• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      卵清蛋白誘導的過敏小鼠模型中多不飽和脂肪酸代謝變化

      2017-07-31 16:01:16武玉鳳黎海芪
      中國循證兒科雜志 2017年3期
      關鍵詞:肥大細胞空腸灌胃

      武玉鳳 黎海芪

      ·論著·

      卵清蛋白誘導的過敏小鼠模型中多不飽和脂肪酸代謝變化

      武玉鳳 黎海芪

      目的 觀察卵清蛋白(OVA)誘導的過敏小鼠模型中多不飽和脂肪酸(PUFA)代謝的變化。方法 以缺乏n-3 PUFA飼料飼養(yǎng)雌鼠的仔鼠(21日齡)24只,隨機分為空白組、OVA組和PBS組,各8只。實驗第1 d,空白組心臟采血處死。實驗第1 和15 d,OVA組腹腔注射含50 μg OVA和1.3 mg氫氧化鋁凝膠的PBS 0.2 mL,PBS組腹腔注射等量PBS。實驗第29~39 d,OVA組以含50 mg OVA的PBS 0.3 mL隔日灌胃,共6次;PBS組予等量PBS灌胃。實驗第39 d末次灌胃后,OVA組和PBS組均心臟采血處死,取空腸組織和脾組織。 OVA過敏小鼠模型成功建立的判斷標準:觀察灌胃后小鼠腹瀉情況,對空腸組織切片進行形態(tài)學觀察(HE染色)和肥大細胞計數(shù)(甲苯胺藍染色),血清sIgE水平檢測(ELISA 法),脾組織中IL-4和IFN-γ檢測(ELISA法)。提取各組小鼠血清中的脂肪酸,采用液相色譜法檢測α-亞麻酸(ALA)、二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)、花生四烯酸(AA)和亞油酸(LA)水平。結果 ①成功建立OVA誘導過敏小鼠模型:與PBS組比較,OVA組在灌胃后發(fā)生急性腹瀉;小腸絨毛有大量炎癥細胞浸潤,潘氏細胞脫顆粒,固有層中肥大細胞聚集脫顆粒,肥大細胞數(shù)目增加(P<0.05);血清OVA-sIgE 水平、脾細胞培養(yǎng)上清中IL-4和IL-4/IFN-γ升高(P<0.05)。②PBS組血清DHA、EPA和LA水平較空白組降低,AA水平升高,差異均有統(tǒng)計學意義,OVA組較PBS組血清DHA水平降低。結論 OVA過敏小鼠出現(xiàn)以DHA降低為主的脂肪酸代謝紊亂。

      n-6多不飽和脂肪酸; 卵清蛋白; 食物過敏

      多不飽和脂肪酸(PUFA)按照不飽和雙鍵位置的不同,分為n-3PUFA和n-6 PUFA。 n-3 PUFA主要包括α-亞麻酸(ALA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)等,在去飽和酶和延長酶等的作用下,ALA可轉化為EPA和DHA,EPA可轉化為DHA; n-6 PUFA主要包括亞油酸(LA)和花生四烯酸(AA)等,LA可在去飽和酶和延長酶等的作用下轉化為AA[1]。n-3 PUFA對機體免疫系統(tǒng)有保護作用[2],可能參與免疫相關疾病的調(diào)節(jié),如哮喘和炎癥性腸病等[3, 4]。2016年Tressou的調(diào)查顯示,僅14.6%的法國人飲食中的DHA達推薦攝入量[5]。

      過敏性疾病是基因、免疫、環(huán)境和營養(yǎng)等多因素誘發(fā)的疾病,近年來發(fā)現(xiàn)PUFA可能參與其中。然而,不同研究結果不一致。有研究[6]顯示,哮喘和過敏性皮炎患者血清LA水平增加,AA水平降低。另有研究[7]發(fā)現(xiàn),有過敏癥的學齡前兒童AA水平增加, n-3PUFA水平顯著降低,n-6PUFA/n-3PUFA增加。

      本研究給予小鼠n-3PUFA缺乏飼料,模擬人類脂肪酸缺乏的情況,并參照文獻[8]建立卵清蛋白(OVA)誘導的食物過敏模型,探討體內(nèi)PUFA水平受過敏反應的影響。

      1 方法

      1.1 動物 重慶醫(yī)科大學實驗動物中心提供的SPF級 Balb/c 小鼠,連續(xù)傳2代后隨機選擇第3代雌鼠6只,雄鼠3只,按雌雄比例2∶1合籠飼養(yǎng),陰栓出現(xiàn)日確定為受孕時間。雌鼠妊娠第10 d起予富含n-6PUFA飼料(n-3PUFA缺乏)飼養(yǎng),取其仔鼠(予相同飼料飼養(yǎng))進行實驗。n-6PUFA飼料配方:每100 g飼料含玉米淀粉30 g,麥麩10 g,豆粨15 g,次粉15 g,脫脂魚粉10 g,氯化鈉0.5 g,脫脂奶粉8 g,酵母粉2 g,骨粉2 g,中華復合維生素預混料0.5 g,葵花籽油7 g。

      1.2 實驗設計和方法 將24只仔鼠隨機分為空白組、OVA組和PBS組,實驗流程見圖1。OVA組小鼠腹腔注射含50 μg OVA(V級,美國Sigma公司)和1.3 mg氫氧化鋁凝膠的PBS 0.2 mL;PBS組腹腔注射等量PBS。OVA組小鼠以含50 mg OVA的PBS 0.3 mL灌胃,隔日1次,共6次;PBS組予等量PBS灌胃。

      1.3 過敏模型成功建立的判斷

      1.3.1 腹瀉癥狀的觀察 每次灌胃后30~60 min觀察小鼠大便情況,若排出糊狀或水樣便,判定為發(fā)生過敏性腹瀉。

      圖1 實驗流程圖

      注 PUFA:多不飽和脂肪酸;OVA:卵清蛋白

      1.3.2 空腸形態(tài)學觀察和肥大細胞計數(shù) 末次灌胃后1 h心臟穿刺取血處死仔鼠,取0.5 cm空腸,固定,HE染色后進行形態(tài)學觀察,甲苯胺藍染色后進行肥大細胞計數(shù)。如觀察發(fā)現(xiàn)空腸黏膜水腫、炎性細胞浸潤、潘氏細胞脫顆粒和肥大細胞數(shù)目增加,提示小鼠發(fā)生腸道過敏。

      1.3.3 血清sIgE水平檢測 采用ELISA 法(試劑盒購于北京四正柏公司),以每孔 100 μL OVA(濃度10 μg·mL-1)包被 96 孔酶標板。將血清樣品1∶1稀釋加樣。結合反應時HRP 標記的大鼠抗小鼠 IgE 二抗以 1∶100 比例稀釋, 3,3',5,5'-四甲基聯(lián)苯(TMB)顯色后終止反應,用全自動酶標儀在450 nm 波長下測OD 值。若血清sIgE水平顯著增加,提示小鼠發(fā)生速發(fā)型超敏反應,食物過敏模型建立成功。

      1.3.4 脾組織中IL-4和IFN-γ檢測 無菌條件下取小鼠脾臟,用小彎剪在200目不銹鋼篩網(wǎng)上剪碎,PBS沖洗,制成單細胞懸液,與等量 PBS 混勻。以密度梯度離心法分離單個核細胞。臺盼蘭染色活細胞計數(shù)應>95%。將細胞與含10%小牛血清和OVA(終濃度 1 mg·mL-1)的RPMI 1640培養(yǎng)基加入 24 孔培養(yǎng)板,細胞濃度為2×106·mL-1,在37℃、5%CO2條件下培養(yǎng)48 h后,離心收集上清液,置-70℃儲存。采用ELISA法檢測培養(yǎng)上清中IFN-γ和 IL-4水平,按照試劑盒說明書操作。若IL-4/IFN-γ比例增加,提示機體Th2/Th1比例失衡,進一步證實食物過敏模型建立成功。

      1.4 血清PUFA的檢測 脂肪酸提取和衍生化參照文獻[9],取20 μL衍生化后的脂肪酸溶液注入液相色譜HPLC儀,用依利特Hypersil BDS C18 (4.6 mm×150 mm,5 μm)色譜柱,在乙腈∶水為81∶19的流動相、流速2 mL·min-1、波長242 nm、柱溫45℃下分析,記錄峰面積,繪制標準曲線,以外標法測定ALA、EPA、DHA、AA和LA。

      2 結果

      2.1 成功建立過敏模型 ①OVA 第3次灌胃后6/8的仔鼠在30~60 min排出糊狀或水樣便,第5次灌胃后8只仔鼠均出現(xiàn)持續(xù) 1 h 左右的急性腹瀉。PBS組無仔鼠發(fā)生腹瀉。②空腸組織HE染色(圖2A、B)顯示,OVA組仔鼠小腸絨毛有嗜酸性粒細胞和淋巴細胞等大量炎癥細胞浸潤,潘氏細胞脫顆粒,固有層滲出水腫。空腸組織甲苯胺藍染色(圖2C、D)顯示,肥大細胞顆粒呈紅紫色,胞核藍色,OVA暴露仔鼠肥大細胞聚集,且多數(shù)胞膜破裂,輪廓不清,并向外排出顆粒;PBS組肥大細胞數(shù)目較少,輪廓清楚,僅少數(shù)出現(xiàn)脫顆?,F(xiàn)象。OVA組肥大細胞數(shù)目較PBS組差異有統(tǒng)計學意義(P=0.002,表1)。③血清OVA-sIgE 水平,OVA組高于PBS組,差異有統(tǒng)計學意義(表1)。④脾細胞培養(yǎng)上清中IL-4水平和IL-4/IFN-γ,OVA組較PBS組增高(P<0.05)。綜合以上結果,認為成功建立OVA誘導小鼠過敏模型。

      2.2 血清PUFA水平 表2顯示,PBS組血清DHA、EPA和LA水平較空白組降低,AA水平升高,差異均有統(tǒng)計學意義。OVA組較PBS組血清DHA水平降低,差異有統(tǒng)計學意義; 兩組ALA、EPA、 LA和n-6PUFA/n-3PUFA差異無統(tǒng)計學意義。

      3 討論

      雖然目前尚缺乏統(tǒng)一的n-3PUFA攝入標準,但調(diào)查顯示人群中普遍存在攝入嚴重不足。2003年比利時健康委員會推薦PUFA攝入量為5.3%~10.0%E(E,總能量),其中n-6PUFA攝入量為4.0%~8.0%E,n-3PUFA攝入量為1.3%~2%E[10]。2006年Sioen[10]報道,比利時婦女PUFA攝入量為6.0%E,其中LA占5.3%E,ALA、EPA和DHA分別占0.6%E、0.04%E和 0.06%E,提示飲食中n-3PUFA缺乏。2016年調(diào)查結果顯示,僅14.6%的法國人飲食中DHA達推薦攝入量[5]。2015年Eilander[11]綜合歐洲24個國家的飲食調(diào)查結果發(fā)現(xiàn),近半數(shù)國家飲食中PUFA未達到WHO推薦攝入量(6%~11%E),且PUFA主要為植物油中的LA,缺乏n-3PUFA。

      圖2 空腸組織切片染色

      注 A、B:HE 染色,×400,A為PBS組,絨毛形態(tài)正常;B為OVA組,大量炎癥細胞浸潤(紅色箭頭),黏膜下水腫(綠色箭頭),潘氏細胞脫顆粒(黑色箭頭)。C、D:甲苯胺藍染色,×400, C為PBS組;D為OVA組,空腸肥大細胞聚集、脫顆粒

      表1 OVA組和PBS組各項指標比較

      注 1)個/10個連續(xù)高倍視野

      表2 各組小鼠血清PUFA水平比較

      注t1、P1:PBS組與空白組比較;t2、P2:OVA組與PBS組比較

      PUFA中生物學活性較高的主要有AA、DHA和EPA。在環(huán)氧化酶和脂氧合酶的作用下,AA代謝生成前列腺素(PG)E2和白三烯(LT)B4等炎癥因子,EPA代謝生成炎癥活性較弱的PGE3和LTB5等,DHA代謝產(chǎn)生Resolvins和Protectins等抗炎因子[12]。AA、DHA和EPA與細胞膜上的PPAR-γ受體結合完成細胞內(nèi)信號轉導。體內(nèi)AA、 DHA和EPA代謝所需的酶和受體相同,因此存在競爭性抑制,推測n-3PUFA攝入不足時,其代謝產(chǎn)物PGE3、LTB5、Resolvins和resolvins等減少,炎癥因子產(chǎn)生增多,從而與過敏反應的發(fā)生有關。

      機體內(nèi)DHA和EPA的來源包括食物供給和ALA轉化。本研究采用n-3PUFA缺乏飼料喂養(yǎng)小鼠,模擬現(xiàn)代人類社會飲食PUFA的攝入狀況,并建立OVA誘導的過敏模型,以了解體內(nèi)PUFA水平受過敏反應的影響。結果顯示,不同生長時期小鼠PUFA構成不同,21日齡小鼠(空白組,斷奶時)血清n-3PUFA(DHA和EPA)水平較高,59日齡小鼠(PBS組)血清n-3PUFA水平較低。因n-3PUFA尤其DHA是大腦和視網(wǎng)膜中脂肪酸的主要成分,對大腦和視網(wǎng)膜的發(fā)育有促進作用[13, 14],提示生命早期n-3PUFA參與生長過程消耗。

      OVA組較PBS組血清DHA降低,AA雖有下降趨勢但差異無統(tǒng)計學意義(P=0.064),EPA、ALA和LA差異無統(tǒng)計學意義,提示OVA多次暴露使仔鼠體內(nèi)脂肪酸合成代謝失衡,以消耗DHA為主,與Hwang等[7]和Yu等[15]的研究結果基本一致,但他們的研究中AA水平增加,原因有待進一步研究。過敏反應是一系列炎癥放大反應,生成大量炎性和抗炎介質。食物過敏發(fā)生過程中的一系列炎癥反應與機體PUFA的代謝相關,如PGE2和LTB4是由 AA在體內(nèi)分別與環(huán)氧化酶和脂氧合酶作用產(chǎn)生。2015年van den Elsen等[16]報道,增加LA的攝入可致AA代謝產(chǎn)生的PGE2增加,血清IgE水平升高;同時,DHA代謝產(chǎn)生Resolvins和Protectins等保護性抗炎介質。2007年Levy研究[17]發(fā)現(xiàn),OVA介導呼吸道炎癥,促進肺組織中DHA轉化為Protectin D1,Protectin D1可降低肺泡灌洗液中炎癥細胞數(shù)目和氣道高反應性,哮喘發(fā)生過程中消耗Resolvin E1和Protectin D1,進而消耗DHA。因此,本研究中OVA暴露仔鼠DHA水平降低,可能與OVA過敏消耗Resolvin E1和Protectin D1有關,且喂養(yǎng)缺乏n-3PUFA飼料,從食物中得不到DHA補充,加速體內(nèi)DHA水平下降。本文結果提示,或許可通過補充DHA改善機體脂肪酸代謝紊亂,緩解食物過敏癥狀,值得進一步研究。

      [1]Alhouayek M, Muccioli GG. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci, 2014,35(6):284-292

      [2]Khaddaj-Mallat R, Morin C, Rousseau E. Novel n-3 PUFA monoacylglycerides of pharmacological and medicinal interest: Anti-inflammatory and anti-proliferative effects. Eur J Pharmacol, 2016, 792: 70-77

      [3]Muley P, Shah M, Muley A. Omega-3 Fatty Acids Supplementation in Children to Prevent Asthma: Is It Worthy?—A Systematic Review and Meta-Analysis. J Allergy (Cairo), 2015,2015:312052

      [4]Marion-Letellier R, Savoye G, Beck PL, et al. Polyunsaturated fatty acids in inflammatory bowel diseases: a reappraisal of effects and therapeutic approaches. Inflamm Bowel Dis, 2013,19(3):650-661

      [5]Tressou J, Moulin P, Vergès B, et al. Fatty acid dietary intake in the general French population: are the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) national recommendations met. Br J Nutr, 2016,116(11):1966-1973

      [6]Yen CH, Dai YS, Yang YH, et al. Linoleic acid metabolite levels and transepidermal water loss in children with atopic dermatitis. Ann Allergy Asthma Immunol, 2008,100(1):66-73

      [7]Hwang I, Cha A, Lee H, et al. N-3 polyunsaturated fatty acids and atopy in Korean preschoolers. Lipids, 2007,42(4):345-349

      [8]Brandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest, 2003,112(11):1666-1677

      [9]Mehta A, Oeser AM, Carlson MG. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl, 1998,719(1-2):9-23

      [10]Sioen IA, Pynaert I, Matthys C, et al. Dietary intakes and food sources of fatty acids for Belgian women, focused on n-6 and n-3 polyunsaturated fatty acids. Lipids, 2006,41(5):415-422

      [11]Eilander A, Harika RK, Zock PL. Intake and sources of dietary fatty acids in Europe: Are current population intakes of fats aligned with dietary recommendations. Eur J Lipid Sci Technol, 2015,117(9):1370-1377

      [12]Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol Int, 2015,64(1):27-34

      [13]Moon K, Rao SC, Schulzke SM, et al. Longchain polyunsaturated fatty acid supplementation in preterm infants. Cochrane Database Syst Rev, 2016,12: CD000375

      [14]Harris WS, Baack ML. Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol, 2015,35(1):1-7

      [15]Yu G, Bj?rkstén B. Polyunsaturated fatty acids in school children in relation to allergy and serum IgE levels. Pediatr Allergy Immunol, 1998,9(3):133-138

      [16]van den Elsen LW, van Esch BC, Dingjan GM, et al. Increased intake of vegetable oil rich in n-6 PUFA enhances allergic symptoms and prevents oral tolerance induction in whey-allergic mice. Br J Nutr, 2015,114(4):577-585

      [17]Levy BD, Kohli P, Gotlinger K, et al. Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J Immunol, 2007,178(1): 496-502

      (本文編輯:張崇凡,孫晉楓)

      Changesofpolyunsaturatedfattyacidmetabolisminovalbumin-inducedallergicmice

      WUYu-feng,LIHai-qi

      (DepartmentofChildCare,Children'sHospitalofChongqingMedicalUniversity,MinistryofEducationKeyLaboratoryofChildDevelopmentandDisorders,ChinaInternationalScienceandTechnologyCooperationbaseofChildDevelopmentandCriticalDisorders,ChongqingKeyLaboratoryofPediatrics,Chongqing400014,China)

      Corresponding Author:LI Hai-qi, E-mail: haiqili2010@hotmail.com

      ObjectiveTo observe the changes of polyunsaturated fatty acid metabolism in Balb/C mice model of ovalbumin(OVA)-induced allergy.MethodsAt 21 day old, 24 baby Balb/C mice, whoes mother had a diet of n-3PUFA deficiency, randomly divided into 3 groups, blank, OVA and PBS groups. There were 8 offsprings in each group. Weaned BALB/c offsprings in group h, m and l were sensitized with 50 μg of OVA (grade V, Sigma) in the presence of 1.3 mg of aluminum hydroxide gel (Sigma) as an adjuvant by intraperitoneal injection twice at 3 and 5 weeks old. Half of the offsprings delivered from the mice of the control group were sensitized with OVA as positive control. And remainders of the offsprings were injected with PBS as negative control.The sensitized BALB/c mice with 7 weeks of life were fed with 50 mg of OVA dissolved in 0.3ml of sterile saline by intragastric needles at interval day for six times. One hour after the last oral administration, all BALB/c mice were sacrificed with excessive carbon dioxide and blood samples were collected by cardiac puncture.At the first day of the test, blood samples of baby mice in blank group were collected by cardiac puncture. The offsprings in group OVA were sensitized with 50 g of OVA dissolved in 0.2 mL PBS in the presence of 1.3 mg of aluminum hydroxide gel by intraperitoneal injection at 1 and 15 day. From 29 to 39 day, the offsprings in OVA group were fed wiht 50 mg of OVA dissolved in 0.3 mL of PBS by intragastric needles at interval day for six times. The offsprings in PBS group were given equivalent PBS. After the last oral administration, all BALB/c mice were sacrificed by cardiac puncture and blood, jejunum, spleen samples were collected. To establish the model of OVA-induced allergy, diarrhea was observed after OVA challenge; histological examinations of jejunum were performed by HE staining and the mast cells in jejunum were observed by toluidine blue staining; and the levels of OVA-sIgE in serum, IL-4 and IFN-γ in spleen cell culture supernatants were measured by ELISA. Fatty acids were extracted from serum in each group. The linoleic acid (ALA), inolenic acid (LA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexenoic acid (DHA) levels of serum were analyzed by high performance liquid chromatography.Results①The model of OVA-induced allergy in Balb/C mice was established: compared with group PBS, after the oral OVA challenge allergic diarrhea, gathered phenomenon of inflammatory cells in jejunum villus,aggregation of mast cells in lamina propria(P<0.05),increasing of the levels of OVA-specific IgE in serum and IL-4, IL-4/IFN-γ in spleen cells(P<0.05) were observed in the offspring of OVA group. ②The levels of DHA, EPA and LA of mice in group PBS were statistically lower than those in blank group. Compared with PBS group, the levels of DHA decreased in mice of OVA group.ConclusionBalb/C mice,repeatedly exposed with OVA, exerted a fatty acid metabolic disorder, mainly a reduction of DHA.

      n-6 polyunsaturated fatty acid; Food allergy; Ovalbumin

      重慶醫(yī)科大學附屬兒童醫(yī)院兒??疲瑑和l(fā)育疾病研究教育部重點實驗室,兒童發(fā)育重大疾病國家國際科技合作基地,兒科學重慶市重點實驗室 重慶 400014

      黎海芪,E-mail: haiqili2010@hotmail.com

      10.3969/j.issn.1673-5501.2017.03.009

      2017-06-12

      2017-06-22)

      猜你喜歡
      肥大細胞空腸灌胃
      十全大補湯加味聯(lián)合空腸營養(yǎng)管改善胃惡性腫瘤患者療效觀察
      《大鼠及小鼠原代肥大細胞表面唾液酸受體的表達》圖版
      小鼠、大鼠灌胃注意事項
      來曲唑灌胃后EM大鼠病灶體積及COX-2 mRNA、survivin蛋白表達變化
      循證護理在經(jīng)鼻胃鏡放置鼻空腸營養(yǎng)管中的應用效果
      實驗小鼠的灌胃給藥技巧
      肥大細胞在抗感染免疫作用中的研究進展
      單通道空腸間置在賁門癌近端胃切除術中的應用
      空腸造瘺管腸內(nèi)營養(yǎng)在胃癌患者輔助化療中的應用
      大鼠口服灌胃腰痛寧粉的藥物代謝動力學
      衡南县| 芮城县| 新平| 得荣县| 樟树市| 黑水县| 雷州市| 威远县| 孝义市| 上高县| 青川县| 阜新市| 兰考县| 边坝县| 濮阳市| 邮箱| 承德市| 九龙城区| 彰化市| 安庆市| 五台县| 泸定县| 晴隆县| 延吉市| 深泽县| 什邡市| 宁夏| 昌乐县| 奎屯市| 伊金霍洛旗| 尼勒克县| 乐山市| 隆回县| 当阳市| 顺义区| 灵山县| 渝中区| 万宁市| 体育| 江都市| 永年县|