通過簡(jiǎn)單形狀試驗(yàn)的靜態(tài)和動(dòng)態(tài)試驗(yàn)結(jié)果,建立了由彈簧、阻尼器和摩擦元件等多組機(jī)械元件所構(gòu)成的聚氨酯隔振器“非線性廣義模型”.具有高靜態(tài)低動(dòng)態(tài)剛度(HSLDS)的隔振系統(tǒng)是通過減少固有頻率來提高隔振性能的,并保持一定的承載能力.高靜態(tài)低動(dòng)態(tài)剛度是通過在水平方向上連接線性彈簧構(gòu)成突變結(jié)構(gòu)(snap-through)這一常用的方法獲得的,突變結(jié)構(gòu)一方面增加系統(tǒng)的非線性,另一方面可以在一定運(yùn)動(dòng)區(qū)域內(nèi)提供負(fù)剛度,同時(shí)線性彈簧使負(fù)剛度區(qū)域穩(wěn)定化并支撐靜載.由于有兩個(gè)穩(wěn)定的平衡形態(tài),并且兩個(gè)形態(tài)之間可以來回突變,并在突變附近板中心受力與發(fā)生橫向位移存在反比關(guān)系,因此雙穩(wěn)復(fù)合板也可以作為負(fù)剛度裝置.文獻(xiàn)[132-137]研究了雙穩(wěn)板的突變響應(yīng),將這一效應(yīng)用于驅(qū)動(dòng)結(jié)構(gòu),研制了相應(yīng)的驅(qū)動(dòng)裝置,這一裝置能夠?qū)崿F(xiàn)多個(gè)結(jié)構(gòu)狀態(tài)之間轉(zhuǎn)化,在轉(zhuǎn)化過程中沒有能量消耗,之后雙穩(wěn)板被廣泛應(yīng)用到氣動(dòng)變形裝置上.Pirrera等[138]對(duì)雙穩(wěn)復(fù)合板的力位移關(guān)系曲線進(jìn)行了研究,得到了負(fù)剛度曲線.使用彈性復(fù)合板殼來代替復(fù)雜的彈簧機(jī)構(gòu),具有重量輕、可操作性強(qiáng)的優(yōu)點(diǎn)[139141].Shaw等[142]采用雙穩(wěn)板構(gòu)建了負(fù)剛度結(jié)構(gòu),通過實(shí)驗(yàn)的方法得到了雙穩(wěn)板的準(zhǔn)零力位移關(guān)系曲線.Lu等[100]構(gòu)建了緊湊的雙穩(wěn)復(fù)合板型負(fù)剛度單元,并將它引入到雙層隔振系統(tǒng).
接受結(jié)構(gòu)與振源之間插入隔振元件以減小振動(dòng)傳遞是目前最普遍的振動(dòng)控制方式;高靜態(tài)低動(dòng)態(tài)剛度隔振系統(tǒng)能夠克服線性隔振低頻缺陷,是振動(dòng)控制領(lǐng)域研究的主要熱點(diǎn)之一;非線性阻尼能夠抑制線性系統(tǒng)共振頻率處響應(yīng),同時(shí)保持較優(yōu)高頻隔振性能.本文綜述了非線性隔振的新進(jìn)展,主要包括非線性隔振評(píng)價(jià)方式、高靜態(tài)低動(dòng)態(tài)剛度隔振及其加強(qiáng)形式非線性阻尼加強(qiáng)和雙層非線性隔振、混沌、內(nèi)共振和非線性能量阱在隔振中的應(yīng)用和非線性隔振功能材料.
非線性隔振應(yīng)用背景廣泛如整星隔振、船舶海洋工程結(jié)構(gòu)物隔振等,根據(jù)不同應(yīng)用背景特點(diǎn),非線性隔振器大小不同、形狀各異.非線性隔振由于出現(xiàn)倍周期、準(zhǔn)周期和混沌等豐富的非線性動(dòng)力學(xué)行為,通常需要響應(yīng)與激勵(lì)的均方根值之比代替幅值比以評(píng)價(jià)非線性隔振效果,對(duì)于柔性基礎(chǔ),還需要從功率流角度來評(píng)估.動(dòng)力學(xué)響應(yīng)的研究中,既有確定性分析又有隨機(jī)分析;在研究方法的應(yīng)用中,有諧波平衡法等解析方法、有限元法等數(shù)值方法和實(shí)驗(yàn)方法.非線性隔振的實(shí)現(xiàn)結(jié)構(gòu)有幾何非線性和材料非線性,幾何非線性結(jié)構(gòu)通常是金屬彈簧、梁、板和殼等通過幾何構(gòu)造實(shí)現(xiàn)非線性隔振功能、材料非線性結(jié)構(gòu)通常是利用雙穩(wěn)復(fù)合板、形狀記憶合金、電流/磁流變液等新材料實(shí)現(xiàn)特殊非線性剛度和非線性阻尼功能,提高隔振性能.
本文針對(duì)非線性隔振理論與應(yīng)用開展了全面綜述和深入分析,在此基礎(chǔ)上,今后還可以在以下幾方面繼續(xù)開展研究:
(1)非線性隔振系統(tǒng)的主共振、亞諧共振和超諧共振穩(wěn)定性及分岔,從穩(wěn)定性裕度、吸引域角度提高非線性隔振系統(tǒng)的設(shè)計(jì)水平;
(2)非線性剛度非線性阻尼隔振系統(tǒng)抗沖擊特性,沖擊激勵(lì)具有作用時(shí)間短、阻尼作用不明顯等特點(diǎn);
(3)在結(jié)構(gòu)和隔振器發(fā)生內(nèi)共振情況下隨機(jī)振動(dòng)傳遞特性,非線性模態(tài)間作用對(duì)隔振性能的影響,明確在隨機(jī)壞境下內(nèi)共振的動(dòng)力學(xué)機(jī)制;
(4)金屬彈簧、梁、板和殼的各種不同屈曲構(gòu)型特點(diǎn)以實(shí)現(xiàn)非線性隔振,碳纖維--壓電晶體復(fù)合板材等新材料的特殊非線性剛度、非線性阻尼特性以克服傳統(tǒng)金屬材料隔振缺陷;
(5)非線性隔振與能量采集一體化,適應(yīng)集成化、輕質(zhì)小體化發(fā)展,結(jié)構(gòu)兼具隔振和能量采集等多種用途.
1 Mead DJ,Meador D.Passive Vibration Control.Chichester:Wiley,1998
2 Harris CM,Piersol AG.Harris’Shock and Vibration Handbook.New York:McGraw-Hill,2002
3 Rivin EI.Passive Vibration Isolation,New York:ASME press,2003
4 Fuller CC,Elliott S,Nelson PA.Active Control of Vibration.New York:Academic Press,1996
5 Hansen C,Snyder S.Active Control of Noise and Vibration.London:E&FN Spon,1997
6 Gawronski WK.Advanced Structural Dyanmaics and Active Control of Structures.New York:Springer,2004
7 Ibrahim R.Recent advances in nonlinear passive vibration isolators.Journal of Sound and Vibration,2008.314(3):371-452
8 Kovacic I,Brennan MJ.The Duffing Equation:Nonlinear Oscillators and Their Behaviour.UK:John Wiley&Sons,2011
9董瑤海.航天器微振動(dòng):理論與實(shí)踐.北京:中國宇航出版社,2015(Dong Yaohai.Micro-Vibration of Aircraft:Theoretic and Practice.Beijing:China Astronautic Publishing House,2015(in Chinese))
10 Kandasamy R,Cui F,Townsend N,et al.A review of vibration control methods for marine o ff shore structures.Ocean Engineering,2016,127:279-297
11馬興瑞.動(dòng)力學(xué)振動(dòng)與控制新進(jìn)展(航天技術(shù)專著).北京:中國宇航出版社,2010(Ma Xingrui.Recent Advances in Dynamics Vibration and Control.Beijing:China Astronautic Publishing House,2010(in Chinese))
12黃文虎,曹登慶,韓增堯.航天器動(dòng)力學(xué)與控制的研究進(jìn)展與展望.力學(xué)進(jìn)展,2012,42(4):367-393(HuangWenhu,CaoDengqing,Han Zengyao.Advances and trends in dynamics and control of spacecrafts.Advances in Mechanics,2012,42(4):367-393(in Chinese))
13 Zheng G,Tu Y.Analytical study of vibration isolation between a pair of fl xible structures.ASME Journal of Vibration and Acoustics,2009,31(6):1-10
14 Zhang Y,Zhang J.Disturbances characteristics analysis of a control moment gyroscope due to imbalances and installation errors.IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1017-1026
15 Zhang Y,Zhang J,Xu S.Parameters design of vibration isolation platform for control moment gyroscopes.Acta Astronautica,2012,81(2):645-659
16 Zhang Y,Zhang J,Xu S.Influenc of fl xible solar arrays on vibration isolation platform of control moment gyroscopes.Acta Mechanica Sinica,2012,28(5):1479-1487
17 ZhangY,ZhangJ,ZhaiG.Vibrationisolationplatformwithmultiple tuned mass dampers for reaction wheel on satellites.Mathematical Problems in Engineering,2013,4:1-14
18 Zhang Y,Zhang J.The imaging stability enhancement of optical payload using multiple vibration isolation platforms.Journal of Vibration and Control,2013,21(9):1848-1865
19 Zhang Y,Guo Z,He H,et al.A novel vibration isolation system for reaction wheel on space telescopes.Acta Astronautica,2014,102:1-13
20 Haritos N.Introduction to the analysis and design of o ff shore structures-an overview.Electronic Journal Structural Engineering,2007,7:55-65
21 Bajkowski JM,Dyniewicz B,Bajer CI.Semi-active damping strategy for beams system with pneumatically controlled granular structure.Mechanical System and Signal Process,2016,70:387-396
22 Chakrabarti S.Handbook of O ff shore Engineering.Oxford:Elsevier,2015
23 Bargi K,Hosseini SR,Tadayon MH,et al.Seismic response of a typical fi ed jacket-type o ff shore platform(spd1)under sea waves.Open Journal of Marine Science,2011,1(02):36
24 Chandrasekaran S,Kumar D,Ramanathan R.Dynamic response of tension leg platform with tuned mass dampers.Journal of Naval Architecture and Marine Engineering,2013,10(2):149-156
25 Caterino N.Semi-active control of a wind turbine via magnetorheological damper.Journal of Sound and Vibration,2015,345:1-17
26 Lu Z,Brennan MJ,Chen L.On the transmissibilities of nonlinear vibration isolation system.Journal of Sound and Vibration,2016,375:28-37
27 Xie S,Or SW,Chan HLW,et al.Analysis of vibration power fl w from a vibration machinery to a floatin elastic panel.Michanical Systems and Signal Processing,2007,21:389-404
28 Choi WJ,Xiong YP,Shenoi RA.Power fl w analysis for a floatin sandwich raft isolation system using a higher-order theory.Journal of Sound and Vibration,2009,319:228-246
29 Xing JT.EnergyFlow Theory of Nonlinear Dynamical Systems with Applications.Switzerland:Springer,2015
30馬業(yè)忠,霍睿.板式基礎(chǔ)上非線性隔振系統(tǒng)的功率流傳遞特性.振動(dòng)工程學(xué)報(bào),2008,21(4):394-397(Ma Yezhong,Huo Rui.Characteristic of power fl w transmission in nonlinear vibration isolation systemonplatebase.JournalofVibrationEngineering,2008,21(4):394-397(in Chinese))
31高書磊,霍睿.柔性基礎(chǔ)上非線性隔振系統(tǒng)的動(dòng)力學(xué)分析.振動(dòng)與沖擊,2007,26(6):113-116(Gao Shulei,Huo Rui.E ff ect of nonlinear parameter of isolator on equipment’s kinetic energy.Journal of Vibration and Shock,2007,26(6):113-116(in Chinese))
32 Royston TJ,Singh R.Vibratory power fl w through a nonlinear path into a resonant receiver.Journal of the Acoustical Society of America,1997,101:2059-2069
33 Xiong YP,Xing JT,Price WG.Interactive power fl w characteristics of an integrated equipment-nonlinear isolator-travelling fl xible ship excited by sea waves.Journal of Sound and Vibration,2005,287:245-276
34 Kerschen G,Peeters M,Golinval JC,et al.Nonlinear normal modes,Part I:a useful frame work for the structural dynamicist.Mechanical System and Signal Processing,2009,23:170-194
35 Yang J,Xiong YP,Xing JT.Dynamics and power fl w behavior of a nonlinear vibration isolation system with a negative sti ff ness mechanism.Journal of Sound and Vibration,2013,332:167-183
36 Yang J,Xiong YP,Xing JT.Nonlinear power fl w analysis of the Duffing oscillator. Mechanical Systems and Signal Processing,2014,45:563-578
37 Yang J,Xiong YP,Xing JT.Vibration power fl w and force transmission behavior of a nonlinear isolator mounted on a nonlinear base.International Journal of Mechanical Sciences,2016,115-116:238-252
38 Ahn HJ.Performance limit of a passive vertical isolator using a negative sti ff ness mechanism.Journal of Mechanical Scinence and Technology,2008,22:2357-2367
39 Kim KR,You YH,Ahn HJ.Optimal design of a QZS isolator using fl xures for a wide range of payload.International Journal of Precision Engineering and Manufacturing,2013,14(6):911-917
40 RobertsonWS,KidnerMRF,CazzolatoBS,etal.Theoreticaldesign parameters for a quasi-zero sti ff ness magnetic spring for vibration isolation.Journal of Sound and Vibration,2009,326(1):88-103
41 Shin K.On the performance of a single degree-of-freedom highstatic-low-dynamic sti ff ness magnetic vibration isolator.International Journal of Precision Engineering and Manufacturing,2014,15(3):439-445
42彭超,龔興龍,宗路航等.新型非線性低頻被動(dòng)隔振系統(tǒng)設(shè)計(jì)及實(shí)驗(yàn)研究.振動(dòng)與沖擊,2013,32(3):6-11(Peng Chao,Gong Xinglong,Zong Luhang,et al.Design and tests for a new type nonlinear low-frequency passive vibration isolation system.Journal of Vibration and Shock,2013,32(3):6-11(in Chinese))
43路純紅,白鴻柏.新型超低頻非線性被動(dòng)隔振系統(tǒng)的設(shè)計(jì).振動(dòng)與沖擊,2011,30(1):234-236(Lu Chunhong,Bai Hongbai.A new type nonlinear ultra-low frequency passive vibration isolation system.Journal of Vibration and Shock,2011,30(1):234-236(in Chinese))
44 Carrella A,Brennan MJ,Waters TP.Static analysis of a passive vibration isolator with quasi-zero-sti ff ness characteristic.Journal of Sound and Vibration,2007,301(3):678-689
45 Kovacic I,Brennan MJ,Waters TP.A study of a nonlinear vibration isolator with a quasi-zero sti ff ness characteristic.Journal of Sound and Vibration,2008,315:700-711
46 Carrella A,Brennan MJ,Kovacic I,et al.On the force transmissibility of a vibration isolator with quasi-zero-sti ff ness.Journal of Sound and Vibration,2009,322(4):707-717
47 Carrella A,Brennan MJ,Waters TP,et al.Force and displacement transmissibility of a nonlinear isolator with high-static-lowdynamic-sti ff ness.International Journal of Mechanical Sciences,2012,55(1):22-29
48 Xu D,Yu Q,Zhou J,et al.Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-sti ff ness characteristic.Journal of Sound and Vibration,2013,332:3377-3389
49 Sun X,Xu J,Jing X,et al.Beneficia performance of a quasi-zerosti ff ness vibration isolator with time-delayed active control.International Journal of Mechanical Science,2014,82:32-40
50 Li Q,Zhu Y,Xu D,et al.A negative sti ff ness vibration isolator using magnetic spring combined with rubber membrane.Journal of Mechanical Scinece and Technology,2013,27(3):813-824
51 Huang X,Liu X,Hua H.On the characteristics of an ultra-low frequency nonlinear isolator using sliding beam as negative sti ff ness.Journal of Mechanical Science and Technology,2014,28(3):813-822
52 Huang X,Liu X,Sun J,et al.E ff ect of the system imperfections on the dynamic response of a high-static-low-dynamic sti ff ness vibration isolator.Nonlinear Dynamics,2014,76:1157-1167
53 Sun XT,Jing XJ,Xu J,et al.Vibration isolation via a scissor-like structured platform.Journal of Sound and Vibration,2014,333(9):2404-2420
54 ZhangW,ZhaoJ.Analysisonnonlinearsti ff nessandvibrationisolation performance of scissor-like structure with full types.Nonlinear Dynamics,2016,86:17-36
55 Friswell MI,Saavedra Flores EI.Dynamic isolation systems using tunable nonlinear sti ff ness beams.The European Physical Journal Special Topics,2013,222:1563-1573
56 Trung PV,Kim KR.,Ahn HJ.A nonlinear control of an QZS isolator with fl xures based on a Lyapunov function.International Journal of Precision Engineering and Manufacturing,2013,14(6):919-924
57 Le TD,Ahn KK.Fuzy sliding mode controller of a pneumatic active isolation system using negative sti ff ness structure.Journal of Mechanical Science and Technology,2012,26(12):3873-3884
58 Danh LT,Ahn KK.Active pneumatic vibration isolation system using negative sti ff ness structures for a vehicle seat.Journal of Sound and Vibration,2014,333(5):1245-1268
59徐鑒.振動(dòng)控制研究進(jìn)展綜述.力學(xué)季刊,2015,36(4):547-565(Xu Jian.Advances of research on vibration control.Chinese Quarterly of Mechanics,2015,36(4):547-565(in Chinese))
60 Xu J,Sun XT.A multi-directional vibration isolator based on quasizero-sti ff ness structure and time-delayed active control.International Journal of Mechanical Sciences,2015,100:126-135
61 Sun XT,Jing XJ,Xu J,et al.A quasi-zero-sti ff ness-based sensor system in vibration measurement.IEEE Transactions on Industrial Electronics,2014,61(10):5606-5614
62 Sun XT,Jing XJ,Cheng L,et al.A 3D quasi-zero-sti ff ness based sensor system for absolute motion measurement and application in active vibration control.IEEE/ASME Transactions on Mechatronics,2015,20(1):254-262
63 Zhou J,Xiao Q,Xu D,et al.A novelquasi-zero-sti ff ness strut and its applications in six-degree-of-freedom vibration isolation platform.Journal of Sound and Vibration,2017,(in press)
64 Shaw A,Neild S,Wagg D,et al.A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation.Journal of Sound and Vibration,2013,332(24):6265-6275
65 Shaw A,Neild S,Wagg D.Dynamic analysis of high static low dynamic sti ff ness vibration isolation mounts.Journal of Sound and Vibration,2013,332(6):1437-1455
66 Le TD,Ahn KK.A vibration isolation system in low frequency excitation region using negative sti ff ness structure for vehicle seat.Journal of Sound and Vibration,2011,330(26):6311-6335
67 Chen X,Shen Z,He Q,et al.Influenc of uncertainty and excitation amplitude on the vibration characteristics of rubber isolators.Journal of Sound and Vibration,2016,377:216-225
68 Virgin L,Davis R.Vibration isolation using buckled struts.Journal of Sound and Vibration,2003,260:965-973
69 Ledezma-Ramirez D,Ferguson N,Brennan MJ,et al.An experimental nonlinear low dynamic sti ff ness device for shock isolation.Journal of Sound and Vibration,2015,347:1-13
70 Huang X,Chen Y,Hua H,et al.Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative sti ff ness corrector:Theoretical and experimental study.Journal of Sound and Vibration,2015,345:178-196
71 Peng Z,Meng G,Lang Z,et al.Study of the e ff ects on cubic nonlinear damping on vibration isolations using Harmonic Balance Method.International Journal of Non-linear Mechanics,2012,47:1073-1080
72 Peng Z,Lang Z,Zhao L,et al.The force transmissibility of MDOF structures with a non-linear viscous damping device.International Journal of Non-Linear Mechanics,2011,46:1305-1314
73 Guo P,Lang Z,Peng Z.Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation system.Nonlinear Dynamics,2012,67:2671-2687
74 Laalej H,Lang Z,Daley S,et al.Application of non-linear damping to vibration isolation:an experimental study.Nonlinear Dynamics,2012,69:409-421
75 Lang Z,Jing X,Billings SA,et al.Theoretical study of the e ff ects of nonlinear viscous damping on vibration isolation of sdof systems.Journal of Sound and Vibration,2009,323(1):352-365
76 Tang B,Brennan MJ.A comparison of two nonlinear damping mechanisms in a vibration isolator.Journal of Sound and Vibration,2013,332(3):510-520
77 Sun J,Huang X,Liu X,et al.Study on the force transmissibility of vibration isolators with geometric nonlinear damping.Nonlinear Dynamics,2013,74:1103-1112
78 Xiao Z,Jing X,Cheng L.The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations.Journal of Sound and Vibration,2013,332(5):1335-1354
79 Lang Z,Guo P,Takewaki I.Output frequency response function based design of additional nonlinear viscous dampers for vibration control of multi-degree-of-freedom systems.Journal of Sound and Vibration,2013,332:4461-4481
80 Peng Z,Lang Z.E ff ects of anti-symmetric nonlinear viscous damping on the force transmissibility of multi-degree of freedom structures.Theoretical&Applied Mechanics Letters,2011,1:063004
81 Peng Z,Lang Z,Meng G,et al.Reducing force transmissibility in multiple degrees of freedom structures through anti-symmetric nonlinear viscous damping.Acta Mechanica Sinica,2012,28(5):1436-1448
82 L¨u Q,Yao Z.Analysis of the e ff ects of nonlinear viscous damping on vibration isolator.Nonlinear Dynamics,2015,79:2325-2332
83 Huang X,Sun J,Hua H,et al.The isolation performance of vibration systems with general velocity-displacement-dependent nonlinear damping under base excitation:Numerical and experimental study.Nonlinear Dynamics,2016,85:77-796
84 Lu L,Lin G,Shih M.An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation.Engineering Structures,2012,34:111-123
85 Mokni L,Belhaq M.Using delayed damping to minimize transmitted vibrations.Communications in Nonlinear Science and Numerical Simulation,2012,17:1980-1985
86 Mu T,Zhou L,Yang JN.Comparison of adaptive structural damage identificatio techniques in nonlinear hysteretic vibration isolation systems.Earthquake Engineering and Engineering Vibration,2013,12(4):659-667
87 Awrejcewicz J,Olejnik P.Stick-slip dynamics of a two-degree-offreedom system.International Journal of Bifurcation and Chaos,2003,13(4):843-861
88 Bhattacharya B.Principles of Vibration Control.New York:Wiely,2014
89 CveticaninL.Onthetrulynonlinearoscillatorwithpositiveandnegative damping.Applied Mathematics and Computation,2014,243:433-445
90 Sharma A,Patidar V,Purohit G.E ff ects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping.Communications in Nonlinear Science and Numerical Simulation,2012,17:2254-2269
91 Ho C,Lang Z,Billings S.A frequency domain analysis of the e ff ects of nonlinear damping on the Duffing equation.Mechanical Systems and Signal Processing,2014,45(1):49-67
92 Ho C,Lang Z,Billings S.Design of vibration isolators by exploiting the beneficia e ff ects of sti ff ness and damping nonlinearities.Journal of Sound and Vibration,2014,333(12):2489-2504
93 Huang D,Xu W,Xie W,et al.Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces.Nonlinear Dynamics,2015,81:641-658
94汪玉,陳國均,華宏星等.船舶動(dòng)力裝置雙層隔振系統(tǒng)的優(yōu)化設(shè)計(jì).中國造船,2001,42(1):45-49(Wang Yu,Chen Guojun,Hua Hongxing,et al.Optimal design of ship floatin raft system power equipment.Ship Building of China,2001,42(1):45-49(in Chinese))
95 Lu Z,Brennan MJ,Yang T,et al.An investigation of a two-stage nonlinear vibration isolation system.Journal of Sound and Vibration,2013,332(6):1456-1464
96 Yang K,Harne RL,Wang K,et al.Investigation of a bistable dualstage vibration isolator under harmonic excitation.Smart Materials and Structures,2014,23(4):045033
97 Lu Z,Yang T,Brennan MJ,et al.On the performance of a twostage vibration isolation system which has geometrically nonlinear sti ff ness.ASME Journal of Vibration and Acoustics,2014,136(6):064501
98 Wang Y,Li S,Neild SA,et al.Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero sti ff ness.Nonlinear Dynamics,2017(in press)
99 Wang X,Zhou J,Xu D,et al.Force transmissibility of a two-stage vibration isolation system with quasi-zero sti ff ness.Nonlinear Dynamics,2017,87:633-646
100 Lu Z,Yang T,Brennan MJ,et al.Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-lowdynamic sti ff ness.ASME Journal of Applied Mechanics,2017,84:021001-1
101 Moon FC.Chaotic and Fractal Dynamics:An introduction for applied scientists and engineers.Weinheim:Wiley-VCH,2004
102 Lou J,Zhu S,He L,et al.Application of chaos method to line spectra reduction.Journal of Sound and Vibration,2005,286:645-652
103 Liu S,Yu X,Zhu S.Study on the chaos anti-control technology in nonlinear vibration isolation system.Journal of Sound and Vibration,2008,310:855-864
104 Lou J,Zhu S,He L,et al.Experimental chaos in nonlinear vibration isolation system.Chaos Solitons&Fractals,2009,40:1367-1375
105 Harvey JrPS,Wiebe R,Gavin HP.On the chaotic response of a nonlinear rolling isolation system.Physica D:Nonlinear Phenomena,2013,256-257:36-42
106 Farshi B,Assadi A.Development of a chaotic nonlinear tuned mass damper for optimal vibration response.Communication in Nonlinear Science and Numerical Simulation,2011,16:4514-4523
107 Nayfeh,AH.Nonlinear Interactions:Analytical,Computational,and Experimental Methods.Wiley:New York,1998
108 Chen Y,Chen S.Response and transmissibility of nonlinear isolating systems.Journal of Vibration and Shock,1998,17:18-22
109 Kawana R,Tokoyoda T,Sato K,et al.Passage through resonance in a three-degree-of-freedom vibration isolation system.Transactions of the Japan Society of Mechanical Engineers,Part C,2006,72(7):2034-2041
110 Lee YS,Vakakis AF,Bergman LA,et al.Passive non-linear targeted energy transfer and its applications to vibration absorption:a review.Journal of Multi-body Dynamics,2008,222:77-134
111 Vakakis AF,Gendelman OV,Bergman LA,et al.Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems.Springer:Netherlands,2009
112 Yang K,Zhang Y,Ding H,et al.The transmissibility of nonlinear energysinkbasedonnonlinearoutputfrequency-responsefunctions.Communications in Nonlinear Science and Numerical Simulation,2017,44:184-192
113楊凱,張業(yè)偉,丁虎等.基于非線性輸出頻響函數(shù)的NES動(dòng)力學(xué)參數(shù)設(shè)計(jì).振動(dòng)與沖擊,2016,35(21):76-80(Yang Kai,Zhang Yewei,Ding Hu,et al.Parametric design of nonlinear energy sinks based on nonlinear output frequency-response functions.Journal of Vibration and Shock,2016,35(21):76-80(in Chinese))
114 Yang K,Zhang Y,Ding H,et al.Nonlinear energy sink for wholespacecraft vibration reduction.ASME Journal of Vibration and Acoustics,2017,139(2):021011
115 Harris DA.Vibration Isolation Materials//Noise Control Manual.New York:Springer,1991
116 Thenozhi S,Yu W.Advances in modeling and vibration control of building structures.Annual Reviews in Control,2013,37(2):346-364
117 Rustighi E,Brennan M,Mace B.A shape memory alloy adaptive tuned vibration absorber:Design and implementation.Smart materials and Structures,2005,14(1):19
118 Bonello P,Brennan MJ,Elliott SJ,et al.Designs for an adaptive tuned vibration absorber with variable shape sti ff ness element.Proceedings of the Royal Society A:Mathematical,Physical and Engineering Science,2005,461(2064):3955-3976
119 Xia M,Sun Q.Thermomechanical responses of nonlinear torsional vibration with NiTi shape memory alloy-alternative stable states and their jumps.Journal of the Mechanics and Physics of Solids,2016,(in press)
120 Damanpack A,Bodaghi M,Aghdam M,et al.On the vibration control capability of shape memory alloy composite beam.Composite Structure,2014,110:325-334
121 Shinozuka M,Chaudhuri SR,Mishra SK.Shape-Menory-Alloy supplemented lead rubber bearing(SMA-LRB)for seismic isolation.Probabilistic Engineering Mechanics,2015,41:34-45
122 Shaw AD,Carrella A.Force displacement curves of a snapping bistable Plate.Nonlinear Dynamics,2012,3:191-197
123 York D,Wang X,Gordaninejad F.A new MR fluid-elastome vibration isolator.Journal of Intelligent Material Systems and Structures,2007,18(12):1221-1225
124 Liao W,Lai C.Harmonic analysis of a magnetorheological damper for vibration control.Smart Materials and Structures,2002,11(2):288
125 SimsN,PeelD,StanwayR,etal.Theelectrorheologicallong-stroke damper:A new modelling technique with experimental validation.Journal of Sound and Vibration,2000,229(2):207-227
126 Dutta S,Chakraborty G.Performance analysis of nonlinear vibration isolator with magneto-rheological damper.Journal of Sound and Vibration,2014,333:5097-5114
127 Yu H,Sun X,Xu J,et al.The time-delay coupling nonlinear e ff ect in sky-hook control of vibration isolation systems using Magneto-Rheological fluidampers.Journal of Mechanical Science and Technology,2016,30(9):4157-4166
128 OzbulutOE,RoschePN,LinPY,etal.GA-basedoptimumdesignof a shape memory alloy device for seismic response mitigation.Smart Material and Structure,2010,19:065004
129 Choi E,Nam TH,Oh JT,et al.An isolation bearing for highway bridges using shape memory alloys.Material Science Engineering,2006,438-440:1081-1084
130 Ozbulut OE,Hurlebaus S,Desroches R.Seismic response control using shape memory alloys:A review.Journal of Intelligent Material System and Stucture,2011,22:1531-1549
131束立紅,何琳,王宇飛等.聚氨酯隔振器非線性力學(xué)模型與特性研究.振動(dòng)工程學(xué)報(bào),2010,23(5):530-536(Shu Lihong,He Lin,Wang Yufei,et al.Nonlinear mechanical model and character research on polyurethane isolator.Journal of Vibration Engineering,2010,23(5):530-536(in Chinese))
132 Daynes S,Nall S,Weaver P,et al.Bistable composite fla for an airfoil.Journal of Aircraft,2010,47(1):334-338
133 Daynes S,Weaver P,Trevarthen J.A morphing composite air inlet with multiple stable shapes.Journal of Intelligent Material Systems and Structures,2011,22(9):961-973
134 Schultz MR.A concept for airfoil-like active bistable twisting structures.Journal of Intelligent Material Systems and Structures,2008,19(2):157-169
135 Gatto A,Mattioni F,Friswell M.Experimental investigation of bistable winglets to enhance aircraft wing lift takeo ffcapability.Journal of Aircraft,2009,46(2):647-655
136 Diaconu CG,Weaver PM,Mattioni F.Concepts for morphing airfoil sections using bi-stable laminated composite structures.Thin-Walled Structures,2008,46(6):689-701
137 Lachenal X,Daynes S,Weaver PM.Review of morphing concepts and materials for wind turbine blade applications.Wind Energy,2013,16(2):283-307
138 Pirrera A,Avitabile D,Weaver P.Bistable plates for morphing structures:a refine analytical approach with high-order polynomials.International Journal of Solids and Structures,2010,47(25):3412-3425
139 Potter K,Weaver P,Seman AA,et al.Phenomena in the bifurcation of unsymmetric composite plates.Composites Part A:Applied Science and Manufacturing,2007,38(1):100-106
140 TawfiS,Tan X,Ozbay S,et al.Anticlastic stability modeling for cross-ply composites.Journal of Composite Materials,2007,41(11):1325-1338
141 Diaconu CG,Weaver PM,Arrieta AF.Dynamic analysis of bi-stable composite plates.Journal of Sound and Vibration,2009,322(4):987-1004
142 Shaw AD,Neild SA,Wagg DJ,et al.A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation.Journal of Sound and Vibration,2013,332(24):6265-6275
SOME RECENT PROGRESSES IN NONLINEAR PASSIVE ISOLATIONS OF VIBRATIONS1)
Lu Zeqi?Chen Liqun?,?,2)?(Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China)?(Department of Mechanics,Shanghai University,Shanghai 200444,China)
Vibrations in aircraft and marine structures,due to various extreme environmental loads,have been attributing factors in accidents and failures.Over the last decade,as the demands for vibration and shock isolation performance increasing,the general approaches following the conventional categorization of passive,active,semi-active and hybrid has been extensive presented.Nonlinear passive vibration isolation is the state of the art of vibration control techniques for combining robustness of the passive device and high performance of the active devices.This paper surveys theoretical and practical advances in nonlinear passive isolation of vibration in recent ten years.Sti ff ness and damping both nonlinearities is considered in modeling of vibration isolation system;Deterministic and stochastic analysis are both conducted on the investigation of the dynamic behavior.Initially,a review of a general approach to quantify the e ff ectiveness of nonlinear vibrations isolation is presented.This is then followed by a review of high-static-low-dynamic sti ff ness vibration isolation,damping nonlinearity vibration isolation,two-stage nonlinear vibration isolation and nonlinear vibration isolation materi-als.The other vibration isolation methods considered in this review include chaotic anti-control technology,influenc of internal resonance and usage of nonlinear energy sink.The article is closed by conclusions,which highlight resolved and unresolved problems and recommendations for future research treads.
vibration isolation,nonlinear vibration,high static low dynamic sti ff ness,nonlinear damping,isolation materials
O328
:A
10.6052/0459-1879-17-064
2017–03–01 收稿,2017–04–20 錄用,2017–04–21 網(wǎng)絡(luò)版發(fā)表.
1)國家自然科學(xué)基金重點(diǎn)項(xiàng)目(11232009)和國家自然科學(xué)基金項(xiàng)目(11502135,11572182)資助.
2)陳立群,教授,主要研究方向:非線性動(dòng)力學(xué)和振動(dòng)控制.E-mail:lqchen@sta ff.shu.edu.cn
陸澤琦,陳立群.非線性被動(dòng)隔振的若干進(jìn)展.力學(xué)學(xué)報(bào),2017,49(3):550-564
Lu Zeqi,Chen Liqun.Some recent progresses in nonlinear passive isolations of vibrations.Chinese Journal of Theoretical and Applied Mechanics,2017,49(3):550-564