蔭士安
(中國(guó)疾病預(yù)防控制中心營(yíng)養(yǎng)與健康所,北京 100050)
[專家論壇]
母乳中微生物及在嬰兒免疫系統(tǒng)啟動(dòng)與發(fā)育中的作用
蔭士安
(中國(guó)疾病預(yù)防控制中心營(yíng)養(yǎng)與健康所,北京 100050)
母乳除了為新生兒和嬰兒提供最佳的營(yíng)養(yǎng),而且還是從母體轉(zhuǎn)運(yùn)細(xì)菌和病毒到嬰兒的載體;尤其是初乳中富含微生物,通過母乳喂養(yǎng)讓新生兒和嬰兒暴露母乳中含有的多種微生物,刺激新生兒和嬰兒的腸道免疫功能。人乳中微生物的來源主要集中在污染學(xué)說和進(jìn)化學(xué)說兩個(gè)方面,越來越多的證據(jù)支持人乳中含有的微生物來源于環(huán)境污染之外的途徑,即母親腸道中的細(xì)菌通過內(nèi)源性途徑遷移到乳腺(腸道-乳腺途徑),再通過哺乳進(jìn)入嬰兒體內(nèi)。健康乳母的各階段乳汁中均含有豐富的微生物,且種類復(fù)雜;人乳中微生物成分具有明顯的宿主依賴性,不同個(gè)體的母乳中微生物種類差異明顯,即使是同一產(chǎn)婦,其母乳中微生物組成和數(shù)量也呈現(xiàn)動(dòng)態(tài)變化。母乳喂養(yǎng)有助于嬰兒腸道益生菌群的生長(zhǎng)與定植,母乳中含有的多種活菌和游離的細(xì)菌DNA印跡在新生兒內(nèi)源性免疫系統(tǒng)激活過程、編程新生兒的免疫系統(tǒng)、腸道免疫功能發(fā)育成熟及降低疾病易感性軌跡方面發(fā)揮關(guān)鍵作用。人乳中的微生物與多種具有免疫活性細(xì)胞和可溶性免疫活性成分等共同協(xié)調(diào)促進(jìn)新生兒和嬰兒腸道的發(fā)育、免疫功能的啟動(dòng)與成熟,而剖宮產(chǎn)則影響新生兒腸道菌群的定植。每個(gè)母親應(yīng)該用自己最珍貴的乳汁喂哺嬰兒。
母乳喂養(yǎng);初乳;微生物;新生兒;嬰兒;免疫系統(tǒng)
母乳是復(fù)雜的液體,除了為新生兒和嬰兒提供了最佳的營(yíng)養(yǎng)和多種天然抗感染成分,而且還是從母體轉(zhuǎn)運(yùn)細(xì)菌和病毒到嬰兒的載體,人乳是母乳喂養(yǎng)兒胃腸道細(xì)菌的主要來源,或被稱為嬰兒的天然原型益生菌食品[1]。初乳中含有豐富的微生物,通過母乳喂養(yǎng)讓新生兒和嬰兒暴露母乳中含有的微生物,刺激新生兒和嬰兒的腸道免疫功能,在腸道免疫系統(tǒng)發(fā)育與功能成熟[2-6]及降低疾病易感性軌跡方面發(fā)揮重要作用[7]。消化道不僅是營(yíng)養(yǎng)素消化吸收的器官,還是主要的內(nèi)分泌、神經(jīng)和免疫功能器官[8]。盡早給予新生兒初乳和持續(xù)純母乳喂養(yǎng)嬰兒到6個(gè)月,是保護(hù)兒童生命的最經(jīng)濟(jì)有效的方法,而且還會(huì)對(duì)乳母和喂養(yǎng)兒的健康狀況產(chǎn)生諸多短期和長(zhǎng)期有益影響[9]。
有關(guān)人乳中微生物的來源一直備受爭(zhēng)議,主要集中在傳統(tǒng)假設(shè)(污染學(xué)說)和主動(dòng)遷移理論(進(jìn)化學(xué)說)[10]兩方面。
1.1傳統(tǒng)假設(shè)(污染學(xué)說)
新鮮人乳中是否含有微生物?至今傳統(tǒng)觀念、大多數(shù)醫(yī)學(xué)或營(yíng)養(yǎng)學(xué)教科書中仍然認(rèn)為母乳本身是無菌的,微生物在人體內(nèi)的定植出生時(shí)才開始[11-13]。已有證明人乳是嬰兒腸道中共生菌和潛在益生菌的良好和連續(xù)來源[14]。人乳中之所以含有細(xì)菌,是喂哺過程中產(chǎn)婦/乳母的皮膚和嬰兒口腔內(nèi)含有的微生物污染了乳房/母乳,或污染了乳頭的微生物,隨嬰兒吸吮過程(負(fù)壓)沿乳腺管轉(zhuǎn)移到乳腺,存在嬰兒口腔與乳腺的細(xì)菌交換[15],而新生兒口腔/體內(nèi)的細(xì)菌則是分娩過程中,新生兒受到產(chǎn)婦腸道和陰道內(nèi)微生物的污染[16]或分娩過程導(dǎo)致母體腸道和陰道中存在的菌群至嬰兒腸道的自然“遷移”過程[17],即傳統(tǒng)假設(shè)“污染學(xué)說”(the traditional hypothesis:‘a(chǎn) contamination hypothesis’)。
然而,這一說法很難解釋為什么從母乳中能分離出嚴(yán)格厭氧的雙歧桿菌,而且初乳中也能分離出多種細(xì)菌[18];從嬰兒糞便中檢出的乳酸桿菌與乳母陰道的乳酸桿菌菌群不同[16];從人乳中分離的乳酸桿菌屬、腸球菌和雙歧桿菌遺傳型與從皮膚表面分離的菌群不同或檢不出[19-22]。越來越多的證據(jù)支持這樣的假設(shè),即人乳中存在的細(xì)菌不僅僅是污染的結(jié)果。首先,雙歧桿菌是嚴(yán)格的厭氧菌,這使得它很難從嬰兒口腔遷移到乳房皮膚[23];第二,在嬰兒出生前就可以從初乳中分離出細(xì)菌;第三,給乳母口服含有活菌的膠囊,乳汁中可以檢測(cè)到該種補(bǔ)充的益生菌[24-25]。
1.2主動(dòng)遷移理論(進(jìn)化學(xué)說)
近年來,越來越多的研究證據(jù)支持人乳中微生物不是污染物,人乳中含有的微生物來源于環(huán)境污染之外的途徑[26],即母親腸道中的細(xì)菌通過內(nèi)源性途徑遷移到乳腺-腸道乳腺途徑,再通過哺乳過程進(jìn)入嬰兒體內(nèi),并定植在喂養(yǎng)兒的胃腸道[17,24,27-29],即主動(dòng)遷移理論(進(jìn)化學(xué)說)”(the revolutionary hypothesis:‘a(chǎn)ctive migration’)。
采用組織培養(yǎng)和分子生物學(xué)技術(shù),通過動(dòng)物實(shí)驗(yàn)和人群干預(yù)試驗(yàn)獲得的結(jié)果支持母親腸道中細(xì)菌可通過內(nèi)源性途徑遷移到乳腺,樹突狀細(xì)胞和巨噬細(xì)胞參與了這個(gè)遷移過程[12,30-32],也有研究提示來自母體胃腸道的某些細(xì)菌通過涉及單核免疫細(xì)胞機(jī)制遷移到乳腺[33]。通過比較人乳、產(chǎn)婦糞便、嬰兒糞便和母親外周血中單核細(xì)胞中發(fā)現(xiàn)的細(xì)菌DNA印跡,結(jié)果是相同的,提示細(xì)菌可能是通過血液循環(huán)被轉(zhuǎn)運(yùn),腸源性細(xì)菌或細(xì)菌成分能夠在單核細(xì)胞內(nèi)被轉(zhuǎn)移到哺乳期的乳腺,而且已經(jīng)證明健康人血液中存在細(xì)菌[34-35],在幾乎所用采取的活體乳房組織中均檢測(cè)出活菌,而相應(yīng)的采樣環(huán)境中沒有分離出來這樣的細(xì)菌菌株[36];采用培養(yǎng)基培養(yǎng)的方法,已經(jīng)在假設(shè)無菌采集的人乳樣品中證實(shí)了細(xì)菌的存在。采用16s rDNA測(cè)序技術(shù)的結(jié)果顯示,母乳是嬰兒腸道乳酸菌的主要來源,乳汁中存在的乳酸菌是母體內(nèi)源性來源,而不是來自乳房周圍皮膚的污染[20]。
1.3有待解決的問題
上述的研究結(jié)果提示,存在母體腸道中的細(xì)菌通過內(nèi)源性途徑遷移到乳腺的過程,但是這種“遷移假說”的如下幾個(gè)方面還有待證明:①目前還不十分清楚乳母腸道內(nèi)的細(xì)菌如何與免疫細(xì)胞相互作用以及被轉(zhuǎn)運(yùn)到乳腺,細(xì)菌通過什么樣機(jī)制躲避被宿主先天免疫細(xì)胞吞噬和被殺死。推測(cè)妊娠與哺乳期多種激素水平的變化可能對(duì)體內(nèi)細(xì)菌的遷移發(fā)揮了重要作用。②細(xì)菌發(fā)生遷移過程是否存在一個(gè)“機(jī)會(huì)窗口期”?Donnet-Hughes等[37]研究結(jié)果顯示,分娩后1天細(xì)菌就可從腸系膜淋巴結(jié)遷移到乳腺。但是,還不清楚遷移過程開始和結(jié)束的時(shí)間,以及限制或影響這個(gè)時(shí)期遷移的因素。③母體內(nèi)遷移過程對(duì)細(xì)菌的選擇性。最初人們認(rèn)為,某些菌株可以被免疫細(xì)胞識(shí)別并被轉(zhuǎn)運(yùn)到乳腺,而有些則不能被轉(zhuǎn)運(yùn)。盡管所有的細(xì)菌都能被免疫細(xì)胞識(shí)別,但是有些菌株可能具有躲避免疫細(xì)胞吞噬或被殺死的能力。這還需要進(jìn)一步研究細(xì)菌的存活能力或吸附到免疫細(xì)胞表面的停留時(shí)間與其從母體腸道遷移到乳腺的關(guān)系。④人乳中微生物的來源可能包括母體內(nèi)來源(腸道-乳腺轉(zhuǎn)運(yùn)途徑)和哺乳期間乳房暴露的細(xì)菌(嬰兒口腔、乳房皮膚、衣服等)[11],因此需要研究?jī)烧邔?duì)嬰兒腸道微生物的貢獻(xiàn)和影響因素及對(duì)嬰兒健康狀況的近期和遠(yuǎn)期影響。
健康乳母的各階段乳汁中均含有豐富的微生物,且種類復(fù)雜[18,38]。人乳中的微生物,如人類微生物組中任何其他生態(tài)環(huán)境一樣,并不是一個(gè)孤立的環(huán)境,而是一個(gè)相互關(guān)聯(lián)、相互依存的網(wǎng)絡(luò)體系[39]。因此,從生態(tài)學(xué)角度,全面系統(tǒng)地研究母乳中微生物菌落結(jié)構(gòu)的多樣性和穩(wěn)定性具有重要意義。
2.1人乳中已經(jīng)發(fā)現(xiàn)的微生物
經(jīng)培養(yǎng)基培養(yǎng)無菌采集的人乳樣品,證實(shí)人乳中存在的菌屬包括葡萄球菌、鏈球菌、乳球菌屬、明串珠菌屬、魏斯氏、腸球菌、丙酸菌屬、乳酸桿菌和雙歧桿菌、假單胞菌屬等[11-12,21,40]。人乳中分離出來的最常見細(xì)菌菌屬包括表皮葡萄球菌、金黃色葡萄球菌、輕型鏈球菌、唾液鏈球菌、唾液乳酸桿菌、發(fā)酵乳酸桿菌、加氏乳酸桿菌、鼠李糖乳酸桿菌、短雙歧桿菌和雙歧桿菌。人乳中微生物菌群特征的系統(tǒng)綜述數(shù)據(jù)顯示,人乳中普遍占主導(dǎo)地位的微生物是鏈球菌和葡萄球菌,而且與地理位置或分析方法的差別無關(guān)[40]。
2.1.1 DNA二代測(cè)序技術(shù)的研究結(jié)果
母乳中微生物菌落存在多樣性和隨時(shí)間變化相對(duì)穩(wěn)定的特征,母乳中含量最豐富的菌屬是葡萄球菌屬、金黃色葡萄球菌屬、鏈球菌屬,還有乳酸桿菌屬、雙歧桿菌屬、腸球菌屬和明串珠菌屬等普遍存在于母乳中[21]。Martin等[41]還從健康人乳中分離出一種新的細(xì)菌,即乳鏈球菌。短雙歧桿菌也被證明是人乳中最常見的一種益生菌[42-44]。短雙歧桿菌菌株UCC2003可產(chǎn)生一種胞外多糖(exopolysaccharides,EPS),EPS陽性的菌株可降低腸道病原體的定植。
2.1.2應(yīng)用454焦磷酸測(cè)序的16S核糖體RNA(rRNA)基因編碼擴(kuò)增技術(shù)
可深入分析人乳中細(xì)菌菌落,評(píng)估人乳中細(xì)菌的多樣性[14,16,19,21-22]。在Hunt等[21]的研究中,從16名健康婦女中各采集3個(gè)乳樣進(jìn)行分析,所有樣品中均存在9個(gè)菌屬(鏈球菌屬、葡萄球菌屬、沙雷氏菌屬、假單胞菌屬、棒狀桿菌、青枯菌屬、丙酸菌屬、鞘氨醇單胞菌屬和慢生根瘤菌屬),占觀察到的人乳中微生物菌落的一半;鏈球菌和葡萄球菌與沙雷氏菌屬一起是人乳中代表性的主要菌屬,所檢索的16S rRNA基因序列超過5%;而其他8個(gè)菌屬僅占整個(gè)樣品觀察到菌群的≥1%。然而,與其他的研究相反,Hunt等[21]的人乳微生物研究中未檢出乳酸桿菌,也未發(fā)現(xiàn)雙歧桿菌。這些差異可能是由于社會(huì)經(jīng)濟(jì)、文化、遺傳及抗生素使用的差異和膳食差異引起的,因?yàn)檫@些研究是在歐洲和美國(guó)完成,造成這樣差異的原因還可能由于研究細(xì)菌菌落的分子生物學(xué)技術(shù)的限制[45-48]。這些研究結(jié)果說明,在人乳中含有細(xì)菌的多樣性超過以前的假設(shè),提示如同人體其它部位的細(xì)菌菌群一樣,人乳中也可能存在一個(gè)“核心”微生物群(core microbiome)[49-50]。這些研究通過依賴培養(yǎng)基的技術(shù),證實(shí)了人乳中細(xì)菌菌群的存在,同時(shí)也揭示了其它細(xì)菌菌群的存在,包括某些革蘭陰性菌[14,21]。目前已經(jīng)從人乳中分離出的細(xì)菌種類超過了200多種。近年來通過現(xiàn)代分子生物學(xué)技術(shù)進(jìn)一步確定了母乳中存在微生物的多樣性與復(fù)雜性[16-22,28,30,38,41-42,44,51-55]。
隨著焦磷酸測(cè)序或宏基因組學(xué)技術(shù)的日趨完善和廣泛應(yīng)用,單細(xì)胞培養(yǎng)和測(cè)序技術(shù)已應(yīng)用于細(xì)菌細(xì)胞的分離和鑒定,人們期待發(fā)現(xiàn)人乳中存在的更多“稀有”的細(xì)菌菌種[21],將能更深入地了解人乳中微生物成分和功能及對(duì)母乳喂養(yǎng)嬰兒營(yíng)養(yǎng)與健康狀況的近期和遠(yuǎn)期影響。
2.2影響人乳中微生物種類與數(shù)量的因素
盡管人乳中含有豐富的細(xì)菌,然而,人乳中微生物成分具有明顯的宿主依賴性[21],不同個(gè)體的母乳中微生物種類差異明顯,即使是同一產(chǎn)婦其母乳中微生物菌群的組成和數(shù)量也呈現(xiàn)動(dòng)態(tài)變化;而且在單一人乳樣品中可培養(yǎng)出細(xì)菌菌株的數(shù)量要低得多(218個(gè)不同菌種)。乳汁或乳腺中存在的細(xì)菌菌落與穩(wěn)態(tài)持續(xù)受乳母或其嬰兒暴露環(huán)境中微生物的影響,也受乳母健康狀態(tài)的影響;母乳中菌群構(gòu)成差別也可能與母乳樣品采集時(shí)間和采集的個(gè)體差別以及樣品貯存和分析方法有關(guān)[21,26,40,42]。除了乳母的健康狀況,影響母乳中微生物的潛在因素還包括胎次、分娩方式、分娩年齡、乳母的膳食、地理位置(如城鄉(xiāng))及遺傳背景的影響[6,26,56]。因此還需要深入研究,更好地了解健康狀況和實(shí)際微生物菌群之間的關(guān)聯(lián)及這些相關(guān)可能對(duì)母嬰營(yíng)養(yǎng)與健康的影響。
人初乳中含有的微生物種類高達(dá)數(shù)百種,對(duì)母乳喂養(yǎng)的新生兒和嬰兒具有許多營(yíng)養(yǎng)與健康益處[57]。按照嬰兒每天攝入約800mL母乳,吸吮乳汁的同時(shí)攝入約1×105~1×107的共生菌,母乳是嬰兒腸道中潛在共生細(xì)菌的持續(xù)來源[20,53]。
3.1母乳喂養(yǎng)有助于嬰兒腸道益生菌群的生長(zhǎng)與定植
通過母乳喂養(yǎng),可將微生物菌群由母體垂直轉(zhuǎn)移給其喂養(yǎng)兒,這將有助于嬰兒正處于發(fā)育腸道中益生菌群的建立與定植[58-59]。例如,在不同喂養(yǎng)方式健康嬰兒腸道菌群定植過程及其與食物過敏關(guān)系的研究中,通過分析嬰兒糞便,顯示母乳喂養(yǎng)及持續(xù)時(shí)間在腸道菌群形成和食物過敏易感性方面發(fā)揮重要作用;母乳喂養(yǎng)兒的腸道中雙歧桿菌增長(zhǎng)迅速,生后第6天即成為優(yōu)勢(shì)菌,而大腸埃希菌數(shù)量較低;相比較,人工喂養(yǎng)兒生后第6天雙歧桿菌仍不是優(yōu)勢(shì)菌;生后6個(gè)月母乳喂養(yǎng)嬰兒的腸道益生菌(如乳酸桿菌、雙歧桿菌)數(shù)量顯著高于人工喂養(yǎng)兒,而大腸埃希菌數(shù)量則顯著低于人工喂養(yǎng)嬰兒;食物過敏嬰幼兒腸道乳酸桿菌、雙歧桿菌的數(shù)量顯著低于健康嬰幼兒,而大腸埃希菌數(shù)量則顯著高于健康嬰幼兒,提示益生菌群對(duì)過敏性疾病有預(yù)防作用[60-61]。
3.2初乳在啟動(dòng)新生兒腸道免疫中的作用
現(xiàn)代觀點(diǎn)認(rèn)為,人體免疫系統(tǒng)的啟動(dòng)和發(fā)育成熟與腸道微生物密切相關(guān)。母乳中含有的多種活菌和游離的細(xì)菌DNA印跡在新生兒內(nèi)源性免疫系統(tǒng)激活過程(啟動(dòng))、編程新生兒的免疫系統(tǒng)和腸道免疫功能發(fā)育,以及防止嬰兒感染中發(fā)揮關(guān)鍵作用[6,12-13]。
3.2.1廣譜抗菌和抗病毒作用
學(xué)者們很早就知道初乳含有的免疫刺激成分具有廣譜抗菌抗病毒作用,母乳喂養(yǎng)可增加?jì)雰簩?duì)某些感染的抵抗力,尤其是對(duì)腸道功能紊亂的抵抗力[4-5]。有研究觀察到來自母體雙歧桿菌和乳酸桿菌在嬰兒腸道內(nèi)的定植具有廣譜抗菌和抗病毒作用,可以抑制病原微生物在嬰兒腸道內(nèi)定植生長(zhǎng),保護(hù)嬰兒抗感染和促進(jìn)免疫系統(tǒng)功能的成熟[12,17,31,62]。
3.2.2抗炎作用
早期母乳喂養(yǎng),特別是初乳,一個(gè)重要的功能是為不成熟的、過度炎癥反應(yīng)的新生兒提供抗炎作用。因?yàn)樾律鷥旱哪c道免疫功能遠(yuǎn)未發(fā)育成熟,新生兒易患腸道及全身性感染。母乳中,尤其是初乳,含有豐富的微生物和生物活性成分,可刺激新生兒胃腸道啟動(dòng)免疫反應(yīng)、促進(jìn)免疫系統(tǒng)發(fā)育,降低炎癥反應(yīng)。母乳中這些成分可以單獨(dú)或聯(lián)合發(fā)揮抗炎作用[63]。體外試驗(yàn)結(jié)果顯示,初乳抑制金黃色葡萄球菌和大腸埃希菌的活性相當(dāng)于慶大霉素活性的1/2[64]。
3.3人乳在新生兒和嬰兒免疫系統(tǒng)發(fā)育中的作用
人乳中的微生物與多種具有免疫活性細(xì)胞和可溶性免疫活性成分等共同協(xié)調(diào)促進(jìn)新生兒和嬰兒的腸道發(fā)育、免疫功能的啟動(dòng)與成熟。
3.3.1啟動(dòng)新生兒腸道免疫和促進(jìn)免疫系統(tǒng)發(fā)育
新生兒免疫系統(tǒng)的發(fā)育成熟程度受經(jīng)胎盤(胎兒期)和母乳轉(zhuǎn)運(yùn)母體免疫力(免疫活性成分)的影響。母乳喂養(yǎng)是嬰兒接受的“第一次免疫”,有助于免疫器官的早期發(fā)育[65]。剛出生的新生兒免疫系統(tǒng)還未發(fā)育成熟,胃還沒有能力清除病原體的能力,腸道也缺乏微生物菌落,尤其是益生菌的定植。人乳不僅含有對(duì)新生兒生長(zhǎng)發(fā)育所需要的營(yíng)養(yǎng)成分,而且還含有諸多有益于免疫系統(tǒng)發(fā)育成熟的益生菌、免疫活性成分或多種調(diào)節(jié)因子[5,66],這些均可抑制腸道內(nèi)致病菌的定植與生長(zhǎng),增強(qiáng)新生兒抗感染的能力[4-5]。
3.3.2參與機(jī)體的主動(dòng)免疫及調(diào)節(jié)被動(dòng)免疫
最近的臨床調(diào)查和實(shí)驗(yàn)觀察結(jié)果還表明,人乳不僅為新生兒和嬰兒提供被動(dòng)的免疫保護(hù)作用,還可以直接調(diào)節(jié)嬰兒免疫系統(tǒng)的發(fā)育與成熟。在人乳提供被動(dòng)保護(hù)和主動(dòng)調(diào)節(jié)嬰兒黏膜發(fā)育及系統(tǒng)免疫應(yīng)答的能力方面,還與其含有的抗菌、抗炎和免疫調(diào)節(jié)活性物質(zhì)的復(fù)雜混合物的相互協(xié)同作用有關(guān)[4-5,9]。在新生兒和嬰兒期,母乳喂養(yǎng)提供的免疫活性成分可以保護(hù)其不成熟的免疫系統(tǒng),例如,通過像妊娠期間免疫球蛋白G(IgG)的胎盤(從母體到胎兒)轉(zhuǎn)運(yùn)通道和通過母乳攝入的免疫活性成分(如乳鐵蛋白、具有免疫功能的細(xì)胞成分、溶菌酶、細(xì)胞因子等),為其提供防御感染的保護(hù)作用;母乳中含有的TGF對(duì)啟動(dòng)新生兒IgA的產(chǎn)生發(fā)揮重要作用[67]。母乳喂養(yǎng)可以使母體對(duì)胎兒的保護(hù)作用在其出生后得以延續(xù),使有利于調(diào)節(jié)免疫系統(tǒng)的母體因子持續(xù)不斷地向新生兒轉(zhuǎn)移,而且母乳對(duì)這個(gè)時(shí)期兒童自身免疫能力的發(fā)育完善也是非常重要的[68]。
3.4剖宮產(chǎn)影響新生兒腸道菌群的定植
基于121個(gè)國(guó)家的統(tǒng)計(jì)數(shù)據(jù)顯示,1990—2014間全球剖宮產(chǎn)率由6.7%上升到19.1%,年均增長(zhǎng)4.4%[69]。我國(guó)剖宮產(chǎn)率也呈現(xiàn)明顯上升趨勢(shì),1993—1994年約5%[70],2001—2002年為20.4%[70],2006年達(dá)到55.2%,2011年雖略有下降,但仍高達(dá)43.6%[71],而且主要是無指征剖宮產(chǎn)[72]。
細(xì)菌在腸道的初次定植是新生兒經(jīng)歷的最明顯的免疫暴露,也是影響健康和疾病風(fēng)險(xiǎn)的重要環(huán)境因素[73]。諸多研究結(jié)果顯示,分娩方式與生后最初3個(gè)月嬰兒腸道微生物的多樣化和定植密切相關(guān),自然分娩新生兒的腸道菌群主要來自母體產(chǎn)道和腸道菌群,而剖宮產(chǎn)的新生兒腸道菌群主要來自環(huán)境菌群[74-75]。自然分娩的嬰兒腸道雙歧桿菌和擬桿菌屬的定植水平顯著高于剖宮產(chǎn)的嬰兒[76-79];自然分娩過程中,從母體轉(zhuǎn)移的幾種雙歧桿菌于嬰兒生后不久即可定植在其腸道,母體腸道是自然分娩嬰兒腸道微生物的重要來源[80]。健康的腸道菌群可促進(jìn)嬰兒免疫系統(tǒng)的發(fā)育與成熟,而異常的腸道菌群則是嬰兒期患嚴(yán)重胃腸感染的主要原因[76],剖宮產(chǎn)與免疫介導(dǎo)性疾病可能存在關(guān)聯(lián)[78],而且這些嬰兒過敏性疾病的發(fā)生率也較高[81-82]。因此應(yīng)倡導(dǎo)和促進(jìn)自然分娩,降低剖宮產(chǎn)率。
綜上所述,母乳的優(yōu)點(diǎn)已得到公認(rèn),早開奶并用純母乳喂養(yǎng)嬰兒到6個(gè)月,有助于啟動(dòng)新生兒的腸道免疫功能,促進(jìn)免疫器官發(fā)育,降低腹瀉及肺炎等相關(guān)感染性疾病的發(fā)病率和死亡率,尤其是在衛(wèi)生條件較差的農(nóng)村地區(qū),母乳喂養(yǎng)對(duì)保護(hù)嬰兒的健康和生存尤為重要。因此每個(gè)母親應(yīng)該用自己最珍貴的乳汁喂哺嬰兒。
致謝:本稿件是國(guó)家科技部高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)《促進(jìn)生長(zhǎng)發(fā)育的營(yíng)養(yǎng)強(qiáng)化食品的研究與開發(fā)》課題的組成部分,課題編號(hào)2010AA023004。
[1]McGuire M K, McGuire M A.Human milk:mother nature's prototypical probiotic food?[J].Adv Nutr,2015,6(1):112-123.
[2]Boccolini C S, Boccolini Pde M, de Carvalho M L,etal.Exclusive breastfeeding and diarrhea hospitalization patterns between 1999 and 2008 in Brazilian State Capitals[J].Cien Saude Colet,2012,17(7):1857-1863.
[3]Boccolini C S, Carvalho M L, Oliveira M I,etal.Breastfeeding can prevent hospitalization for pneumonia among children under 1 year old[J].J Pediatr(Rio J),2011,87(5):399-404.
[4]Goenka A, Kollmann T R.Development of immunity in early life[J].Journal of Infection,2015,71(Suppl 1):S112-S120.
[5]Turfkruyer M, Verhasselt V. Breast milk and its impact on maturation of the neonatal immune system[J].Curr Opin Infect Dis,2015,28(3):199-206.
[6]Gomez-Gallego C, Garcia-Mantrana I, Salminen S,etal.The human milk microbiome and factors influencing its composition and activity[J].Semin Fetal Neonatal Med,2016,21(6):400-405.
[7]Gollwitzer E S, Marsland B J.Impact of Early-Life Exposures on Immune Maturation and Susceptibility to Disease[J].Trends Immunol,2015,36(11):684-696.
[8]Neu J.Gastrointestinal maturation and implications for infant feeding[J].Early Hum Dev,2007,83(12):767-775.
[9]Victora C G, Bahl R, Barros A J,etal.Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect[J].Lancet,2016,387(10017):475-490.
[10]Jeurink P V, van Bergenhenegouwen J, Jimenez E,etal.Human milk:a source of more life than we imagine[J].Benef Microbes,2013,4(1):17-30.
[11]McGuire M K, McGuire M A.Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk[J].Curr Opin Biotechnol,2017,44:63-68.
[12]Fernandez L, Langa S, Martin V,etal.The human milk microbiota: origin and potential roles in health and disease[J].Pharmacol Res,2013,69(1):1-10.
[13]Koleva P T, Kim J S, Scott J A,etal.Microbial programming of health and disease starts during fetal life[J].Birth Defects Res C Embryo Today,2015,105(4):265-277.
[14]Martin R, Heilig H G, Zoetendal E G,etal.Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women[J].Res Microbiol,2007,158(1):31-37.
[15]Sanz Y.Gut microbiota and probiotics in maternal and infant health[J].Am J Clin Nutr,2011,94(6 Suppl):2000S-2005S.
[16]Martin R, Heilig G H, Zoetendal E G,etal.Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut[J].J Appl Microbiol,2007,103(6):2638-2644.
[17]Makino H, Kushiro A, Ishikawa E,etal.Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism[J].Appl Environ Microbiol,2011,77(19):6788-6793.
[18]Jimenez E, Delgado S, Fernandez L,etal.Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors[J].Res Microbiol,2008,159(9-10):595-601.
[19]Martin R, Jimenez E, Heilig H,etal.Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR[J].Appl Environ Microbiol,2009,75(4):965-969.
[20]Martin R, Langa S, Reviriego C,etal.Human milk is a source of lactic acid bacteria for the infant gut[J].J Pediatr,2003,143(6):754-758.
[21]Hunt K M, Foster J A, Forney L J,etal.Characterization of the diversity and temporal stability of bacterial communities in human milk[J].PLoS One,2011,6(6):e21313.
[22]Gueimonde M, Laitinen K, Salminen S,etal.Breast milk:a source of bifidobacteria for infant gut development and maturation?[J].Neonatology,2007,92(1):64-66.
[23]Xiao M, Xu P, Zhao J,etal.Oxidative stress-related responses of Bifidobacterium longum subsp. longum BBMN68 at the proteomic level after exposure to oxygen[J].Microbiology,2011,157(Pt 6):1573-1588.
[24]Jimenez E, Fernandez L, Maldonado A,etal.Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation[J].Appl Environ Microbiol,2008,74(15):4650-4655.
[25]Arroyo R, Martin V, Maldonado A,etal.Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk[J].Clin Infect Dis,2010,50(12):1551-1558.
[26]Cabrera-Rubio R, Collado M C, Laitinen K,etal.The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery[J].Am J Clin Nutr,2012,96(3):544-551.
[27]Matsumiya Y, Kato N, Watanabe K,etal.Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction[J].J Infect Chemother,2002,8(1):43-49.
[28]Martin R, Jimenez E, Olivares M,etal.Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair[J].Int J Food Microbiol,2006,112(1):35-43.
[29]Albesharat R, Ehrmann M A, Korakli M,etal.Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies[J].Syst Appl Microbiol,2011,34(2):148-155.
[30]Perez P F, Dore J, Leclerc M,etal.Bacterial imprinting of the neonatal immune system: lessons from maternal cells?[J].Pediatrics,2007,119(3):e724-e732.
[31]Fernandez L, Langa S, Martin V,etal.The microbiota of human milk in healthy women[J].Cell Mol Biol(Noisy-le-grand),2013,59(1):31-42.
[32]Rescigno M, Urbano M, Valzasina B,etal.Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria[J].Nat Immunol,2001,2(4):361-367.
[33]Rodriguez J M.The origin of human milk bacteria:is there a bacterial entero-mammary pathway during late pregnancy and lactation?[J].Adv Nutr,2014,5(6):779-784.
[34]Nikkari S, McLaughlin IJ, Bi W,etal.Does blood of healthy subjects contain bacterial ribosomal DNA?[J].J Clin Microbiol,2001,39(5):1956-1959.
[35]McLaughlin R W, Vali H, Lau P C,etal.Are there naturally occurring pleomorphic bacteria in the blood of healthy humans?[J].J Clin Microbiol,2002,40(12):4771-4775.
[36]Urbaniak C, Cummins J, Brackstone M,etal.Microbiota of human breast tissue[J].Appl Environ Microbiol,2014,80(10):3007-3014.
[37]Donnet-Hughes A, Perez P F, Dore J,etal.Potential role of the intestinal microbiota of the mother in neonatal immune education[J].Proc Nutr Soc,2010,69(3):407-415.
[38]Collado M C, Delgado S, Maldonado A,etal.Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR[J].Lett Appl Microbiol,2009,48(5):523-528.
[39]Costello E K, Lauber C L, Hamady M,etal.Bacterial community variation in human body habitats across space and time[J].Science,2009,326(5960):1694-1697.
[40]Fitzstevens J L, Smith K C, Hagadorn J I,etal.Systematic Review of the Human Milk Microbiota[J].Nutr Clin Pract,2017,32(3):354-364.
[41]Martin V, Manes-Lazaro R, Rodriguez J M,etal.Streptococcus lactarius sp. nov., isolated from breast milk of healthy women[J].Int J Syst Evol Microbiol,2011,61(Pt 5):1048-1052.
[42]Solis G, de Los Reyes-Gavilan C G, Fernandez N,etal.Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut[J].Anaerobe,2010,16(3):307-310.
[43]Alp G, Aslim B.Relationship between the resistance to bile salts and low pH with exopolysaccharide(EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk[J].Anaerobe,2010,16(2):101-105.
[44]Martin R, Olivares M, Marin M L,etal.Probiotic potential of 3 Lactobacilli strains isolated from breast milk[J].J Hum Lact,2005,21(1):8-17.
[45]Sim K, Cox M J, Wopereis H,etal.Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing[J].PLoS One,2012,7(3):e32543.
[46]Inglis G D, Thomas M C, Thomas D K,etal.Molecular methods to measure intestinal bacteria:a review[J].J AOAC Int,2012,95(1):5-23.
[47]Zoetendal E G, Collier C T, Koike S,etal.Molecular ecological analysis of the gastrointestinal microbiota:a review[J].J Nutr,2004,134(2):465-472.
[48]Frank J A, Reich C I, Sharma S,etal.Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes[J].Appl Environ Microbiol,2008,74(8):2461-2470.
[49]Ravel J, Gajer P, Abdo Z,etal.Vaginal microbiome of reproductive-age women[J].Proc Nati Acad Sci U S A,2011,108(Suppl 1):4680-4687.
[50]Turnbaugh P J, Hamady M, Yatsunenko T,etal.A core gut microbiome in obese and lean twins[J].Nature,2009,457(7228):480-484.
[51]Martin V, Maldonado-Barragan A, Moles L,etal.Sharing of bacterial strains between breast milk and infant feces[J].J Hum Lact,2012,28(1):36-44.
[52]Beasley S S, Saris P E.Nisin-producing Lactococcus lactis strains isolated from human milk[J].Appl Environ Microbiol,2004,70(8):5051-5053.
[53]Heikkila M P, Saris P E.Inhibition of Staphylococcus aureus by the commensal bacteria of human milk[J].J Appl Microbiol,2003,95(3):471-478.
[54]Jimenez E, Delgado S, Maldonado A,etal.Staphylococcus epidermidis:a differential trait of the fecal microbiota of breast-fed infants[J].BMC Microbiol,2008,8:143.
[55]Delgado S, Arroyo R, Jimenez E,etal.Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis:potential virulence traits and resistance to antibiotics[J].BMC Microbiol,2009,9:82.
[56]Khodayar-Pardo P, Mira-Pascual L, Collado M C,etal.Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota[J].J Perinatol,2014,34(8):599-605.
[57]Lemas D J, Yee S, Cacho N,etal.Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity[J].Semin Fetal Neonatal Med,2016,21(6):406-409.
[58]Murphy K, Curley D, O'Callaghan T F,etal.The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study[J].Sci Rep,2017,7:40597.
[59]Rautava S.Early microbial contact, the breast milk microbiome and child health[J].J Dev Orig Health Dis,2016,7(1):5-14.
[60]王小卉,楊毅,王瑩.嬰兒腸道菌群的形成與喂哺方式及食物過敏的關(guān)系[J].臨床兒科雜志,2004,22(9):594-597.
[61]王小卉,楊毅,王瑩,等.嬰兒腸道菌群的形成及其食物過敏的關(guān)系[J].中華實(shí)用兒科臨床雜志,2004,19(9):756-758.
[62]Olivares M, Diaz-Ropero M P, Martin R,etal.Antimicrobial potential of four Lactobacillus strains isolated from breast milk[J].J Appl Microbiol,2006,101(1):72-79.
[63]Walker A.Breast milk as the gold standard for protective nutrients[J].J Pediatr,2010,156(2 Suppl): S3-S7.
[64]Ibhanesebhor S E, Otobo E S.In vitro activity of human milk against the causative organisms of ophthalmia neonatorum in Benin City, Nigeria[J].J Trop Pediatr,1996,42(6):327-329.
[65]白霞,李曉君,史淼,等.母乳喂養(yǎng)與人工喂養(yǎng)對(duì)嬰兒早期胸腺發(fā)育的影響[J].中國(guó)婦幼保健,2010,25(26):3703-3704.
[66]Kainonen E, Rautava S, Isolauri E.Immunological programming by breast milk creates an anti-inflammatory cytokine milieu in breast-fed infants compared to formula-fed infants[J].Br J Nutr,2013,109(11):1962-1970.
[67]Ogawa J, Sasahara A, Yoshida T,etal.Role of transforming growth factor-beta in breast milk for initiation of IgA production in newborn infants[J].Early Hum Dev,2004,77(1-2):67-75.
[68]Chirico G, Marzollo R, Cortinovis S,etal.Antiinfective properties of human milk[J].J Nutr,2008,138(9):1801S-1806S.
[69]Betran A P, Ye J, Moller A B,etal.The Increasing Trend in Caesarean Section Rates: Global, Regional and National Estimates: 1990-2014[J].PLoS One,2016,11(2):e0148343.
[70]Sufang G, Padmadas S S, Fengmin Z,etal.Delivery settings and caesarean section rates in China[J].Bull World Health Organ,2007,85(10):755-762.
[71]魏玉梅,楊慧霞.巨大兒發(fā)生率和剖宮產(chǎn)率的變化趨勢(shì)及其影響因素分析[J].中華婦產(chǎn)科雜志,2015,50(3):170-176.
[72]侯磊,李光輝,鄒麗穎,等.全國(guó)剖宮產(chǎn)率及剖宮產(chǎn)指征構(gòu)成比調(diào)查的多中心研究[J].中華婦產(chǎn)科雜志,2014,49(10):728-735.
[73]Sevelsted A, Stokholm J, Bonnelykke K,etal.Cesarean section and chronic immune disorders[J].Pediatrics,2015,135(1):e92-e98.
[74]Orrhage K, Nord C E.Factors controlling the bacterial colonization of the intestine in breastfed infants[J].Acta Paediatr Suppl,1999,88(430):47-57.
[75]Gronlund M M, Lehtonen O P, Eerola E,etal.Fecal microflora in healthy infants born by different methods of delivery:permanent changes in intestinal flora after cesarean delivery[J].J Pediatr Gastroenterol Nutr,1999,28(1):19-25.
[76]Rutayisire E, Huang K, Liu Y,etal.The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants' life:a systematic review[J].BMC Gastroenterol,2016,16(1):86.
[77]Biasucci G, Rubini M, Riboni S,etal.Mode of delivery affects the bacterial community in the newborn gut[J].Early Hum Dev,2010,86(Suppl 1): 13-15.
[78]Stokholm J, Thorsen J, Chawes B L,etal.Cesarean section changes neonatal gut colonization[J].J Allergy Clin Immunol,2016,138(3):881-889.e2.
[79]Jakobsson H E, Abrahamsson T R, Jenmalm M C,etal.Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section[J].Gut,2014,63(4):559-566.
[80]Makino H, Kushiro A, Ishikawa E,etal.Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota[J].PLoS One,2013,8(11):e78331.
[81]Salminen S, Gibson G R, McCartney A L,etal.Influence of mode of delivery on gut microbiota composition in seven year old children[J].Gut,2004,53(9):1388-1389.
[82]Negele K, Heinrich J, Borte M,etal.Mode of delivery and development of atopic disease during the first 2 years of life[J].Pediatr Allergy Immunol,2004,15(1):48-54.
[專業(yè)責(zé)任編輯:劉黎明]
Microorganisms in breast milk and their roles in initiation and development of early immunization in infants
YIN Shi-an
(Institute of Nutrition and Health, Chinese Center for Disease Prevention and Control, Beijing 100050, China)
Breast milk not only provides optimal nutrition for neonates and infants but is a vehicle for transmission of bacteria and viruses from mother to her baby. Colostrum especially is rich in microorganisms and breastfeeding makes neonates and infants exposed to microorganisms contained in breast milk, which stimulates intestinal immune function of neonates and infants. Sources of microorganisms in human milk are mainly based on two hypotheses, contamination hypothesis and active migration hypothesis. There is growing evidence supporting that microorganisms contained in human milk are not from environmental pollution but from migration of bacteria from mother’s intestine to mammary gland through endogenous pathway (pathways of intestine to mammary gland) and entering infants through breast feeding. Healthy human milk is rich in microorganisms at various stage and species are rather complex. Microorganisms components in human milk have obvious host dependence and microbe species in different individuals are obviously different. Microbe composition and quantity in breast milk of same mother also has dynamic changes. Breastfeeding contributes to growth and colonization of probiotics in infant’s intestine tract. Breast milk contains multiple live bacteria and free bacterial DNA imprints, playing key role in activating innate immune system, programming neonatal immune system, developing intestine immune function and reducing susceptibility trajectory to infectious diseases. Microorganisms in human milk work in coordination with variety of immunocompetent cells and soluble immune active ingredients in promoting neonatal intestinal development, and initiation and maturation of neonatal immune function. But cesarean section affects colonization of intestinal flora in neonates. Every mother should feed baby with breast milk.
breastfeeding;colostrum;microorganism;neonates;infants;immune system
蔭士安,中國(guó)疾病預(yù)防控制中心營(yíng)養(yǎng)與健康所研究員,生命科學(xué)會(huì)東南亞嬰幼兒營(yíng)養(yǎng)專家委員會(huì)委員;第五屆和第六屆中國(guó)營(yíng)養(yǎng)學(xué)會(huì)婦幼營(yíng)養(yǎng)分會(huì)主任委員(2010—2012年);衛(wèi)生部食品法典專家組特殊膳食用營(yíng)養(yǎng)與食品組成員(2002—2011年國(guó)際食品法典特殊營(yíng)養(yǎng)與膳食分會(huì)中國(guó)代表團(tuán)團(tuán)長(zhǎng));中國(guó)食品科學(xué)技術(shù)學(xué)會(huì)理事;中國(guó)食品科學(xué)技術(shù)學(xué)會(huì)兒童食品分會(huì)常務(wù)理事、中國(guó)老年學(xué)和老年醫(yī)學(xué)會(huì)營(yíng)養(yǎng)食品分會(huì)副主任委員等。1997年入選國(guó)家“百千萬人才工程”,同年獲國(guó)務(wù)院政府特殊津貼。
10.3969/j.issn.1673-5293.2017.06.001
R174
A
1673-5293(2017)06-0619-06
多年從事婦幼營(yíng)養(yǎng)、營(yíng)養(yǎng)素利用率和需要量的生物化學(xué)研究。獲得多項(xiàng)國(guó)家級(jí)及省部級(jí)科研成果,“人體硒需要量及安全攝入量范圍的研究”獲1991年國(guó)家科技進(jìn)步二等獎(jiǎng)和1990年衛(wèi)生部科技進(jìn)步一等獎(jiǎng);國(guó)家“九五”攻關(guān)課題“微量營(yíng)養(yǎng)素補(bǔ)充對(duì)孕婦健康及胎兒和兒童生長(zhǎng)發(fā)育的影響”獲2002年中華醫(yī)學(xué)二等獎(jiǎng),2012年獲浙江省科技進(jìn)步二等獎(jiǎng)等。
近10年來,國(guó)內(nèi)外公開發(fā)表論文約150篇,主編論著和譯著6部,主持編寫和制訂中國(guó)營(yíng)養(yǎng)學(xué)會(huì)婦幼膳食指南,參與編寫的論著有《中國(guó)居民膳食營(yíng)養(yǎng)素參考攝入量-2000》,2013年;《中國(guó)營(yíng)養(yǎng)百科全書》婦幼營(yíng)養(yǎng)部分主編之一,2004年;主編科普論著約10冊(cè);主編《中華醫(yī)學(xué)百科全書》人群營(yíng)養(yǎng)部分,參與編寫《國(guó)家的學(xué)生飲用奶計(jì)劃研究報(bào)告》-2008,主編人乳成分-2016。