• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      GEANT4接續(xù)計(jì)算方法以及在GRH系統(tǒng)優(yōu)化設(shè)計(jì)中的應(yīng)用

      2017-07-17 22:32:28胡華四呂煥文
      核技術(shù) 2017年7期
      關(guān)鍵詞:氣腔計(jì)算方法光子

      劉 斌 胡華四 呂煥文 李 蘭

      1(中國核動(dòng)力研究設(shè)計(jì)院 核反應(yīng)堆系統(tǒng)設(shè)計(jì)技術(shù)重點(diǎn)實(shí)驗(yàn)室 成都 610041)2(西安交通大學(xué) 核科學(xué)與技術(shù)學(xué)院 西安 710049)

      GEANT4接續(xù)計(jì)算方法以及在GRH系統(tǒng)優(yōu)化設(shè)計(jì)中的應(yīng)用

      劉 斌1胡華四2呂煥文1李 蘭1

      1(中國核動(dòng)力研究設(shè)計(jì)院 核反應(yīng)堆系統(tǒng)設(shè)計(jì)技術(shù)重點(diǎn)實(shí)驗(yàn)室 成都 610041)2(西安交通大學(xué) 核科學(xué)與技術(shù)學(xué)院 西安 710049)

      遺傳算法調(diào)用GEANT4優(yōu)化設(shè)計(jì)方法應(yīng)用于氣體切倫科夫探測器GRH (Gamma Reaction History)系統(tǒng)設(shè)計(jì)過程可有效提高探測器指標(biāo),然而GEANT4程序計(jì)算耗時(shí)。本文研究了GEANT4程序的接續(xù)計(jì)算方法,采用函數(shù)擬合方式和文件讀入的方式進(jìn)行了接續(xù)計(jì)算源描述,采用文件讀入的方式接續(xù)計(jì)算結(jié)果與直接計(jì)算結(jié)果吻合良好,效率相差1.4%,時(shí)間譜半高寬相差2.1%。采用接續(xù)計(jì)算方法使得整體優(yōu)化時(shí)間下降50%以上,提高了計(jì)算效率。該接續(xù)計(jì)算方法也可應(yīng)用于其他采用GEANT4直接模擬收斂困難的計(jì)算問題。

      GEANT4模擬,接續(xù)計(jì)算,氘氚聚變,氣體切倫科夫探測系統(tǒng)

      氘氚聚變時(shí)間譜的測量對(duì)于慣性約束聚變物理研究具有十分重要的意義[1-4]。氘氚聚變產(chǎn)生的16.7MeV的γ射線既無時(shí)間延遲,又不存在時(shí)間展寬,堪稱聚變時(shí)間譜測量的最佳選擇,然而由于慣性約束聚變快的時(shí)間過程和高能γ射線相對(duì)較低的產(chǎn)額,使得對(duì)于16.7 MeV高能γ時(shí)間譜的測量變得困難[5-7]。

      因此,洛斯阿拉莫斯實(shí)驗(yàn)室(Los Alamos National Laboratory, LANL)和勞倫斯利弗莫爾國家實(shí)驗(yàn)室(Lawrence Livermore National Laboratory, LLNL)研制了氣體切倫科夫探測器(Gamma Reaction History, GRH)系統(tǒng),來進(jìn)行聚變歷史診斷[8-12]。

      針對(duì)GRH系統(tǒng)的設(shè)計(jì)方法,一直以來都采取基于幾何光學(xué)的光路追跡方法進(jìn)行[13-14],然而由于光路追跡方法缺乏對(duì)次級(jí)電子分布的精細(xì)考慮,且缺乏對(duì)系統(tǒng)部件的全局優(yōu)化,在一定程度上對(duì)于探測器指標(biāo)的提高具有局限性。遺傳算法作為一種具有全局尋優(yōu)能力的算法,在很多工程問題中均有應(yīng)用[15],同時(shí),蒙特卡羅程序GEANT4由于可計(jì)算的粒子種類多、能量區(qū)間寬,在核技術(shù)領(lǐng)域有廣泛應(yīng)用[16]。遺傳算法調(diào)用GEANT4優(yōu)化設(shè)計(jì)方法將全局優(yōu)化算法引入探測器設(shè)計(jì)過程,使得探測器的設(shè)計(jì)指標(biāo)有了很大的提高[17]。

      對(duì)于氣體切倫科夫系統(tǒng)GRH的優(yōu)化設(shè)計(jì)分為兩個(gè)階段:

      1) 對(duì)轉(zhuǎn)換靶半徑、厚度、轉(zhuǎn)換靶后方的氣腔半徑、長度等幾何參數(shù)進(jìn)行優(yōu)化。

      2) 在第一階段的基礎(chǔ)上,對(duì)光路反射鏡曲率、旋轉(zhuǎn)角度、反射鏡相對(duì)位置等參數(shù)進(jìn)行優(yōu)化設(shè)計(jì)。然而,在對(duì)光路系統(tǒng)進(jìn)行優(yōu)化設(shè)計(jì)的過程中,為尋求全局最優(yōu)解,遺傳算法對(duì)GEANT4程序需要進(jìn)行多次的調(diào)用。以種群數(shù)目70、進(jìn)化3000代的情況為例,遺傳算法對(duì)GEANT4的調(diào)用次數(shù)可多達(dá)2×105次左右,因此,降低GEANT4程序的運(yùn)算時(shí)間是提高計(jì)算效率的關(guān)鍵。

      本文針對(duì)GRH系統(tǒng),分析了GRH系統(tǒng)主要產(chǎn)光區(qū)域,研究了GEANT4程序接續(xù)計(jì)算源設(shè)置方法,縮短了GEANT4程序計(jì)算時(shí)間,從而降低了優(yōu)化設(shè)計(jì)程序(遺傳算法調(diào)用GEANT4)的計(jì)算時(shí)間。

      1 加速可能性分析

      1.1 探測器結(jié)構(gòu)及主要產(chǎn)光區(qū)域分析

      GRH系統(tǒng)測量原理為:16.7 MeV的聚變高能γ射線入射到轉(zhuǎn)換靶上面,經(jīng)過光電效應(yīng)、康普頓散射以及電子對(duì)效應(yīng)產(chǎn)生次級(jí)電子,切倫科夫輻射閾能之上的電子在氣腔中產(chǎn)生切倫科夫光,切倫科夫光通過拋物面鏡1、平面鏡、拋物面鏡3以及拋物面鏡4反射后到達(dá)收集端面,然后由快響應(yīng)微通道板光電倍增管轉(zhuǎn)換成電信號(hào)進(jìn)行記錄。

      為對(duì)GRH系統(tǒng)產(chǎn)光區(qū)域進(jìn)行分析,將氣體區(qū)域分為兩部分,如圖1所示。以轉(zhuǎn)換靶后方氣腔為氣體區(qū)域1,拋物面鏡下方到光闌1為氣體區(qū)域2。

      圖1 GRH系統(tǒng)結(jié)構(gòu)示意圖Fig.1 Schematic of GRH structure.

      分別計(jì)算了將區(qū)域2填充氣體和未填充氣體兩種情況下收集端面切倫科夫光子時(shí)間譜,如圖2所示。計(jì)算結(jié)果表明,區(qū)域2填充氣體后效率增加約5%,時(shí)間響應(yīng)半高寬變化不大,約1.7%。這說明決定探測器測量效率和時(shí)間響應(yīng)起主要作用的是氣體區(qū)域1,氣體區(qū)域2無論是從切倫科夫產(chǎn)生還是切倫科夫光傳播過程中的光程補(bǔ)償作用都比較小。

      切倫科夫光子主要由切倫科夫輻射閾能之上的電子產(chǎn)生,為進(jìn)一步對(duì)主要產(chǎn)光區(qū)域進(jìn)行研究,本工作計(jì)算了平面鏡處的電子能譜。如圖3所示,經(jīng)由拋物面鏡1散射后,平面鏡處的電子主要集中在低能區(qū),切倫科夫輻射閾能(10 MeV)之上的電子份額很低。

      圖2 氣體區(qū)域2填充前后切倫科夫光子時(shí)間譜Fig.2 Calculated time spectra of Cherenkov photons before and after gas region 2 filled.

      綜上所述,不論是對(duì)于切倫科夫光的產(chǎn)生還是切倫科夫光在輸運(yùn)過程中的光程補(bǔ)償,氣體區(qū)域2的作用都比較小,其主要作用的是氣體區(qū)域1,即轉(zhuǎn)換靶后方的氣腔。

      1.2 氣腔末端切倫科夫光分布分析

      圖4 氣腔末端切倫科夫光子分布(a) 位置分布,(b) 角分布,(c) 光譜分布,(d) 時(shí)間譜Fig.4 Distribution of Cherenkov photons at the end of the gas cell.(a) Position distribution, (b) Angular distribution, (c) Wavelength distribution, (d) Time distribution

      由§1.1分析可知,對(duì)于GRH系統(tǒng)探測效率和時(shí)間響應(yīng)起主要作用的是氣體區(qū)域1,而在對(duì)GRH系統(tǒng)光路反射鏡幾何參數(shù)的優(yōu)化過程中,從16.7MeV γ射線入射到切倫科夫光產(chǎn)生這一過程屬于重復(fù)計(jì)算,因此,可以在轉(zhuǎn)換靶后方氣腔末端設(shè)置接續(xù)計(jì)算源,進(jìn)而實(shí)現(xiàn)優(yōu)化設(shè)計(jì)程序的加速。故本工作研究了氣腔末端切倫科夫光子分布,如圖4所示。

      圖3 平面鏡處電子能譜Fig.3 Energy spectra of electrons at the flat reflector.

      位置分布利用氣腔末端切倫科夫光子分布的對(duì)稱性,計(jì)算了切倫科夫光子離氣腔軸線半徑分布,氣腔末端切倫科夫光子出現(xiàn)的最可幾位置為4 cm位置,由圖4(a)可見,這與切倫科夫光按特征角度傳輸有關(guān);從氣腔末端切倫科夫光子數(shù)角分布可以看出,在垂直于入射γ射線平面上呈對(duì)稱分布,沿入射方向主要沿前沖方向分布,前沖性較好,見圖4(b);由于氣體切倫科夫輻射體吸收系數(shù)很小,故切倫科夫光傳輸過程總光譜變化很小,故切倫科夫光譜采用源發(fā)切倫科夫光譜,見圖4(c)。

      2 接續(xù)計(jì)算方法研究

      接續(xù)計(jì)算本質(zhì)為切倫科夫光子源的構(gòu)造,源的主要要素為源強(qiáng)和分布。源強(qiáng)用式(1)描述:

      式中:φ為氣腔末端切倫科夫光子面通量,cm-2;A為氣腔端面橫截面面積,cm2。

      接續(xù)計(jì)算的關(guān)鍵在于對(duì)氣腔末端處切倫科夫光子分布進(jìn)行精確描述,因此,本工作探討了兩種描述方法:函數(shù)擬合方式以及文件讀入方式。

      2.1 擬合方式

      擬合方式為圖4中氣腔末端面處切倫科夫光子位置分布、時(shí)間分布、光譜、角分布擬合,為分段函數(shù),然后對(duì)分段函數(shù)進(jìn)行抽樣,接續(xù)計(jì)算源描述的精細(xì)程度跟分段函數(shù)的離散度相關(guān),離散度越大,抽樣函數(shù)越接近圖4所示分布,但隨著離散度的增加,對(duì)擬合函數(shù)的描述越復(fù)雜。為了驗(yàn)證接續(xù)計(jì)算源的準(zhǔn)確性,計(jì)算了以接續(xù)計(jì)算源為源和以16.7MeV γ射線為源情況下收集端面處切倫科夫光子的時(shí)間譜,如圖5所示。

      圖5 擬合接續(xù)計(jì)算源與16.7 MeV γ射線源切倫科夫光子時(shí)間譜計(jì)算結(jié)果Fig.5 Time spectra of Cherenkov photons at the collecting disk with the fitted continuation calculation source and 16.7-MeV γ source.

      效率基本一致,然而時(shí)間響應(yīng)相差19.35%,從波形來看,接續(xù)計(jì)算結(jié)果也相差比較大,這主要是由于擬合過程和抽樣過程存在的偏差所致。

      2.2 文件讀入方式

      文件讀入方式構(gòu)建接續(xù)計(jì)算源為將氣腔末端面處每次碰撞的切倫科夫光子的坐標(biāo)、方向、光子能量、時(shí)間存儲(chǔ)在一個(gè)矩陣當(dāng)中,然后在源抽樣程序中將矩陣讀入,然后將坐標(biāo)、方向、光子能量、光子時(shí)間等存儲(chǔ)為動(dòng)態(tài)數(shù)組,進(jìn)而對(duì)各動(dòng)態(tài)數(shù)組進(jìn)行調(diào)用,從而實(shí)現(xiàn)接續(xù)計(jì)算源描述。

      同上,為了驗(yàn)證接續(xù)計(jì)算源的準(zhǔn)確性,計(jì)算了以文件讀入方式構(gòu)造的接續(xù)計(jì)算源為源和以16.7MeV γ射線為源情況下收集端面處切倫科夫光子的時(shí)間譜,如圖6所示。

      如圖6所示,通過文件讀入方式構(gòu)造接續(xù)計(jì)算源的計(jì)算結(jié)果與16.7 MeV γ射線源計(jì)算結(jié)果非常接近,效率相差1.4%,時(shí)間譜半高寬相差2.1%,且時(shí)間譜波形也一致。細(xì)微的差別主要因?yàn)榻永m(xù)計(jì)算源的位置在氣腔末端,末端到拋物面鏡1處的氣體也會(huì)對(duì)切倫科夫光產(chǎn)額和光程補(bǔ)償有一定的影響。

      圖6 文件讀入接續(xù)計(jì)算源與16.7 MeV伽馬源切倫科夫光子時(shí)間譜計(jì)算結(jié)果Fig.6 Time spectra of Cherenkov photons at the collecting disk with the file read continuation calculation source and 16.7-MeV γ source.

      2.3 理想加速效率分析

      為分析兩種接續(xù)計(jì)算方法的加速效果,計(jì)算了GRH系統(tǒng)入射粒子為1×106情況下,未關(guān)閉光學(xué)過程所用時(shí)間為136.06 s,關(guān)閉光學(xué)過程所需時(shí)間為77.7 s,計(jì)算設(shè)備采用Intel(R) Core(TM) i7-2600 CPU 3.4 GHz。故理想的加速效率為光學(xué)輸運(yùn)的時(shí)間與整體時(shí)間的比值。為了評(píng)價(jià)接續(xù)計(jì)算方法的加速效果,計(jì)算了GEANT4程序中輸入5×103、5×104、1×106個(gè)γ粒子情況下的加速效率,相應(yīng)接續(xù)計(jì)算源中輸入的切倫科夫光子數(shù)目采用式(1)源強(qiáng)計(jì)算,計(jì)算結(jié)果如圖7所示。

      圖7 加速效率Fig.7 Acceleration efficiency.

      如圖7所示,采用函數(shù)擬合方式構(gòu)造接續(xù)計(jì)算源與采用文件讀入方式構(gòu)建接續(xù)計(jì)算源的加速效率相差不大,當(dāng)輸入γ粒子數(shù)目為 5×103和5×104時(shí),由于統(tǒng)計(jì)漲落的緣故加速效率存在一定的偏差,總體來講,實(shí)際加速效率低于理想的加速效率,這是因?yàn)榻永m(xù)計(jì)算源進(jìn)行抽樣計(jì)算也需要一定的時(shí)間,但總體來講,通過構(gòu)建接續(xù)計(jì)算源,可以將計(jì)算時(shí)間降低50%以上。

      在遺傳算法調(diào)用GEANT4優(yōu)化設(shè)計(jì)程序中,采用接續(xù)計(jì)算方法可以將整體優(yōu)化程序運(yùn)行時(shí)間降低到未采用接續(xù)方法時(shí)的48.34%。

      3 結(jié)語

      研究了采用函數(shù)擬合和文件讀入兩種方式的GEANT4接續(xù)計(jì)算方法,對(duì)比之下,兩者加速效率相差不大,但采用文件讀入方式較為準(zhǔn)確,計(jì)算結(jié)果與未采用接續(xù)計(jì)算技巧吻合良好,有效提高了模擬效率。另外,文件讀入接續(xù)計(jì)算方法也可應(yīng)用于其他類似的計(jì)算耗時(shí)且采用GEANT4直接模擬不容易收斂的計(jì)算問題。

      1 Leeper R J, Chandler G A, Cooper G A, et al. Target diagnostic system for the national ignition facility[J]. Review of Scientific Instruments, 1997, 68(1): 1223-1228. DOI: 10.1063/1.1147917.

      2 Murphy T J, Barnes C W, Berggren R R, et al. Nuclear diagnostic for the national ignition facility[J]. Review of Scientific Instruments, 2001, 72(1): 773-779. DOI: 10.1063/1.2236281.

      3 Medley S S, Cecil F E, Cole D, et al. Fusion gamma diagnostics[J]. Review of Scientific Instruments, 1985, 56(5): 975-977. DOI: 10.1063/1.1138009.

      4 Lzumi N, Lerche R A, Moran M J, et al. Nuclear diagnostics of ICF[C]. The 6th International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion, Italy: Advanced Diagnostics for Magnetic & Inertial Fusion, 2002: 99-106. DOI: 10.1007/978-1-4419-8696- 2_15.

      5 葉立潤, 呂敏. 核爆炸和核診斷中的物理問題[J]. 物理, 1991, 20(9): 526-529. YE Lirun, LYU Min. Physical problems in nuclear implosion and diagnostic[J]. Physics, 1991, 20(9): 526-529.

      6 Cecil F E, Liu H, Scorby J C, et al. Prompt gamma ray diagnostics of advanced fuel fusion plasmas[J]. Review of Scientific Instruments, 1990, 61(10): 3223-3225. DOI: 10.1063/1.1141640.

      7 Caldwell S E, Han S S, Joseph J R, et al. Burn history measurements in laser based fusion[J]. Review of Scientific Instruments, 1997, 68(1): 603-606. DOI: 10.1063/1.1147664.

      8 Herrmann H W, Caldwell S, Evans S, et al. Improved gamma bang time measurements on omega[J]. Journal of Physics: Conference Series, 2006, 112(3): 1231-1236. DOI: 10.1088/1742-6596/112/3/032084.

      9 Kim Y, Herrmann H W, Evans S, et al. Measurement of DT fusion and neutron-induced gamma-rays using Cherenkov detector[J]. Journal of Physics: Conference Series, 2010, 244(3): 681-687. DOI: 10.1088/1742-6596/ 244/3/032050.

      10 Kim Y, Mack J M, Herrmann H W, et al. Measurements of the deuterium-tritium branching ratio using ICF implosions[J]. Physical Review C, 2012, 85(6): 122-132. DOI: 10.1103/PhysRevC.85.061601.

      11 Rubery M S, Horsfield C J, Herrmann H W, et al. GEANT4 simulations of Cherenkov reaction history diagnostics[J]. Review of Scientific Instruments, 2010, 81(10): 10D3281-10D3283. DOI: 10.1063/1.3496979.

      12 Herrmann H W, Young C S, Mack J M, et al. ICF gamma-ray reaction history diagnostics[J]. Journal of Physics: Conference Series, 2010, 244(3): 32-47. DOI: 10.1088/1742-6596/244/3/032047.

      13 Malone R M, Herrmann H W, Stoeffl W, et al. Gamma bang time/reaction history diagnostics for the NIF using 90° off-axis parabolic mirrors[J]. Review of Scientific Instruments, 2008, 79(10): 10E532-10E537. DOI: 10.1063/1.2969281.

      14 Herrmann H W, Hoffman N, Wilson D C, et al. Diagnosing inertial confinement fusion gamma ray physics[J]. Review of Scientific Instruments, 2010, 81(10): 10D3331-10D3335. DOI: 10.1063/1.3495770.

      15 張白鑫, 張彤, 陳建輝, 等. 基于遺傳算法的自由電子激光優(yōu)化設(shè)計(jì)[J]. 核技術(shù), 2016, 39(2): 020101. DOI: 10.11889/j.0253-3219.2016.hjs.39.020101. ZHANG Baixin, ZHANG Tong, CHEN Jianhui, et al. Application of genetic algorithm for optimization design of free electron laser[J]. Nuclear Techniques, 2016, 39(2): 020101. DOI: 10.11889/j.0253-3219.2016.hjs.39.020101. 16 Ou H F, Zhang B, Zhao S J. Gate/GEANT4-based Monte Carlo simulation for calculation of dose distribution of 400 MeV/u carbon ion beam and fragments in water[J]. Nuclear Science and Techniques, 2016, 27(4): 83. DOI: 10.1007/s41365-016-0097-3.

      17 Liu B, Hu H S, Zhang T K, et al. Study on GEANT4 simulation of GRH system and multiple-objective optimization of optical reflector system with genetic algorithm[J]. Fusion Science and Technology, 2014, 66(3): 405-413. DOI: 10.13182/FST13-775.

      Continuation calculation methods of GEANT4 and its application in optimization design of GRH system

      LIU Bin1HU Huasi2LYU Huanwen1LI Lan1
      1(Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610041, China) 2(School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

      Background: Gamma reaction history (GRH) is becoming important for inertial confinement fusion (ICF) diagnostic. The traditional design for GRH is by optical-ray-tracing method which is based on geometrical optics. However, the detector performances, such as detection efficiency and time response, are hard to improve as a result of lacking precise considerations of energy and angular distributions of secondary electrons. The optimization method genetic algorithm (GA) combining with GEANT4 can be used to enhance the detector performances during the design process. However, the computational time consumption of GEANT4 is great. Purpose: In order to accelerate the GEANT4 program, two continuation calculation methods, function fitting method and file read method, have been established. Methods: For the function fitting method, distributions of positions, directions, time and wavelengths of Cherenkov photons are fitted as functions, and then the fitted functions are sampled in GEANT4 program. For the file read method, positions, directions, time, and energy of Cherenkov photons are stored as a matrix, and then the matrix is read in GEANT4 program as the continuation source. Results: The difference between the acceleration efficiencies of the two methods is small. The file read method is more accurate than the function fitting method. Time spectrum of Cherenkov photons with the file read continuation source agrees well with time spectra calculated with 16.7-MeV gamma source. Deviations of the efficiency and full width half maximum (FWHM) are 1.4% and 2.1%. Conclusion:The computational time of GEANT4 can be reduced by more than 50%. Moreover, the continuation calculation method can be applied to other GEANT4 simulation problems with convergence difficulty by direct simulation.

      LIU Bin, male, born in 1987, graduated from Xi’an Jiaotong University with a doctoral degree in 2015, focusing on ICF fusion diagnostic

      date: 2017-03-03, accepted date: 2017-04-03

      GEANT4 simulation, Continuation calculation, DT fusion, Gas Cherenkov detection system

      TL65+7

      10.11889/j.0253-3219.2017.hjs.40.070401

      國家自然科學(xué)基金(No.10975113)、陜西省自然科學(xué)重點(diǎn)基金(No.S2015YFJZ0197)資助

      劉斌,男,1987年出生,2015年于西安交通大學(xué)獲博士學(xué)位,研究領(lǐng)域?yàn)镮CF聚變診斷技術(shù)

      2017-03-03,

      2017-04-03

      Supported by National Natural Science Foundation of China (No.10975113), Key Natural Science Foundation of Shannxi Province (No.S2015YFJZ0197)

      technology

      猜你喜歡
      氣腔計(jì)算方法光子
      不同氣腔結(jié)構(gòu)徑向靜壓空氣軸承性能對(duì)比*
      潤滑與密封(2023年5期)2023-05-25 02:37:06
      基于結(jié)構(gòu)特征參數(shù)的組合壓氣機(jī)放氣量計(jì)算方法研究
      《光子學(xué)報(bào)》征稿簡則
      浮力計(jì)算方法匯集
      不同型腔對(duì)空氣靜壓軸承性能的影響*
      高速破片撞擊充液容器拖拽階段氣腔特性研究*
      爆炸與沖擊(2018年6期)2018-10-16 08:53:10
      隨機(jī)振動(dòng)試驗(yàn)包絡(luò)計(jì)算方法
      不同應(yīng)變率比值計(jì)算方法在甲狀腺惡性腫瘤診斷中的應(yīng)用
      在光子帶隙中原子的自發(fā)衰減
      一種伺服機(jī)構(gòu)剛度計(jì)算方法
      淮阳县| 紫阳县| 通海县| 桐乡市| 罗甸县| 肃南| 新干县| 同江市| 延川县| 宜兰市| 蚌埠市| 永顺县| 犍为县| 敖汉旗| 岑巩县| 泾川县| 吉水县| 惠来县| 宁津县| 连南| 鄢陵县| 奉贤区| 兴城市| 三明市| 衡南县| 太湖县| 克山县| 塘沽区| 广元市| 旬邑县| 江永县| 铜梁县| 中方县| 于田县| 林州市| 和平县| 阳高县| 绥滨县| 理塘县| 庄浪县| 临夏县|