徐沁同, 孟德華, 張 鍵, 潘劍鋒, 江立波, 陳增淦, William C. Lineaweaver, 張 峰,*
1. 復(fù)旦大學(xué)附屬中山醫(yī)院骨科,上海 200032 2. Joseph M. Still Burn and Reconstructive Center, Jackson, Mississippi 39204
·論 著·
血管內(nèi)皮細(xì)胞聯(lián)合同種異體神經(jīng)移植修復(fù)長(zhǎng)距離大鼠坐骨神經(jīng)缺損
徐沁同1△, 孟德華1△, 張 鍵1, 潘劍鋒1, 江立波1, 陳增淦1, William C. Lineaweaver2, 張 峰1,2*
1. 復(fù)旦大學(xué)附屬中山醫(yī)院骨科,上海 200032 2. Joseph M. Still Burn and Reconstructive Center, Jackson, Mississippi 39204
目的: 探討血管內(nèi)皮細(xì)胞(EC)聯(lián)合去細(xì)胞同種異體神經(jīng)移植修復(fù)長(zhǎng)距離大鼠坐骨神經(jīng)缺損的效果。方法: 80只雌性Sprague-Dawley大鼠,20只取雙側(cè)1.5 cm長(zhǎng)坐骨神經(jīng),Hudson優(yōu)化法制備去細(xì)胞同種異體神經(jīng)(ANA);60只均于右側(cè)建立1.5 cm長(zhǎng)坐骨神經(jīng)缺損模型,隨機(jī)分為反轉(zhuǎn)吻合坐骨神經(jīng)的自體神經(jīng)(ANG)移植組、ANA移植組及ANA+EC移植組(n=20)。術(shù)后1、2、4、12周,每組各取5只進(jìn)行測(cè)試,指標(biāo)包括:坐骨神經(jīng)功能指數(shù)(SFI)、電生理檢查[動(dòng)作電位潛伏延遲率(LDR)、神經(jīng)傳導(dǎo)速度恢復(fù)率(NCVRR)和復(fù)合肌動(dòng)作電位恢復(fù)率(CMAPRR)]、最大強(qiáng)直收縮力恢復(fù)率(MTFRR)、腓腸肌濕重恢復(fù)率(MWRR)、微血管增生率(MVDPR),術(shù)后12周甲苯胺藍(lán)染色下測(cè)量神經(jīng)纖維數(shù)量、髓鞘厚度、G ratio,并行電鏡觀察。結(jié)果: 術(shù)后早期,ANA+EC移植組大鼠SFI、MVDPR較ANA移植組改善明顯(P<0.05);術(shù)后晚期,ANA+EC移植組大鼠CMAPRR、MTFRR、MWRR較ANA移植組恢復(fù)更佳(P<0.05);術(shù)后12周時(shí),ANA+EC移植組再生神經(jīng)數(shù)量和形態(tài)更接近ANG移植組。結(jié)論: 對(duì)于長(zhǎng)距離坐骨神經(jīng)缺損的大鼠模型,使用載血管內(nèi)皮細(xì)胞的去細(xì)胞同種異體神經(jīng)進(jìn)行神經(jīng)移植修復(fù),早期肌肉功能優(yōu)于單獨(dú)使用去細(xì)胞同種異體神經(jīng),晚期神經(jīng)纖維的數(shù)量和質(zhì)量更接近于自體神經(jīng)移植。
周圍神經(jīng);血管內(nèi)皮細(xì)胞;去細(xì)胞同種異體神經(jīng)
周圍神經(jīng)損傷是臨床常見疾患,占創(chuàng)傷患者的2%~3%[1]。神經(jīng)纖維再生緩慢,對(duì)修復(fù)環(huán)境要求苛刻,因此在長(zhǎng)距離神經(jīng)缺損時(shí),治療尤為困難,預(yù)后較差,易導(dǎo)致患者肢體功能障礙,嚴(yán)重影響患者的生活質(zhì)量。目前,治療周圍神經(jīng)缺損的最佳方法為自體神經(jīng)移植(autologous nerve graft, ANG),但該方法存在供體有限、犧牲供區(qū)正常功能、醫(yī)源性損傷、增加諸如感染等并發(fā)癥的缺點(diǎn)和風(fēng)險(xiǎn)。
因具有取材來源廣泛、取材量相對(duì)較大、與宿主結(jié)構(gòu)相似等優(yōu)點(diǎn),去細(xì)胞同種異體神經(jīng)(acellular nerve allograft, ANA)移植近年來成為較好的修復(fù)周圍神經(jīng)缺損的選擇。采用Sondell提出的化學(xué)法[2]及此后Hudson對(duì)此作出改良的優(yōu)化法[3]可以克服同種異體神經(jīng)移植后引起的排異反應(yīng),在動(dòng)物實(shí)驗(yàn)中取得了與自體神經(jīng)移植類似的結(jié)果[4-5],但在臨床上較ANG仍存在療效上的差距[6]。最近有研究指出,長(zhǎng)段ANG移植術(shù)后血供恢復(fù)較ANA更快,提示神經(jīng)血供與修復(fù)療效之間可能存在相關(guān)性[7]。
血供一直被認(rèn)為是影響神經(jīng)再生及功能恢復(fù)的重要因素。當(dāng)神經(jīng)損傷伴有血管損傷時(shí),會(huì)導(dǎo)致較高的致殘率[8]。最新研究表明,若失去血供的支持將使得移植神經(jīng)再生緩慢并造成功能恢復(fù)障礙[9];而CD31+細(xì)胞能夠高表達(dá)促血管形成基因,與改善移植神經(jīng)功能有關(guān)[10],提示神經(jīng)再生可能依賴于血管生成。組織血管內(nèi)皮細(xì)胞(endothelial cells, ECs)是構(gòu)成血管的主要成分之一,在各種因素如血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)驅(qū)動(dòng)下激活遷徙和增生[11],但其在神經(jīng)移植修復(fù)中的作用尚不明確。因此,本研究采用ANA治療大鼠坐骨神經(jīng)長(zhǎng)段缺損,并在其中加入促血管形成的EC,觀察局部血管形成數(shù)量的變化、神經(jīng)再生、神經(jīng)功能的恢復(fù)情況,以初步探討EC和微血管血供在周圍神經(jīng)損傷修復(fù)中的價(jià)值。
1.1 動(dòng)物來源及分組 80只雌性Sprague-Dawley大鼠(復(fù)旦大學(xué)上海醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物部),體質(zhì)量250~300 g,取20只雙側(cè)坐骨神經(jīng)制備ANA,其余隨機(jī)分為3組:自體神經(jīng)(ANG)移植組、去細(xì)胞同種異體神經(jīng)(ANA)移植組、載血管內(nèi)皮細(xì)胞+去細(xì)胞同種異體神經(jīng)(ANA+EC)移植組。術(shù)后1、2、4、12 周各時(shí)間點(diǎn),從3組各隨機(jī)選取5只大鼠進(jìn)行手術(shù)側(cè)及非手術(shù)側(cè)取材。
1.2 坐骨神經(jīng)損傷模型的制作及處理 大鼠用1%戊巴比妥經(jīng)腹腔注射麻醉消毒后,從右側(cè)股二頭肌與臀大肌肌間隙入路進(jìn)入,顯露坐骨神經(jīng),在10倍顯微鏡下,清除坐骨神經(jīng)外膜與周圍組織之間的粘連,游離坐骨神經(jīng),自坐骨結(jié)節(jié)處起向遠(yuǎn)端銳性切取1.5 cm長(zhǎng)坐骨神經(jīng)。取材時(shí)切取雙側(cè)坐骨神經(jīng);修復(fù)實(shí)驗(yàn)時(shí)切取右側(cè)坐骨神經(jīng)建立模型,按分組進(jìn)行坐骨神經(jīng)缺損修復(fù),ANG移植組將切取神經(jīng)180°翻轉(zhuǎn)后作端端吻合,ANA移植組和ANA+EC移植組將事先制備的ANA或ANA+EC材料行端端吻合。之后逐層縫合,術(shù)后給予FK506免疫抑制治療。所有手術(shù)實(shí)驗(yàn)均在復(fù)旦大學(xué)上海醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物部SPF級(jí)手術(shù)室內(nèi)完成。
1.3 修復(fù)材料的制備
1.3.1 ANA的制備 根據(jù)Hudson優(yōu)化法[3]制備去細(xì)胞大鼠同種異體神經(jīng)。在25℃環(huán)境下,將切取所得15 mm坐骨神經(jīng)放入無(wú)菌去離子蒸餾水的錐形試管中攪動(dòng)7 h,125 mmol/L SB-10(美國(guó)Sigma-Aldrich)漂洗15 h,含0.14%Triton X-200(美國(guó)Sigma-Aldrich)和0.6 mmol/L SB-16(美國(guó)Sigma-Aldrich)溶液洗滌24 h,重復(fù)在SB-10中洗滌7 h,Triton X-200/SB-16中15 h,最終于4℃磷酸鈉溶液中保存。
1.3.2 載血管內(nèi)皮細(xì)胞去細(xì)胞同種異體神經(jīng)的制備 EC為第4代大鼠主動(dòng)脈血管內(nèi)皮細(xì)胞(Raoec,中國(guó)科學(xué)院),當(dāng)細(xì)胞生長(zhǎng)融合率達(dá)90%時(shí),使用含0.02%EDTA(美國(guó)Gibco)的0.25%胰蛋白酶消化,離心后加入完全培養(yǎng)基重懸細(xì)胞,調(diào)整細(xì)胞密度為3×107/mL。在12孔板內(nèi)按每孔放入1根ANA并滴加1 mL細(xì)胞懸液,再加入含有細(xì)胞的完全培養(yǎng)基使ANA完全浸泡入內(nèi),置于濕化培養(yǎng)箱(37℃、5% CO2)內(nèi)孵育,共培養(yǎng)2~3 d后手術(shù)用。
1.4 觀察指標(biāo)
1.4.1 坐骨神經(jīng)功能指數(shù)(SFI) 自制1個(gè)長(zhǎng)約1 m、寬約5 cm的行走槽,于槽底鋪A4紙。將大鼠后肢涂抹藍(lán)色染料至踝部,待足部著色后,使大鼠從槽的一端向另一端行走以留下足印,取其中最清楚的1枚足印,測(cè)量大鼠實(shí)驗(yàn)足(E)及正常足(N)的3個(gè)指標(biāo):足印長(zhǎng)度(PL)即從足尖到足跟的最大距離;足趾寬度(TS)即第1趾到第5趾的距離;中間足趾距離(IT):第2趾到第4趾的距離。SFI=-38.3×(EPL-NPL)/NPL+109.5×(ETS-NTS)/NTS+13.3×(EIT-NIT)/NIT-8.8。
1.4.2 神經(jīng)電生理恢復(fù)率檢測(cè) 大鼠用相同建模方法手術(shù)顯露術(shù)側(cè)移植坐骨神經(jīng)與非手術(shù)側(cè)坐骨神經(jīng),將闊筋膜張肌向遠(yuǎn)端分離切開,顯露兩側(cè)腓腸肌。采用Neuromatic-2000型二通道神經(jīng)電生理儀(丹麥Dantec)行電生理檢測(cè):將黑色單極記錄電導(dǎo)針插入靶肌肉的肌腹,將紅色單極記錄電導(dǎo)針插入黑色電極遠(yuǎn)端(靶肌肉的肌腱上),綠色接地電極插入刺激電極和記錄電極之間處。打開KEYPOINT v5.06軟件(美國(guó)Medtronic),選擇要做的左(健)/右(患)側(cè)神經(jīng),選擇MCV選項(xiàng),設(shè)置刺激電流0.5 mA,刺激時(shí)長(zhǎng)0.2 ms,刺激頻率0.5 Hz。將刺激電極放置于移植神經(jīng)的遠(yuǎn)近兩端兩個(gè)吻合端,分別測(cè)量動(dòng)作電位潛伏期(latency)、神經(jīng)傳導(dǎo)速度(nerve conduction velocity, NCV)和復(fù)合肌動(dòng)作電位(compound muscle action potential, CMAP),并計(jì)算動(dòng)作電位潛伏延遲率(latency delay rate, LDR)=手術(shù)側(cè)動(dòng)作電位潛伏期/非手術(shù)側(cè)動(dòng)作電位潛伏期×100%;神經(jīng)傳導(dǎo)速度恢復(fù)率(NCV RR)=手術(shù)側(cè)神經(jīng)傳導(dǎo)速度/非手術(shù)側(cè)神經(jīng)傳導(dǎo)速度×100%;復(fù)合肌動(dòng)作電位恢復(fù)率(CMAPRR)=手術(shù)側(cè)復(fù)合肌動(dòng)作電位/非手術(shù)側(cè)復(fù)合肌動(dòng)作電位×100%。
1.4.3 最大強(qiáng)直收縮力(maximum tetanic force, MTF)恢復(fù)率(RR)檢測(cè) 顯露腓腸肌,固定大鼠的膝關(guān)節(jié),使腓腸肌和脛前肌近端位于膝關(guān)節(jié)的止點(diǎn)保持固定,將腓腸肌和脛前肌于遠(yuǎn)端止點(diǎn)切斷,連接于JZJ101型壓力換能器(成都儀器廠),再與SMUP-E型生物信號(hào)處理系統(tǒng)(復(fù)旦大學(xué)上海醫(yī)學(xué)院生理和病理學(xué)系研制)連接。打開MFLab 3.01軟件(復(fù)旦大學(xué)上海醫(yī)學(xué)院生理和病理學(xué)系研制),選擇最大強(qiáng)直收縮力測(cè)定,設(shè)置脈沖強(qiáng)度0.5 V,脈沖頻率1 Hz,脈沖串長(zhǎng)10 s,脈沖寬度0.2 ms。將電刺激置于手術(shù)側(cè)移植神經(jīng)干中點(diǎn),非手術(shù)側(cè)置于相對(duì)應(yīng)位置,進(jìn)行刺激,軟件記錄手術(shù)側(cè)與非手術(shù)側(cè)MTF數(shù)值,計(jì)算MTFRR=手術(shù)側(cè)MTF/非手術(shù)側(cè)MTF×100%。
1.4.4 腓腸肌濕重(muscle wet weight,MW)恢復(fù)率(RR)測(cè)定 將腓腸肌近端止點(diǎn)切斷,游離腓腸肌并剔除表面結(jié)締組織,置于R200D型1/10萬(wàn)分析天平(德國(guó)Sartorius)上稱重,得到肌肉濕重?cái)?shù)值。計(jì)算肌肉濕重恢復(fù)率(MWRR)=手術(shù)側(cè)腓腸肌MW/非手術(shù)側(cè)腓腸肌MW×100%。
1.5 免疫組織化學(xué)染色及染色結(jié)果分析 標(biāo)本用4%甲醛溶液固定,石蠟包埋。作5 μm切片,5% H2O2滅活內(nèi)源性過氧化物酶,檸檬酸修復(fù)液(0.4 g檸檬酸+3 g檸檬酸三鈉+1 L水)熱修復(fù),5% BSA(10 mL雙蒸水+0.5 g BSA干粉,美國(guó)Gibco)封閉30 min,加入1%BSA配置、1∶100稀釋的CD31兔抗鼠一抗(美國(guó)SAB)4℃下孵育18 h。PBS洗滌后,最后使用鼠兔通用二抗(丹麥Dako)進(jìn)行染色并在顯微鏡下觀察。
染色結(jié)果分析:基于CD31的微血管密度計(jì)數(shù)(microvessel density, MVD)是指管徑小于8個(gè)紅細(xì)胞、無(wú)厚血管壁、非纖維化區(qū)的微血管;單一內(nèi)皮細(xì)胞或內(nèi)皮細(xì)胞團(tuán),不管其有無(wú)管腔均被認(rèn)為是獨(dú)立的微血管。以EC染成棕黃色為陽(yáng)性,單個(gè)EC著色也判斷為陽(yáng)性。參照Weidner等[12]的判斷際準(zhǔn),先在低倍鏡下(×10)選3個(gè)微血管數(shù)量最多的區(qū)域,再在高倍視野(×200)計(jì)數(shù)每個(gè)區(qū)域中的微血管數(shù)目,取其平均值。手術(shù)側(cè)和非手術(shù)側(cè)分別計(jì)數(shù),然后計(jì)算微血管(MVD)增生率(PR)=手術(shù)側(cè)MVD/非手術(shù)側(cè)MVD。
1.6 甲苯胺藍(lán)染色及電鏡觀察 術(shù)后12周時(shí)將大鼠移植神經(jīng)中點(diǎn)及非手術(shù)側(cè)對(duì)應(yīng)點(diǎn)獲取小段神經(jīng)標(biāo)本,在4℃先后于2.5%戊二醛、1%四氧化鋨下固定各2 h脫水后于100%丙酮+環(huán)氧樹脂(1∶1)室溫過夜,純環(huán)氧樹脂37℃烘箱2 h后60℃包埋24 h。以1 μm厚度切片,5%甲苯胺藍(lán)染色,20%醋酸分色,烘干、封固。LKB切片機(jī)(德國(guó)Leica)做半薄切片(400~500 nm),2%甲苯胺藍(lán)染色,光鏡下觀察有髓神經(jīng)等并做定位,為電鏡觀察做準(zhǔn)備。超薄切片機(jī)(德國(guó)Leica)切片70 nm,在銅片上先用3%醋酸鈾染色8~15 min,再用枸櫞酸鉛染色。在JEM 1400透射電子顯微鏡下觀察(日本電子株式會(huì)社)。
甲苯胺藍(lán)結(jié)果分析:光鏡下觀察,截取神經(jīng)纖維密度較高的5個(gè)視野,通過傳感器截圖后保存。每個(gè)截圖應(yīng)用Image C軟件(德國(guó)Imtronic),對(duì)每個(gè)視野內(nèi)的神經(jīng)纖維數(shù)量(nerve fiber)、髓鞘厚度(myelin thickness)、G ratio值(髓鞘面積在神經(jīng)纖維橫截面所占比例)進(jìn)行測(cè)算,對(duì)均數(shù)進(jìn)行比較。
2.1 坐骨神經(jīng)功能指數(shù)(SFI)的比較 60只實(shí)驗(yàn)用大鼠均存活,未發(fā)生明顯并發(fā)癥。術(shù)后各組SFI隨修復(fù)時(shí)間增長(zhǎng)而逐漸升高,4 周起較前明顯(P<0.01)。2周時(shí)ANA+EC移植組有優(yōu)于ANA移植組的趨勢(shì)(P=0.07);4 周時(shí)ANA+EC移植組SFI明顯高于ANA移植組(P<0.05),并與ANG移植組相當(dāng);12 周時(shí)ANG移植組、ANA移植組和ANA+EC移植組SFI值差異無(wú)統(tǒng)計(jì)學(xué)意義(圖1A)。
2.2 神經(jīng)電生理恢復(fù)率的比較 術(shù)后12 周時(shí)各組LDR較前改善明顯(P<0.05)。術(shù)后12 周ANA+EC移植組與ANA移植組間LDR差異無(wú)統(tǒng)計(jì)學(xué)意義(圖1B)。術(shù)后NCVRR,ANA+EC移植組與ANA移植組相近,兩者均明顯低于ANG移植組(P<0.05);術(shù)后各時(shí)間點(diǎn)CMAPRR均較前改善,術(shù)后12 周時(shí)ANA+EC移植組均值高于ANA移植組,但差異無(wú)統(tǒng)計(jì)學(xué)意義,同時(shí)較ANG移植組仍有差距(P<0.05,圖1C)。
2.3 最大強(qiáng)直收縮力恢復(fù)率(MTFRR)的比較 術(shù)后12 周時(shí)各組MTFRR較前明顯增加(P<0.05)。術(shù)后4周時(shí)ANG移植組明顯優(yōu)于ANA移植組和ANA+EC移植組(P<0.01);12 周時(shí)ANA+EC移植組明顯優(yōu)于ANA移植組(P<0.05),ANG移植組最佳(P<0.05,圖1D)。
2.4 腓腸肌濕重恢復(fù)率(MWRR)的比較 術(shù)后4 周前各組MWRR遞減,12 周時(shí)與1周時(shí)相似。術(shù)后4 周時(shí)3組均值相似,12 周時(shí)ANG移植組、ANA+EC移植組、ANA移植組組間差異均有統(tǒng)計(jì)學(xué)意義(P<0.05,圖1E)。
2.5 微血管(MVDPR)的比較 術(shù)后各組MVDPR隨時(shí)間遞減(P<0.05)。術(shù)后1 周時(shí)CD31染色(圖2),ANA+EC移植組與ANG移植組相當(dāng),后者高于ANA移植組(P<0.05);術(shù)后2周時(shí)ANA+EC移植組與ANA移植組差異無(wú)統(tǒng)計(jì)學(xué)意義(圖1F)。
圖1 術(shù)后不同時(shí)間點(diǎn)3組大鼠神經(jīng)功能的比較
2.6 甲苯胺藍(lán)染色后形態(tài)學(xué)觀察 術(shù)后12 周,ANA+EC移植組神經(jīng)纖維數(shù)量明顯多于ANA移植組(P<0.01),但少于ANG移植組(P<0.01,圖3A)。ANA+EC移植組髓鞘厚度稍多于ANA移植組,兩者均少于ANG移植組(P<0.01,圖3B)。ANG移植組G ratio更接近0.6,ANA移植組更接近1.0,ANA+EC移植組優(yōu)于ANA移植組(P<0.01,圖3C)。光鏡與電鏡下分別觀察所見ANG移植組有髓神經(jīng)再生形態(tài)較為規(guī)則(圖4A、4D),ANA移植組形態(tài)不規(guī)整(圖4B、4E),ANA+EC移植組亦介于二者之間(圖4C、4F)。
圖2 各組大鼠神經(jīng)組織術(shù)后1 周時(shí)CD31染色
圖3 各組大鼠術(shù)后12周再生神經(jīng)纖維形態(tài)學(xué)特征的比較
圖4 各組大鼠再生神經(jīng)纖維的形態(tài)學(xué)特征
近年來,一些學(xué)者嘗試將內(nèi)皮細(xì)胞或具有內(nèi)皮細(xì)胞分化潛能的細(xì)胞應(yīng)用到損傷區(qū)域。Taguchi等[13]給卒中大鼠注射了CD34+細(xì)胞后,通過改善腦部缺血環(huán)境以促進(jìn)神經(jīng)功能恢復(fù);Sasaki等[14]發(fā)現(xiàn)外周血源性CD133+細(xì)胞可減少脊髓損傷后的空泡形成,獲得更好的脊髓功能恢復(fù);而使用經(jīng)過分化的間充質(zhì)干細(xì)胞(MSCs)可以提早再血管化,有髓神經(jīng)形成較多,神經(jīng)功能恢復(fù)也較好[15]。除了直接應(yīng)用外源性細(xì)胞,一些生長(zhǎng)因子也被用于加快神經(jīng)損傷后的血供重建。目前已有不少將VEGF聯(lián)合ANA進(jìn)行神經(jīng)修復(fù)的試驗(yàn)研究[16-17]。VEGF是促進(jìn)血管形成的重要生長(zhǎng)因子,在術(shù)后5~10 d通過增強(qiáng)神經(jīng)內(nèi)的血管形成,使雪旺細(xì)胞和軸突加快再生,程度和VEGF濃度呈劑量相關(guān)[18]。VGEF引起的血管增生可持續(xù)至術(shù)后30 d,在術(shù)后180 d有髓神經(jīng)的數(shù)目相比對(duì)照組多78%[19]。VEGF同時(shí)也是對(duì)EC遷徙起到重要作用的因子,通過作用于Notch/Dll4系統(tǒng)刺激內(nèi)皮細(xì)胞出芽,而各類整合素對(duì)血管內(nèi)皮的極化、遷徙及細(xì)胞突起形成均有作用[20]。由此可見,神經(jīng)修復(fù)早期對(duì)血供的要求較高,早期改善血供對(duì)神經(jīng)再生效果具有幫助。
本研究在上述理念的基礎(chǔ)上,利用Hudson優(yōu)化法制備ANA作為移植神經(jīng),在其中加入EC構(gòu)成新的組織工程神經(jīng),進(jìn)一步探索EC在神經(jīng)再生中的作用。研究結(jié)果顯示,神經(jīng)移植術(shù)后,早期血供要求較高,MVDPR明顯升高,后逐漸下降,12周時(shí)已基本恢復(fù)至正常水平(MVDPR=1),與以往研究結(jié)果相似。術(shù)后早期,ANA+EC組微血管數(shù)目接近于ANG組,而ANA組則明顯較ANG差;術(shù)后12周,ANA+EC組比ANA組有更多的有髓神經(jīng)及粗大的神經(jīng)纖維形成,G ratio更接近最佳預(yù)測(cè)理論值0.6[21],并獲得了更大程度的CMAP和MTF恢復(fù),提供了更好的肌肉營(yíng)養(yǎng)作用(MWRR)。這些結(jié)果提示,載EC的ANA在神經(jīng)修復(fù)早期能提供較好的血供,之后移植神經(jīng)則獲得了更好的神經(jīng)再生效果。
ANA+EC移植組與ANA移植組在神經(jīng)電生理結(jié)果中差異無(wú)統(tǒng)計(jì)學(xué)意義,僅在12 周時(shí)ANA+EC移植組具有優(yōu)于ANA移植組的趨勢(shì),與預(yù)期結(jié)果并不一致。有文獻(xiàn)指出,形態(tài)學(xué)特征(纖維數(shù)量、髓鞘厚度、G ratio)與神經(jīng)電生理特征從不同角度對(duì)再生神經(jīng)進(jìn)行了描述,然而二者之間并不存在明顯的相關(guān)性[22]。Kim等[23]研究則顯示,加入VEGF的ANA移植組術(shù)后1個(gè)月時(shí)再生神經(jīng)微血管分布及支配肌肉功能明顯高于單純ANA移植組,而電生理特征兩者之間同樣缺乏明顯差異,這與本實(shí)驗(yàn)結(jié)論較為相似。當(dāng)然,本研究神經(jīng)電生理實(shí)驗(yàn)結(jié)果部分?jǐn)?shù)值離散程度較大,可能存在樣本量不足的情況。因此,血供在神經(jīng)再生過程中與神經(jīng)電生理是否具有關(guān)聯(lián),需要從更多角度和數(shù)量上進(jìn)行進(jìn)一步研究。
綜上所述,對(duì)于長(zhǎng)距離坐骨神經(jīng)缺損的大鼠模型,使用載血管內(nèi)皮細(xì)胞的去細(xì)胞同種異體神經(jīng)進(jìn)行神經(jīng)移植修復(fù),早期肌肉功能恢復(fù)優(yōu)于單獨(dú)使用去細(xì)胞同種異體神經(jīng),晚期神經(jīng)纖維的數(shù)量和質(zhì)量更接近于自體神經(jīng)移植,提示血管內(nèi)皮細(xì)胞在神經(jīng)移植修復(fù)中具有一定作用。
[1] SELECKI B R, RING I T, SIMPSON D A, et al. Trauma to the central and peripheral nervous systems. Part Ⅱ: A statistical profile of surgical treatment New South Wales 1977[J].Aust N Z J Surg, 1982,52(2):111-116.
[2] SONDELL M, LUNDBORG G, KANJE M.Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction[J]. Brain Res, 1998,795(1-2):44-54.
[3] HUDSON T W, ZAWKO S, DEISTER C, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration[J]. Tissue Eng, 2004,10(11-12):1641-1651.
[4] WHITLOCK E L, TUFFAHA S H, LUCIANO J P, et al. Processed allografts and type Ⅰ collagen conduits for repair of peripheral nerve gaps[J]. Muscle Nerve, 2009,39(6):787-799.
[5] GIUSTI G, WILLEMS W F, KREMER T, et al. Return of motor function after segmental nerve loss in a rat model: comparison of autogenous nerve graft, collagen conduit, and processed allograft (AxoGen)[J]. J Bone Joint Surg Am, 2012,94(5):410-417.
[6] BROOKS D N, WEBER R V, CHAO J D, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions[J]. Microsurgery, 2012,32(1):1-14.
[7] FARBER S J, HOBEN G M, HUNTER D A, et al. Vascularization is delayed in long nerve constructs compared with nerve grafts[J]. Muscle Nerve, 2016,54(2):319-321.
[8] NICHOLS J S, LILLEHEI K O. Nerve injury associated with acute vascular trauma[J]. Surg Clin North Am, 1988,68(4):837-852.
[9] GIUSTI G, LEE J Y, KREMER T, et al. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats[J]. Microsurgery, 2016,36(2):134-143.
[10] LI Y, ZHANG Z, KIM H S, et al. CD31(+) cell transplantation promotes recovery from peripheral neuropathy[J]. Mol Cell Neurosci, 2014,62:60-67.
[11] CARMELIET P. Angiogenesis in health and disease[J]. Nat Med, 2003,9(6):653-660.
[12] WEIDNER N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors [J]. Breast Cancer Res Treat, 1995, 36(2): 169-180.
[13] TAGUCHI A, SOMA T, TANAKA H, et al. Administration of CD34+cells after stroke enhances neurogenesis via angiogenesis in a mouse model[J]. J Clin Invest, 2004,114(3):330-338.
[14] SASAKI H, ISHIKAWA M, TANAKA N, et al. Administration of human peripheral blood-derived CD133+cells accelerates functional recovery in a rat spinal cord injury model[J]. Spine (Phila Pa 1976), 2009,34(3):249-254.
[15] KEILHOFF G, GOIHL A, STANG F, et al. Peripheral nerve tissue engineering: autologous Schwann cellsvs. transdifferentiated mesenchymal stem cells[J]. Tissue Eng, 2006,12(6):1451-1465.
[16] ZOR F, DEVECI M, KILIC A, et al. Effect of VEGF gene therapy and hyaluronic acid film sheath on peripheral nerve regeneration[J]. Microsurgery, 2014,34(3):209-216.
[17] HILLENBRAND M, HOLZBACH T, MATIASEK K, et al. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy[J]. Neurol Res, 2015,37(3):197-203.
[18] HOBSON M I, GREEN C J, TERENGHI G.VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy[J]. J Anat, 2000,197 Pt 4:591-605.
[19] HOBSON M I. Increased vascularisation enhances axonal regeneration within an acellular nerve conduit[J]. Ann R Coll Surg Engl, 2002,84(1):47-53.
[20] LOBOV I B, RENARD R A, PAPADOPOULOS N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting[J]. Proc Natl Acad Sci U S A, 2007,104(9):3219-3224.
[21] CHOMIAK T, HU B. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach[J]. PLoS One, 2009,4(11):e7754.
[22] IKEDA M, OKA Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration[J]. Brain Behav, 2012,2(4):382-390.
[23] KIM B S, YOO J J, ATALA A. Peripheral nerve regeneration using acellular nerve grafts[J]. J Biomed Mater Res A, 2004,68(2):201-209.
[本文編輯] 廖曉瑜, 賈澤軍
Role of vascular endothelial cells in repair of rat sciatic nerve defect using acellular nerve allograft
XU Qin-tong1△, MENG De-hua1△, ZHANG Jian1, PAN Jian-feng1, JIANG Li-bo1, CHEN Zeng-gan1, William C. LINEAWEAVER2, ZHANG Feng1,2*
1. Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai200032, China2. Joseph M. Still Burn and Reconstructive Center, Jackson, Mississippi 39204, USA
Objective: To explore the effect of vascular endothelial cells (EC) in the repair of long sciatic nerve defect in rats using acellular nerve allograft (ANA). Methods: Totally 80 female Sprague. Dawley rats were used in this study, of which 20 rats were sacrificed for the harvest of bilateral sciatic nerves as acellular nerve allograft and prepared according to Hudson's method. The remaining 60 rats were transected on the right sciatic nerve a 1.5 cm defect and evenly divided into three groups, ANG for autologous nerve graft using flipped sciatic nerve, ANA for acellular nerve graft alone, and ANA+EC for ANA loaded with EC. At 1, 2, 4 and 12 weeks after operation, 5 rats from each group were selected for tests including sciatic functional index (SFI), LDR, nerve conduction velocity recovery rate (NCVRR), complex muscle action potential recovery rate (CMAPRR), max traction force recovery rate (MTFRR), gastrocnemius muscle wet weight recovery rate (MWRR) and microvessel density proliferation rate (MVDPR). The nerve fibers, myelin thickness, G ratio and electron microscopic examination were performed at 12 weeks after operation. Results: At early stage after surgery, ANA+EC group showed an increase in SFI and MVDPR compared to ANA group (P<0.05). At later stage after surgery, ANA+EC group showed an increase in CMAPRR, MTFRR, MWRR compared to ANA group (P<0.05). ANA+EC also exhibited more similar morphology to ANG in the long term. Conclusions: In the treatment of long sciatic nerve defect rat model, muscle function is superior in the short term when using ANA+EC compared to using ANA alone. In the long term, the amount and quality of nerve fibers in ANA+EC is more comparable to that in ANG. Thus indicates the possible effect of improvement of nerve regeneration in vascular endothelial cells.
peripheral nerve; endothelial cell; acellular nerve allograft
2017-03-29 [接受日期] 2017-05-08
國(guó)家自然科學(xué)基金面上項(xiàng)目(81371376),復(fù)旦大學(xué)“千人計(jì)劃”. Supported by National Natural Science Foundation of China General Program (81371376) and Fudan University’s 1000-talent plan.
徐沁同,博士,住院醫(yī)師. E-mail: xu.qintong@zs-hospital.sh.cn;孟德華,博士,主治醫(yī)師. E-mail: meng.dehua@zs-hospital sh.cn
10.12025/j.issn.1008-6358.2017.20170269
R 651.3
A
△共同第一作者(Co-first authors).
*通信作者(Corresponding author). Tel: 021-64041990, E-mail: feng.zhang@burncenters.com