曾銀東,陳 棟,陳 鵬,李 琳,張菀倫
(1.福建省海洋預(yù)報(bào)臺(tái),福建 福州 350003;2.中國海洋大學(xué)海洋與大氣學(xué)院,山東 青島 266100)
海洋生態(tài)池塘在線監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
曾銀東1,2,陳 棟2,陳 鵬2,李 琳2,張菀倫2
(1.福建省海洋預(yù)報(bào)臺(tái),福建 福州 350003;2.中國海洋大學(xué)海洋與大氣學(xué)院,山東 青島 266100)
針對(duì)目前我國池塘監(jiān)測(cè)系統(tǒng)在穩(wěn)定可靠及可擴(kuò)展性、數(shù)據(jù)連續(xù)實(shí)時(shí)性、水下環(huán)境的可視化等方面的不足,本文提出了一種新型的模塊化池塘生態(tài)環(huán)境在線監(jiān)測(cè)系統(tǒng)解決方案,通過在池塘循環(huán)水入水口布放多參數(shù)傳感器探頭,及精選部分池塘養(yǎng)殖池布放水下高清攝像頭,接入相應(yīng)的數(shù)據(jù)采集控制系統(tǒng)進(jìn)行集成搭載,利用無線傳輸模塊或地面以太網(wǎng)與控制中心通信完成對(duì)數(shù)據(jù)的實(shí)時(shí)更新與展示發(fā)布,真正實(shí)現(xiàn)了對(duì)池塘水溫、鹽度、葉綠素、溶解氧等生態(tài)環(huán)境要素的長期、實(shí)時(shí)、連續(xù)、在線監(jiān)測(cè),同時(shí)對(duì)池塘生物活動(dòng)狀態(tài)及生活習(xí)性等進(jìn)行實(shí)況視頻監(jiān)控,并且滿足對(duì)氨氮、亞硝酸鹽等營養(yǎng)鹽要素的擴(kuò)展集成。通過山東青島近岸海域示范運(yùn)行,驗(yàn)證了該方案實(shí)施的可行性,這將為海塘養(yǎng)殖業(yè)生產(chǎn)經(jīng)營提供可靠的數(shù)據(jù)支持與技術(shù)保障,具有廣闊的應(yīng)用前景。
海洋池塘;生態(tài)環(huán)境;在線監(jiān)測(cè)系統(tǒng);設(shè)計(jì)
20世紀(jì)50年代以來,我國海水養(yǎng)殖業(yè)發(fā)展迅速,從1961—2004年短短的幾十年間,養(yǎng)殖產(chǎn)量提高了77.69倍,達(dá)到1 253.3×104t[1]。海水池塘養(yǎng)殖是海水養(yǎng)殖業(yè)的三大主要養(yǎng)殖方式之一,始于20世紀(jì)70年代末的大規(guī)模中國對(duì)蝦養(yǎng)殖,近年來,池塘養(yǎng)殖規(guī)模呈現(xiàn)遞增趨勢(shì)[2]。就養(yǎng)殖技術(shù)和管理能力而言,我國已經(jīng)取得了很大程度的發(fā)展。但由于海洋池塘養(yǎng)殖業(yè)起步相對(duì)較晚,在很多方面還不夠完善,比如池塘養(yǎng)殖業(yè)的現(xiàn)代化、規(guī)?;?、信息化在很大程度上落后于一些發(fā)達(dá)國家。
海洋生態(tài)環(huán)境的變化與養(yǎng)殖業(yè)的產(chǎn)量息息相關(guān),對(duì)池塘環(huán)境的實(shí)時(shí)監(jiān)測(cè)將有助于掌握養(yǎng)殖生物生存環(huán)境的變化及可能產(chǎn)生的影響,并及時(shí)采取措施以減少養(yǎng)殖業(yè)不必要的損失。因此,池塘監(jiān)測(cè)系統(tǒng)對(duì)于池塘養(yǎng)殖業(yè)的發(fā)展具有重要作用。我國現(xiàn)有池塘監(jiān)測(cè)系統(tǒng)仍存在著許多不足,如系統(tǒng)的穩(wěn)定可靠性及可擴(kuò)展性、監(jiān)測(cè)數(shù)據(jù)的連續(xù)實(shí)時(shí)性、水下環(huán)境的可視化、監(jiān)測(cè)數(shù)據(jù)的開發(fā)與使用等方面還不夠理想?;谏鲜霈F(xiàn)狀,本文提出了一種新型的模塊化池塘生態(tài)環(huán)境在線監(jiān)測(cè)系統(tǒng)方案[3]。
通過在池塘循環(huán)水入水口布放多參數(shù)傳感器探頭接入相應(yīng)的數(shù)據(jù)采集控制系統(tǒng),并在特定水域增加水下視頻監(jiān)測(cè)設(shè)備,通過與控制中心通信,完成對(duì)數(shù)據(jù)的實(shí)時(shí)更新與展示發(fā)布,構(gòu)建一套新型的模塊化池塘生態(tài)環(huán)境在線監(jiān)測(cè)系統(tǒng),實(shí)現(xiàn)對(duì)池塘包括水溫、鹽度、深度、葉綠素、溶解氧等生態(tài)環(huán)境環(huán)境要素的長期、實(shí)時(shí)、連續(xù)、在線監(jiān)測(cè),對(duì)池塘水質(zhì)環(huán)境和生物運(yùn)動(dòng)狀態(tài)及生活習(xí)性的實(shí)況視頻監(jiān)控[4],并且滿足對(duì)氨氮、亞硝酸鹽等營養(yǎng)鹽要素的擴(kuò)展集成。本設(shè)計(jì)的優(yōu)勢(shì)主要包括以下幾個(gè)方面:
1)系統(tǒng)集成:通過引進(jìn)現(xiàn)場(chǎng)CAN總線分布式技術(shù)對(duì)多參數(shù)傳感器探頭及水下攝像頭進(jìn)行有效搭載集成,提高系統(tǒng)整體穩(wěn)定性與可靠性,以及后期可擴(kuò)展性;
2)數(shù)據(jù)共享:通過構(gòu)建監(jiān)測(cè)控制中心,對(duì)池塘生態(tài)環(huán)境數(shù)據(jù)及養(yǎng)殖區(qū)實(shí)況視頻進(jìn)行及時(shí)展示發(fā)布,從而實(shí)現(xiàn)數(shù)據(jù)共享;
3)信息整合:通過對(duì)監(jiān)測(cè)數(shù)據(jù)進(jìn)行信息整合,分析生態(tài)環(huán)境與產(chǎn)量關(guān)系,從而指導(dǎo)并進(jìn)行輔助決策,實(shí)現(xiàn)對(duì)異常水質(zhì)的預(yù)警預(yù)報(bào),提高養(yǎng)殖質(zhì)量。
2.1 總體架構(gòu)
根據(jù)池塘養(yǎng)殖區(qū)的結(jié)構(gòu)設(shè)計(jì),在各池塘養(yǎng)殖區(qū)放置生態(tài)環(huán)境數(shù)據(jù)采集控制系統(tǒng),池塘內(nèi)布放水質(zhì)監(jiān)測(cè)探頭,通過水密電纜集中接入相應(yīng)池塘邊的控制箱。監(jiān)控中心通過GPRS/CDMA通道負(fù)責(zé)與數(shù)據(jù)采集控制系統(tǒng)通信,并將系統(tǒng)狀態(tài)監(jiān)控?cái)?shù)據(jù)與生態(tài)環(huán)境數(shù)據(jù)實(shí)時(shí)地傳輸?shù)奖O(jiān)測(cè)控制中心[5],系統(tǒng)網(wǎng)絡(luò)拓?fù)鋱D如圖1所示。
2.2 采集系統(tǒng)
數(shù)據(jù)采集控制系統(tǒng)是池塘生態(tài)環(huán)境在線監(jiān)測(cè)系統(tǒng)的核心部分,通過引入現(xiàn)場(chǎng)CAN總線分布式模塊化集成控制技術(shù),主要負(fù)責(zé)池塘循環(huán)水入口處多參數(shù)傳感器探頭及攝像頭的有效集成搭載,其系統(tǒng)組成框圖如圖2所示。
其中,按照數(shù)據(jù)采集控制系統(tǒng)空間位置劃分,主要包括池塘內(nèi)布放于循環(huán)水入水口處的多參數(shù)水質(zhì)監(jiān)測(cè)探頭、水下攝像頭及池塘岸基水密控制箱。
2.2.1 生態(tài)環(huán)境監(jiān)測(cè)數(shù)據(jù)采集軟硬件設(shè)計(jì)
系統(tǒng)功能模塊主要包括供電單元模塊、主從控制模塊、傳感器模塊、無線傳輸模塊。供電模塊負(fù)責(zé)主從控制模塊與傳感器模塊的能源供給與分配;主從控制模塊與各傳感器模塊通過現(xiàn)場(chǎng)CAN總線通信,負(fù)責(zé)傳感器管理與控制;傳感器模塊通過信號(hào)線和動(dòng)力線與控制箱掛載監(jiān)測(cè)探頭連接,負(fù)責(zé)傳感器探頭電源管理與數(shù)據(jù)采集處理[6]。
1)供電單元模塊
供電模塊主要負(fù)責(zé)主從控制模塊、傳感器模塊的能源供給,通過DC/DC模塊輸出5 V和12 V的電壓為主從模塊供電;各傳感器模塊將48 V輸入電壓轉(zhuǎn)換成適合各模塊正常工作的電壓,實(shí)際電路板如圖3所示:
2)主從控制模塊
主從控制模塊通過現(xiàn)場(chǎng)CAN總線與傳感器模塊通信,負(fù)責(zé)傳感器模塊的管理與控制,并負(fù)責(zé)傳感器數(shù)據(jù)解析處理工作[7],是整個(gè)數(shù)據(jù)采集器的核心控制部分,是系統(tǒng)穩(wěn)定運(yùn)行的關(guān)鍵。為了保證系統(tǒng)的穩(wěn)定可靠性,該部分主要由雙冗余的主控模塊與從模塊組成。
在硬件電路設(shè)計(jì)上,采用核心板搭配底板的設(shè)計(jì),核心板處理器采用ATMEL AT91SAM9263芯片;底板根據(jù)實(shí)際應(yīng)用進(jìn)行適當(dāng)裁剪設(shè)計(jì),保留必要接口電路,比如RS232接口、以太網(wǎng)接口、CAN控制器接口等。
3)傳感器模塊
各傳感器模塊集供電管理和數(shù)據(jù)采集于一體,通過現(xiàn)場(chǎng)CAN總線與主從控制模塊通信,通過信號(hào)線與動(dòng)力線等兼容接口與掛載傳感器探頭通信。各模塊間軟硬件設(shè)計(jì)類似,硬件電路主要包括CAN協(xié)議轉(zhuǎn)換與電源控制兩部分,是由CAN總線協(xié)議轉(zhuǎn)換器和DC/DC轉(zhuǎn)換器組成。軟件程序負(fù)責(zé)將RS232、RS485的接口數(shù)據(jù)轉(zhuǎn)換成CAN總線數(shù)據(jù)以及傳感器探頭的電源管理[8]。
4)無線傳輸模塊
數(shù)據(jù)采集控制系統(tǒng)在水下傳感器探頭與監(jiān)測(cè)控制中心之間起著信息中轉(zhuǎn)站的作用。在物理連接上,主從控制模塊處理器經(jīng)傳感器模塊和水密電纜與水下觀測(cè)探頭連接構(gòu)成物理通信鏈路[9];同時(shí),處理器通過串口連接GPRS/CDMA的DTU終端,以無線方式與監(jiān)測(cè)控制中心相連。
2.2.2 池塘監(jiān)測(cè)現(xiàn)場(chǎng)控制箱
圖4是控制箱整體構(gòu)造圖,控制箱內(nèi)部安裝采用類似于PC電腦主板的插卡方式,其中包括供電模塊電路板、主從控制模塊電路板、傳感器模塊電路板、底板等。底板內(nèi)部預(yù)留多路擴(kuò)展插槽,可以根據(jù)需求更換傳感器模塊。
2.3 數(shù)據(jù)監(jiān)控中心系統(tǒng)
數(shù)據(jù)監(jiān)控中心主要包括兩個(gè)部分:實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)平臺(tái)與資源數(shù)據(jù)共享網(wǎng)站。其中實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)平臺(tái)負(fù)責(zé)水質(zhì)在線數(shù)據(jù)采集控制系統(tǒng)的遠(yuǎn)程控制、實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)、實(shí)況視頻播放等;資源共享網(wǎng)站則負(fù)責(zé)數(shù)據(jù)發(fā)布、信息整合等功能[10]。
2.3.1 實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)平臺(tái)
實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)平臺(tái)(圖5),主要負(fù)責(zé)遠(yuǎn)程控制養(yǎng)殖區(qū)內(nèi)所有池塘生態(tài)環(huán)境在線監(jiān)測(cè)數(shù)據(jù)的采集與控制,并負(fù)責(zé)將監(jiān)測(cè)數(shù)據(jù)實(shí)時(shí)轉(zhuǎn)發(fā)至數(shù)據(jù)監(jiān)測(cè)中心。當(dāng)CTD、溶解氧等傳感器探頭進(jìn)行采樣時(shí),前端控制模塊與數(shù)據(jù)管理系統(tǒng)建立長連接,解析并存儲(chǔ)原始采樣數(shù)據(jù),同時(shí)根據(jù)通信協(xié)議,組包轉(zhuǎn)發(fā)數(shù)據(jù)至數(shù)據(jù)管理系統(tǒng)。另外,本設(shè)計(jì)還實(shí)現(xiàn)了斷網(wǎng)重連、超時(shí)重發(fā)、遠(yuǎn)程反饋等機(jī)制,保證與數(shù)據(jù)管理系統(tǒng)長連接的穩(wěn)定性。
2.3.2 資源共享網(wǎng)站
資源共享網(wǎng)站主要負(fù)責(zé)發(fā)布實(shí)時(shí)數(shù)據(jù)監(jiān)測(cè)平臺(tái)獲取的水質(zhì)更新數(shù)據(jù),供外部用戶訪問查看,考慮到數(shù)據(jù)的安全性、可靠性,將存儲(chǔ)數(shù)據(jù)服務(wù)器分為四類:數(shù)據(jù)庫服務(wù)器、數(shù)據(jù)處理服務(wù)器、數(shù)據(jù)訪問服務(wù)器及數(shù)據(jù)備份服務(wù)器。
2016年在山東青島近岸海域部署建設(shè)一套海洋生態(tài)池塘在線監(jiān)測(cè)系統(tǒng),并投入業(yè)務(wù)化試運(yùn)行,根據(jù)實(shí)際監(jiān)測(cè)需求,系統(tǒng)集成搭載了WQM傳感器、ROS C600攝像頭及LED光源設(shè)備,實(shí)現(xiàn)了對(duì)溫度、鹽度、深度、葉綠素、溶解氧、濁度等生態(tài)要素及水下高清實(shí)況視頻的長期、實(shí)時(shí)、在線監(jiān)測(cè)。通過對(duì)一段時(shí)間的監(jiān)測(cè)數(shù)據(jù)進(jìn)行定量分析,給出了各生態(tài)環(huán)境要素隨時(shí)間推移的變化情況。
圖6顯示,該海域潮周期變化以正規(guī)半日潮為主;監(jiān)測(cè)期間水溫持續(xù)增溫,平均增長率為0.12 ℃/d,日最大變化幅度達(dá)0.2℃;鹽度在31.40~31.65之間,日變化較為平緩;監(jiān)測(cè)期間溶解氧呈線性遞減,平均遞減率為0.024 mL/L·d,且與溫度呈顯著的負(fù)相關(guān);葉綠素濃度代表了初級(jí)生產(chǎn)力情況,監(jiān)測(cè)期間變化與溫度無顯著相關(guān)性,影響因子有待進(jìn)一步研究;濁度變化趨勢(shì)較為復(fù)雜,受近海潮水和風(fēng)場(chǎng)混合作用影響,單一因素相關(guān)性較低。
本文提出了一種新型模塊化的海洋生態(tài)池塘在線監(jiān)測(cè)系統(tǒng)解決方案,并在山東青島近岸海域進(jìn)行了部署建設(shè)及示范運(yùn)行,結(jié)果表明其可以實(shí)現(xiàn)對(duì)池塘水體水溫、鹽度、深度、葉綠素、溶解氧等水質(zhì)要素的實(shí)時(shí)監(jiān)測(cè);對(duì)池塘養(yǎng)殖區(qū)生物活動(dòng)狀態(tài)及生活習(xí)性的實(shí)時(shí)視頻監(jiān)控;對(duì)儀器工作狀態(tài)、數(shù)據(jù)采集頻次、監(jiān)測(cè)數(shù)據(jù)質(zhì)量的控制。本設(shè)計(jì)中采用現(xiàn)場(chǎng)CAN總線模塊化設(shè)計(jì),可以方便更新和升級(jí)儀器,同時(shí)考慮到系統(tǒng)需求的多樣性,預(yù)留了充足的設(shè)備接口,從而可以掛載氨氮、亞硝酸鹽等營養(yǎng)鹽監(jiān)測(cè)設(shè)備。通過獲取的大量第一手生態(tài)環(huán)境數(shù)據(jù),可為海塘養(yǎng)殖業(yè)的生產(chǎn)經(jīng)營提供可靠的數(shù)據(jù)支持與技術(shù)保障,具有廣闊的應(yīng)用前景。
[1]李相普,賈文平,耿緒云.淺談我國海水養(yǎng)殖標(biāo)準(zhǔn)化的現(xiàn)狀及發(fā)展途徑[J].天津水產(chǎn),2006,(2-3):30-33.
[2]趙廣苗.當(dāng)前我國的海水池塘養(yǎng)殖模式及其發(fā)展趨勢(shì)[J].水產(chǎn)科技情報(bào),2006,33(5):206-211.
[3]李道亮,陳新宇,王振智,等.一種池塘養(yǎng)殖水質(zhì)在線監(jiān)測(cè)系統(tǒng):CN 201320283673.3[P].2013-11-06.
[4]張海燕,李欣,李康,等.深海海洋動(dòng)力環(huán)境原位實(shí)時(shí)監(jiān)測(cè)系統(tǒng)研究[J].高技術(shù)通訊,2014,24(3):221-227.
[5]周恒瑞,馬從國,王業(yè)琴,等.基于GPRS的可移動(dòng)式池塘水質(zhì)無線監(jiān)測(cè)節(jié)點(diǎn)的設(shè)計(jì)[J].福建農(nóng)業(yè)科技,2014,45(11):72-76.
[6]綦聲波,沈翔,于敬東.基于CAN總線的海洋水文氣象觀測(cè)系統(tǒng)設(shè)計(jì)[J].機(jī)械與電子,2014,(7):35-39.
[7]陳棟,李欣,李培良.基于觀測(cè)網(wǎng)的海底動(dòng)力環(huán)境監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].海洋技術(shù)學(xué)報(bào),2015,(2):21-26.
[8]周龍甫,呼永河,范泉水,等.模擬串口技術(shù)在多傳感器數(shù)據(jù)采集中的應(yīng)用[J].醫(yī)療衛(wèi)生裝備,2013,34(10):4-5.
[9]李本龍.近海有纜觀測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D].青島:中國海洋大學(xué),2012.
[10]王鴻雁,孟祥印,趙陽,等.基于ARM9及Android的水產(chǎn)養(yǎng)殖監(jiān)控系統(tǒng)設(shè)計(jì)[J].漁業(yè)現(xiàn)代化,2016,43(4):11-15.
Design and implementation of a marine ecological pond online monitoring system
ZENG Yindong1, 2,CHEN Dong2,CHEN Peng2,LI Lin2,ZHANG Wanlun2
(1.Marine Forecasting Center of Fujian Province,F(xiàn)uzhou 350003,China;2.College of Oceanic and Atmospheric Sciences,Ocean University of China,Qingdao 266100,China)
The scale of pond farming in our country is increasing year by year,but we still fall behind the other developed countries in the modernization,scale and informatization.The real-time monitoring of the pond ecological environment will help to reduce unnecessary losses in fish farming.There are still many shortcomings in the pond observation system in our country,such as stability,reliability and extendibility of the system,continuous and real-time observation of the observation data,visualization of underwater environment,development and use of observation data,etc.Based on the above situation,this paper presented a novel solution of pond ecological environment online monitoring system,it built a new type of ecological environment online monitoring system by deploying multi-parameter sensor probes in pond circulating water inlet and underwater camera in selecting ponds,accessing to the data acquisition and control system,and then communicating with control center by GPRS/CDMA wireless transmission module or Internet to real-time update,show and release.The system realized the long-term,real-time,continuous,online monitoring of the ecological environment elements including temperature,salinity,depressure,chlorophyll,dissolved oxygen,and real-time live video monitoring of biological movement state and life habits.Besides,the system met the integration of nutrients elements such as ammonia nitrogen and nitrite.The data acquisition and control system was the core part of the on-line monitoring system of pond ecological environment,which was mainly responsible for the effective integration of multi parameter probe and camera through the introduction of the CAN bus distributed modular control technology.According to the system function module,it mainly included power supply module,master and slave control module,sensor module and wireless transmission module.The power supply module was responsible for the energy supply and distribution of the master-slave control module and the sensor module included +5 V,+12 V,+48 V by DC/DC module.The master-slave control module was responsible for management,control and communicate with the field CAN bus of each sensor module.The hardware part utilized the structure of core board plus bottom board where core board processor employed the ATMEL AT91SAM9263 and bottom board retained the necessary interface circuits,sensor module was responsible for CAN protocol conversion and power control including multi-parameter CAN module,camera CAN module,led CAN module and other extension CAN module.Wireless transmission module was responsible for communication with monitoring and control center by GPRS/CDMA DTU module.The control box inside was equipped with a card inserting mode similar to the PC computer mainboard,which comprised a power supply circuit board,a master-slave control circuit board,multi sensor circuit board,a bottom circuit board,etc.The bottom circuit board was provided with a multi-channel expansion slot,and the sensor module could be replaced according to the requirement.The control center was responsible for the release and show of observation data and live video including real time data monitoring platform and resource data sharing website.We have built the pond ecological environment online monitoring system to integrate WQM sensor,ROS C600 camera and LED light source device according to the actual needs of offshore area of Qingdao,Shandong and put into trial operation.It has proved the reliability and feasibility of the proposed solution and supplied reliable data support and technical guarantee for directing safety production and has broad application prospects.
pond;ecological environment;online monitoring system;design
2017-05-31
曾銀東(1978-),男,在職博士,高級(jí)工程師,從事海洋觀測(cè)預(yù)報(bào)工作.E-mail:zydzyd100@163.com
P71;TP39
A
1006-5601(2017)04-0295-08
曾銀東,陳 棟,陳 鵬,等.海洋生態(tài)池塘在線監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J].漁業(yè)研究,2017,39(4):295-302.