史博洋, 李媛媛, 王儒曉, 曲江勇, 2*, 郭承華*, 劉傳林, 侯建海, 房輝, 劉楚童
(1.煙臺(tái)大學(xué)生命科學(xué)學(xué)院,山東煙臺(tái)264005; 2. 海南熱帶海洋學(xué)院,海南兩棲爬行動(dòng)物研究重點(diǎn)實(shí)驗(yàn)室,海南三亞572000)
?
基于線粒體16SrRNA探討渤海海區(qū)矮擬帽貝的種群生態(tài)遺傳
史博洋1, 李媛媛1, 王儒曉1, 曲江勇1, 2*, 郭承華1*, 劉傳林1, 侯建海1, 房輝1, 劉楚童1
(1.煙臺(tái)大學(xué)生命科學(xué)學(xué)院,山東煙臺(tái)264005; 2. 海南熱帶海洋學(xué)院,海南兩棲爬行動(dòng)物研究重點(diǎn)實(shí)驗(yàn)室,海南三亞572000)
采用聚合酶鏈?zhǔn)椒磻?yīng)和直接測(cè)序的方法研究了渤海海區(qū)15個(gè)矮擬帽貝Patelloidapygmaea種群遺傳多樣性與環(huán)境因子的關(guān)系。180個(gè)個(gè)體的16S rRNA部分序列(615 bp)共發(fā)現(xiàn)264個(gè)多態(tài)性位點(diǎn),153個(gè)轉(zhuǎn)換,114個(gè)顛換,界定32個(gè)單倍型。所有個(gè)體堿基含量依次為C(18.12%)、T(27.74%)、A(33.07%)、G(21.07%);單倍型多樣性為0.835 1±0.019 1,核苷酸多樣性為0.449±0.214。矮擬帽貝大陸沿岸種群核苷酸多樣性(0.191 8±0.091 7)高于島嶼種群(0.107 3±0.081 6)。種群歷史動(dòng)態(tài)結(jié)果顯示,矮擬帽貝經(jīng)歷了種群近期擴(kuò)張。與環(huán)境因子相關(guān)性研究發(fā)現(xiàn),遺傳距離、序列變異、核苷酸多樣性與日照時(shí)數(shù)、日照百分率分別呈顯著正相關(guān)(P<0.05);形態(tài)相關(guān)分析結(jié)果表明,變異主成分(殼長(zhǎng)、殼寬)與年均降水量呈顯著負(fù)相關(guān)(P<0.05);年均降水量、日照時(shí)數(shù)、日照百分率是影響矮擬帽貝形態(tài)變異、遺傳多樣性的主導(dǎo)因子,環(huán)境越穩(wěn)定地區(qū)種群的遺傳多樣性越高。
矮擬帽貝; 16S rRNA; 生態(tài)遺傳; 遺傳多樣性
環(huán)境因子在物種的進(jìn)化過(guò)程中發(fā)揮著重要作用,物種的分布、行為、生理和遺傳結(jié)構(gòu)通常都會(huì)受到環(huán)境因子的影響,探究環(huán)境因子與生物多樣性的相關(guān)性是生態(tài)遺傳研究的重要內(nèi)容之一(Scheiner,1993)。通常種群占據(jù)不同地理環(huán)境并呈現(xiàn)梯度性遺傳變化,這種結(jié)果主要受自然選擇與環(huán)境變遷影響(Jin & Liu,2008),遺傳結(jié)構(gòu)分化和自然環(huán)境變遷之間的相互作用是目前生態(tài)地理學(xué)關(guān)注的焦點(diǎn)。同類物種生活在不同環(huán)境下(溫度、降水、日照等)的地理種群遺傳多樣性存在地理變異,如荒漠沙蜥Phrynocephalusprzewalskii的遺傳多樣性與緯度、降水量顯著正相關(guān),大石雞Alectorismagna、雉雞甘肅亞種Phasianuscolchicusstrauchi的遺傳多樣性與溫度呈顯著負(fù)相關(guān),以及同種生物因環(huán)境而產(chǎn)生的形態(tài)改變影響基因頻率等(Michod,1981;Nevo,1981;曲江勇,劉迺發(fā),2012)。環(huán)境對(duì)生物的影響(環(huán)境的演替、種群遺傳結(jié)構(gòu)的多變)伴隨著表型與基因型的變化繼而改變種群結(jié)構(gòu),環(huán)境促進(jìn)演替使種群遺傳分化趨于平衡穩(wěn)定(Slatkin,1987)。
分子標(biāo)記作為研究種群遺傳結(jié)構(gòu)和地理分化的重要工具,目前已廣泛用于解決動(dòng)物生態(tài)遺傳等問(wèn)題(Wayne & Robert,2004)。動(dòng)物線粒體DNA具有分子量小、進(jìn)化速度快、結(jié)構(gòu)簡(jiǎn)單、表現(xiàn)為母系遺傳等特點(diǎn),非常適于動(dòng)物群體遺傳學(xué)和系統(tǒng)進(jìn)化研究(Canapaetal.,2000),其中16S rRNA基因進(jìn)化速率適中,適合種群水平的遺傳多樣性及遺傳結(jié)構(gòu)研究(Hondaetal.,2002)。
矮擬帽貝Patelloidapygmaea隸屬軟體動(dòng)物門Mollusca腹足綱Gastropoda原始腹足目Archaeogastropoda笠貝科Acmaeidae(Surhoneetal.,2010),中國(guó)習(xí)見(jiàn)種類,沿岸、島嶼均有分布。矮擬帽貝遍布整個(gè)潮間帶(海岸帶以上到淺層潮下帶),棲息附著在大型水生植物、激浪區(qū)礁巖、珊瑚藻及其他貝殼等表面,主要攝食藻類與浮游植物(Lindberg,1990;Takenori & Takashi,1993;Kirkendale & Meyer,2004;Nakano & Ozawa,2007)。目前矮擬帽貝研究主要集中在系統(tǒng)學(xué)和分類學(xué)等領(lǐng)域,包括種水平鑒定、形態(tài)變異、遺傳多樣性等(Nakaietal.,2006;Gonzálezwevaretal.,2010),種群系統(tǒng)地理研究較少。國(guó)內(nèi)研究重點(diǎn)多為具有較大經(jīng)濟(jì)價(jià)值的貝類,分布廣泛但無(wú)經(jīng)濟(jì)價(jià)值的潮間帶貝類的系統(tǒng)地理格局受歷史因素、現(xiàn)今環(huán)境和生態(tài)因素的影響,其遺傳進(jìn)化、系統(tǒng)地理分布格局未得到深入研究(Nietal.,2012)。
本研究以矮擬帽貝線粒體16S rRNA部分序列,探究矮擬帽貝的生態(tài)遺傳,揭示種群遺傳多樣性隨環(huán)境因子的變異規(guī)律,為中國(guó)矮擬帽貝種群遺傳研究提供理論依據(jù)。
1.1樣品采集、DNA提取及序列獲取
矮擬帽貝采樣點(diǎn)見(jiàn)圖1,大陸沿岸種群包括大連、莊河、營(yíng)口、錦州、葫蘆島、秦皇島、萊州、蓬萊、煙臺(tái);島嶼種群包括長(zhǎng)島、砣磯島、大欽島、南隍城島、北隍城島。采集后測(cè)量個(gè)體的殼長(zhǎng)、殼寬、殼高、殼周長(zhǎng)、長(zhǎng)斜邊、短斜邊、壁厚等;返回實(shí)驗(yàn)室稱量殼干重、計(jì)算頭端角度與尾端角度(表1),無(wú)水乙醇保存?zhèn)溆谩?/p>
圖1 矮擬帽貝地理種群采集點(diǎn)Fig. 1 The sampling sites of Patelloida pygmaea in the Bohai Sea
DNA提?。篋Neasy?組織&血液試劑盒(GTIN: 04053228006077,Lot:151046088,GIAGEN,德國(guó))。PCR擴(kuò)增:選用16S rRNA通用引物(華大基因合成),16Sar-L:5′-CGCCTGTTTATCAAAAACAT-3′;16SbrH:5′-CCGGTCTGAACTCAGATCACGT-3′(Folmeretal.,1994),PCR擴(kuò)增反應(yīng)體系(25 μL):12.5 μL Taq MIX(0.625 U Taq酶、0.2 mmol·L-1dNTP、1.5 mmol·L-1MgCl2;Lot:A3701A,TaKaRa,中國(guó)大連);0.15 μL (100 μM)上下游引物、1 μL DNA模板(80~100 ng)。PCR反應(yīng)條件設(shè)置:94 ℃預(yù)變性2 min;94 ℃變性30 s,49 ℃退火40 s,72 ℃延伸50 s,35個(gè)循環(huán);72 ℃延伸5 min。PCR結(jié)束后取4 μL于1%瓊脂糖凝膠電泳檢測(cè)(1×TBE、5 V/cm恒壓、Goldenview染色)(瓊脂糖,Lot:142075,BIOWEST,西班牙;Goldenview,Lot:OHO9RL,濟(jì)南力戈科技有限公司)。PCR產(chǎn)物送北京六合華大公司進(jìn)行ABI PRIMS 3730雙向測(cè)序。
1.2環(huán)境因子
選取經(jīng)度、緯度、年均溫度、溫度變異系數(shù)、年均降水量、降水量變異系數(shù)、年均日照時(shí)數(shù)、日照率作為環(huán)境因子(表2),從國(guó)家氣象數(shù)據(jù)共享服務(wù)網(wǎng)獲取10個(gè)地點(diǎn)近30年氣象數(shù)據(jù),并計(jì)算氣溫、降水量變異系數(shù)(砣磯島、大欽島、小欽島、北隍城島、南隍城島等地區(qū)氣象站因缺少相關(guān)數(shù)據(jù),未被國(guó)家氣象數(shù)據(jù)共享服務(wù)網(wǎng)收錄)。
1.3數(shù)據(jù)分析
雙向測(cè)序結(jié)果用Conting進(jìn)行拼接,通過(guò)CLUSTAL_X 1.83進(jìn)行序列比對(duì),單倍型用DnaSP v5統(tǒng)計(jì)(Librado & Rozas,2009)。通過(guò)ARLEQUIN 3.5計(jì)算群體多樣性指數(shù):?jiǎn)伪缎投鄻有?h)、核苷酸多樣度(π)、序列平均核苷酸差異數(shù)(k)、擴(kuò)張系數(shù)(Tau)、有效種群大小(θ)、種群分化系數(shù)(Fst);AMOVA分析(Excoffier & Lischer,2010);通過(guò)MEGA7計(jì)算遺傳距離(D)與序列變異(S)(Kumaretal.,2016);樣品所測(cè)殼長(zhǎng)、殼寬、殼高、殼周長(zhǎng)、短斜邊、長(zhǎng)斜邊、頭端角度、尾端角度、干重、壁厚等形態(tài)數(shù)據(jù)用平均數(shù)±標(biāo)準(zhǔn)差表示,形態(tài)變異采用主成分分析與相關(guān)性分析,以上統(tǒng)計(jì)分析均在SPSS 19.0(Arbuckle,2010)完成。
2.1序列變異與遺傳多樣性
180個(gè)矮擬帽貝樣本的mtDNA 16S rRNA部分序列中,共發(fā)現(xiàn)了264個(gè)多態(tài)位點(diǎn),堿基組成為C(18.12%)、T(27.74%)、A(33.07%)、G(21.07%),轉(zhuǎn)換/顛換比為1.34(缺失位點(diǎn)少于5%),界定32種單倍型??傮w單倍型多樣性為0.835 1,核苷酸多樣性為0.449,核苷酸兩兩差異度為118.533。除莊河、蓬萊外,其他地理種群?jiǎn)伪缎投鄻有暂^高(表3);大陸沿岸各種群的核苷酸多樣性、遺傳距離與序列變異整體高于島嶼種群,總體核苷酸多樣性差異較大(π大陸沿岸=0.197 8、π島嶼=0.107 3),擴(kuò)張系數(shù)與種群遺傳多樣性表明種群存在近期擴(kuò)張(總體CI 95%:Tau=426.109、θ0=0、θ1=inf);大陸沿岸種群與島嶼種群Fst=0.099(P<0.001);AMOVA分析可知變異主要來(lái)自種群內(nèi)(66.93%,P<0.001)(表4)。
表1 15個(gè)矮擬帽貝種群形態(tài)數(shù)據(jù)的平均數(shù)與標(biāo)準(zhǔn)差Table 1 Mean values and standard deviation of the morphological data of 15 Patelloida pygmaea populations
表2 10個(gè)矮擬帽貝地理種群近30年環(huán)境因子Table 2 Environmental factors of 10 Patelloida pygmaea populations in recent 30 years
表3 15個(gè)矮擬帽貝地理種群遺傳多樣性Table 3 Genetic diversity of 15 Patelloida pygmaea populations
表4 矮擬帽貝分子方差分析Table 4 AMOVA analysis of Patelloida pygmaea
表5 矮擬帽貝遺傳多樣性、形態(tài)與環(huán)境因子相關(guān)性分析Table 5 Relationship correlation of genetic diversity and morphology of Patelloida pygmaea with environmental factors
注Note:*P<0.05.
2.2遺傳多樣性與環(huán)境因子間的相關(guān)性
所有環(huán)境因子經(jīng)正態(tài)分布檢驗(yàn),結(jié)果顯示均為正態(tài)分布,通過(guò)Person相關(guān)性檢驗(yàn)(表5),發(fā)現(xiàn)矮擬帽貝種群遺傳距離、序列變異、核苷酸多樣性與日照時(shí)數(shù)、日照百分率呈顯著正相關(guān)(P<0.05);其他數(shù)據(jù)間無(wú)顯著相關(guān)性(P>0.05)。主成分分析顯示,殼長(zhǎng)、殼寬為變異關(guān)鍵因子(貢獻(xiàn)值:74.6%、18.4%),殼長(zhǎng)、殼寬與環(huán)境因子相關(guān)性分析結(jié)果表明:殼長(zhǎng)、殼寬與年均降水量呈顯著負(fù)相關(guān)(r=-0.703/-0.728,P=0.023/0.017)。
對(duì)矮擬帽貝15個(gè)種群的線粒體16S rRNA基因序列研究表明,各地理種群較高的單倍型多樣性(0.486~1.000)和較低的核苷酸多樣性(0.001 6~0.185 5),符合Grant和Bowen(1998)提出的海洋類生物較高的單倍型多樣性和較低的核苷酸多樣性模式,該類型種群可能經(jīng)歷過(guò)歷史擴(kuò)張事件(Bowenetal.,2001),Tau值與θ值也表明該物種存在近期歷史擴(kuò)張;大陸沿岸種群與島嶼種群遺傳差異顯著,大陸沿岸種群遺傳多樣性整體高于島嶼種群,且分化顯著,暗示存在顯著的陸島遺傳模式,大陸沿岸種群更易擴(kuò)張與進(jìn)化,推測(cè)大陸沿岸種群更為古老,島嶼種群基因頻率受陸地基因流影響顯著(Finston & Peck,1995;曲若竹等,2004)。
氣候因子是影響生物進(jìn)化的重要因子,其中溫度和降水量則是影響陸生動(dòng)物進(jìn)化的2個(gè)最重要生態(tài)因子,對(duì)外溫動(dòng)物與內(nèi)溫動(dòng)物均具有顯著影響,且氣候?qū)Σ煌貐^(qū)的同類物種的影響程度也不同。渤海不同地理種群矮擬帽貝遺傳結(jié)構(gòu)研究結(jié)果表明,16S rRNA序列的遺傳距離、序列變異、核苷酸多樣性與日照時(shí)數(shù)、日照百分率呈顯著正相關(guān),說(shuō)明日照是影響矮擬帽貝遺傳多樣性的重要因素,日照時(shí)數(shù)越大,遺傳多樣性越高。溫度是影響貝類遺傳變異的關(guān)鍵環(huán)境因子(Kimetal.,2009),海表溫度作為海水熱力狀況的物理量,受太陽(yáng)輻射影響顯著(Joos & Spahni,2008),推測(cè)矮擬帽貝作為潮間帶生物,棲息地以巖石海床為主,日照改變海面溫度繼而影響種群遺傳多樣性,且環(huán)境越不穩(wěn)定,遺傳多樣性越低,與海洋無(wú)脊椎動(dòng)物生態(tài)研究結(jié)果基本一致(Monarietal.,2007;Yuetal.,2009)。
形態(tài)變異主成分(殼長(zhǎng)、殼寬)與環(huán)境因子相關(guān)性分析表明,降水量是影響形態(tài)變異的主要因素,與遺傳存在差異的主要原因是自然選擇導(dǎo)致物種基因遺傳與形態(tài)變異的模式不同,即選擇壓力對(duì)不同的類型作用不同(Correetal.,2002)。形態(tài)量度和其他環(huán)境因子的相關(guān)性趨勢(shì)與遺傳分析一致,說(shuō)明表型通常是受基因控制和影響,自然選擇對(duì)表型作用實(shí)際上是作用于基因或基因型,即環(huán)境因素可以通過(guò)影響個(gè)體表型進(jìn)而影響基因型頻率(Huangetal.,2007)。穩(wěn)定環(huán)境中,較小的自然選擇壓力使不同的基因型被最大限度地保留,因此遺傳多樣性較高;在氣候不穩(wěn)定區(qū)域,種群保留適應(yīng)多變環(huán)境的基因型而在選擇壓力下淘汰其他基因型,遺傳多樣性會(huì)降低。
曲江勇, 劉迺發(fā). 2012. 環(huán)境因子對(duì)雉雞甘肅亞種種群遺傳多樣性的影響[J]. 四川動(dòng)物, 31(4): 518-523.
曲若竹, 侯林, 呂紅麗, 等. 2004. 群體遺傳結(jié)構(gòu)中的基因流[J]. 遺傳, 26(3): 377-382.
Arbuckle JL. 2010. IBM SPSS Amos 19 user’s guide[M]. Chicago: Amos Development Corporation.
Bowen BW, Bass AL, Rocha LA,etal. 2001. Phylogeography of the trumpetfishes(Aulostomus): ring species complex on a global scale[J]. Evolution, 55(5): 1029-1039.
Canapa A, Barucca M, Caputo V,etal. 2000. A molecular analysis of the systematics of three Antarctic bivalves[J]. Bolletino di Zoologia, 67(sup1): 127-132.
Corre VL, Roux F, Reboud X. 2002. DNA polymorphism at the FRIGIDA gene inArabidopsisthaliana: extensive nonsynonymous variation is consistent with local selection for flowering time[J]. Molecular Biology & Evolution, 19(8): 1261-1271.
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 10(3): 564-567.
Finston TL, Peck SB. 1995. Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands[J]. Heredity An International Journal of Genetics, 75(4): 390-397.
Folmer O, Black M, Hoeh W,etal. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology & Biotechnology, 3(5): 294-299.
Gonzálezwevar CA, Nakano T, Caete JI,etal. 2010. Molecular phylogeny and historical biogeography ofNacella(Patellogastropoda: Nacellidae) in the Southern Ocean[J]. Molecular Phylogenetics & Evolution, 56(1): 115-124.
Grant W, Bowen BW. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 89(5): 415-426.
Honda M, Yasukawa Y, Ren H,etal. 2002. Phylogenetic relationships of the Asian box turtles of the genusCuorasensu lato (Reptilia: Bataguridae) inferred from mitochondrial DNA sequences[J]. Zoologicalence, 19(11): 1305-1312.
Huang Z, Liu N, Luo S,etal. 2007. Ecological genetics of rusty-necklaced partridge (Alectorismagna): environmental factors and population genetic variability correlations[J]. Korean Journal of Genetics, 29(2): 115-120.
Jin YT, Liu NF. 2008. Ecological genetics ofPhrynocephalusvlangaliion the North Tibetan (Qinghai) Plateau: correlation between environmental factors and population genetic variability[J]. Biochemical Genetics, 46(9-10): 598-604.
Joos F, Spahni R. 2008. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(5): 1425-1430.
Kim M, Ahn IY, Cheon J,etal. 2009. Molecular cloning and thermal stress-induced expression of a pi-class glutathione S-transferase (GST) in the Antarctic bivalveLaternulaelliptica[J]. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 152(2): 207-213.
Kirkendale LA, Meyer CP. 2004. Phylogeography of thePatelloidaprofunda group (Gastropoda: Lottiidae): diversification in a dispersal-driven marine system[J]. Molecular Ecology, 13(9): 2749-2762.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.[J]. Molecular Biology & Evolution, 33(7): 1870.
Librado P, Rozas J. 2009. DnaSP v5[J]. Bioinformatics, 25(11): 1451-1452.
Lindberg DR. 1990. Systematics ofPotamacmaeafluviatilis(Blanford): a brackish water patellogastropod (Patelloidinae: Lottiidae)[J]. Journal of Molluscan Studies, 56(2): 309-316.
Michod RE. 1981. Ecological genetics[J]. Science, 212(4491): 154-155.
Monari M, Matozzo V, Foschi J,etal. 2007. Effects of high temperatures on functional responses of haemocytes in the clamChameleagallina[J]. Fish & Shellfish Immunology, 22(1-2): 98-114.
Nakai S, Miura O, Maki M,etal. 2006. Morphological and habitat divergence in the intertidal limpetPatelloidapygmaea[J]. Marine Biology, 149(3): 515-523.
Nakano T, Ozawa T. 2007. Worldwide phylogeography of limpets of the order Patellogastropoda: molecular, morphological and palaeontological evidence[J]. Journal of Molluscan Studies, 73(1): 79-99.
Nevo E. 1981. Genetic variation and climatic selection in the lizardAgamastellioin Israel and Sinai[J]. Theoretical and Applied Genetics, 60(6): 369-380.
Ni G, Li Q, Kong L,etal. 2012. Phylogeography of the bivalveTegillarcagranosain coastal China: implications for management and conservation[J]. Marine Ecology Progress, 452: 119-130.
Scheiner SM. 1993. Genetics and evolution of phenotypic plasticity[J]. Annual Review of Ecology & Systematics, 24(1): 35-68.
Slatkin M. 1987. Gene flow and the geographic structure of natural populations[J]. Science, 236(4803): 787.
Surhone LM, Tennoe MT, Henssonow SF. 2010.Patelloidapygmaea[M]. Saarbrücken: Betascript Publishing.
Takenori S, Takashi O. 1993. Anatomy and systematic position ofYayoiacmea, a new genus for Japanese tiny limpet “Collisella” oyamai Habe, 1955 (Gastropoda: Lottiidae)[J]. The Japanese Journal of Malacology, 52: 193-209.
Wayne, Robert K. 2004. Molecular markers, natural history and evolution[M]. Stamford: Sinauer Associates: 25-86.
Yu JH, Song JH, Choi MC,etal. 2009. Effects of water temperature change on immune function in surf clams,Mactraveneriformis(Bivalvia: Mactridae)[J]. Journal of Invertebrate Pathology, 102(1): 30-35.
PopulationEcologicalGeneticsofPatelloidapygmaeaBasedonMitochondrial16SrRNAFragmentSequencesintheBohaiSea
SHI Boyang1, LI Yuanyuan1, WANG Ruxiao1, QU Jiangyong1, 2*, GUO Chenghua1*, LIU Chuanlin1, HOU Jianhai1, FANG Hui1, LIU Chutong1
(1. College of Life Sciences, Yantai University, Yantai, Shandong Province 264005, China; 2. Hainan Key Laboratory for Herpetological Research, Hainan Tropical Ocean University, Sanya, Hainan Province 572000, China)
The relationship between genetic diversity and environmental factors of 15Patelloidapygmaeapopulations in the Bohai Sea was studied by PCR and DNA sequencing. A total of 264 polymorphic loci were found in the 16S rRNA partial sequence of the 180 individuals, and 153 transitions as well as 114 transversions were defined by 32 haplotypes. The base contents of C, T, A and G were 18.12%, 27.74%, 33.07%, and 21.07%, respectively. The haplotype diversity was 0.835 1±0.019 1, and the nucleotide diversity was 0.449±0.214. Moreover, the nucleotide diversity ofP.pygmaeapopulation in the coast (0.191 8±0.091 7) was higher than that of island (0.107 3±0.081 6), and the results of population demographic history indicated that the populations ofP.pygmaeamay have experienced a recent demographic expansion. The correlation analysis between environmental factors and genetic factors showed that the genetic distance, sequence variation and nucleotide diversity ofP.pygmaeawere significantly positive correlated with sunshine duration and sunshine percentage (P<0.05). The result of morphological correlation analysis showed that the main components (length and width) were significantly negative correlated with the annual average precipitation (P<0.05). Average annual precipitation, sunshine duration and sunshine percentage were the dominant factors ofP.pygmaeamorphological variation, and the population genetic diversity will be higher in the the area with high environmental stablility.
Patelloidapygmaea; 16S rRNA; ecological genetical; genetic diversity
2017-01-12接受日期:2017-03-28
國(guó)家自然科學(xué)基金地區(qū)基金項(xiàng)目(31460562); 煙臺(tái)大學(xué)博士科研啟動(dòng)經(jīng)費(fèi)(SM15B01); 2016年國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201611066009); 煙臺(tái)大學(xué)研究生科技創(chuàng)新基金項(xiàng)目; 煙臺(tái)大學(xué)開(kāi)放實(shí)驗(yàn)室項(xiàng)目
史博洋, 碩士研究生, 主要從事海洋生物學(xué)研究, E-mail:sby_hope@163.com
*通信作者Corresponding author, E-mail:qjy@ytu.edu.cn; gch@ytu.edu.cn
10.11984/j.issn.1000-7083.20170013
Q145; Q346
: A
: 1000-7083(2017)04-0386-06