• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      硫酸乙酰肝素蛋白聚糖在膠質(zhì)母細(xì)胞瘤腫瘤微環(huán)境中的作用研究進(jìn)展

      2017-09-03 10:20:26紀(jì)青,常青,2
      關(guān)鍵詞:蛋白聚糖配體調(diào)控

      紀(jì) 青,常 青,2

      (北京大學(xué):1醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病理系,2第三醫(yī)院病理科,北京100191)

      ·專家述評(píng)·

      硫酸乙酰肝素蛋白聚糖在膠質(zhì)母細(xì)胞瘤腫瘤微環(huán)境中的作用研究進(jìn)展

      紀(jì) 青1,常 青1,2

      (北京大學(xué):1醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病理系,2第三醫(yī)院病理科,北京100191)

      膠質(zhì)母細(xì)胞瘤(GBM)是一種呈彌漫性生長(zhǎng)的高度惡性膠質(zhì)細(xì)胞瘤.腫瘤微環(huán)境在GBM的生長(zhǎng)中起重要作用.硫酸乙酰肝素蛋白聚糖(HSPG)是GBM腫瘤微環(huán)境中的重要成分之一.它通過(guò)與不同蛋白配體的相互作用,可以調(diào)控一系列配體介導(dǎo)的信號(hào)通路,通過(guò)對(duì)腫瘤細(xì)胞、血管內(nèi)皮細(xì)胞以及免疫細(xì)胞的不同作用來(lái)促進(jìn)GBM的形成和發(fā)展.HSPG的修飾酶,HPSE和SULF,也可以通過(guò)對(duì)HSPG上硫酸乙酰肝素黏多糖鏈的修飾作用來(lái)調(diào)節(jié)相關(guān)細(xì)胞信號(hào)通路,調(diào)節(jié)腫瘤的生長(zhǎng).在前神經(jīng)元型和間質(zhì)型GBM中,HSPG及其修飾酶的表達(dá)有明顯的差異性,以其在GBM中的亞型特異性為基礎(chǔ),發(fā)展針對(duì)不同亞型的特異性治療將有利于改善患者的治療效果.正在開(kāi)展的以 HSPG為治療靶點(diǎn)的 PG545、OKN?007、M402和SST0001等藥物的相關(guān)臨床前研究將為GBM患者開(kāi)展精準(zhǔn)治療提供新策略.

      膠質(zhì)母細(xì)胞瘤;硫酸乙酰肝素蛋白聚糖;腫瘤微環(huán)境

      0 引言

      膠質(zhì)母細(xì)胞瘤(glioblastoma,GBM)是一種呈彌漫性生長(zhǎng)的高度惡性膠質(zhì)細(xì)胞瘤.它是成人中最常見(jiàn)的一種惡性腦腫瘤.在WHO 2016版中樞神經(jīng)系統(tǒng)腫瘤分類中,GBM被分為IDH野生型、IDH突變型和NOS型.最新研究表明,以IDH1基因?yàn)榘悬c(diǎn)治療白血病有良好的效果[1].但是IDH抑制劑AG?120和AG221治療IDH突變型膠質(zhì)瘤尚未得到理想的三期臨床試驗(yàn)結(jié)果,仍需深入探索相關(guān)的分子機(jī)制,從而改善治療方案,取得更佳治療效果[2].

      與WHO分型不同,The Cancer Genome Atlas(TCGA)的研究者基于患者年齡、預(yù)后、基因型及積極治療的效果,將GBM進(jìn)一步分為四個(gè)亞型,分別為經(jīng)典型(classical)、前神經(jīng)元型(proneual)、間質(zhì)型(mesenchymal)和神經(jīng)元型(neural)[3].不同亞型受不同信號(hào)通路的調(diào)控(圖1).有研究者發(fā)現(xiàn),在以PDGFR信號(hào)通路改變?yōu)樘卣鞯那吧窠?jīng)元型GBM中,硫酸酯酶2(sulfatase 2,SULF 2)有較高表達(dá)[4].而間質(zhì)型GBM中乙酰肝素酶(heparanase,HPSE)的表達(dá)最多,并且多個(gè)硫酸乙酰肝素蛋白聚糖(heparan sul?fate proteoglycan,HSPG)相關(guān)基因的表達(dá)也有所增加[5].而前二者(SULF2和HPSE)是后者(HSPG)的修飾酶.

      圖1 GBM的TCGA分型[3]

      有研究表明,GBM的發(fā)生與腫瘤微環(huán)境(tumor microenvironment,TME)關(guān)系密切[6-7].TME由腫瘤周圍細(xì)胞及包括腫瘤細(xì)胞在內(nèi)的所有細(xì)胞分泌的各種可溶性因子構(gòu)成.TME提供了一個(gè)促腫瘤形成的環(huán)境,使腫瘤和非腫瘤細(xì)胞的各種代謝反應(yīng)發(fā)生改變,從而幫助腫瘤組織與非腫瘤組織競(jìng)爭(zhēng)營(yíng)養(yǎng)物質(zhì)及其缺乏的相關(guān)分子,使腫瘤組織即使在缺氧的環(huán)境下也能繼續(xù)生長(zhǎng)[8].此外,腫瘤微環(huán)境中的這些代謝異常還能抑制針對(duì)腫瘤細(xì)胞的免疫反應(yīng),并幫助腫瘤組織抵抗治療[10].

      HSPG是腫瘤微環(huán)境中的一種重要蛋白,與GBM的發(fā)展密切相關(guān)[6-7].HSPG及其修飾酶通過(guò)與腫瘤微環(huán)境中不同信號(hào)分子的相互作用調(diào)控相關(guān)信號(hào)通路,改變腫瘤周圍的代謝反應(yīng).而HSPG修飾酶在GBM不同亞型中的差異性表達(dá)提示HSPG可能具有GBM亞型特異性.基于HSPG在腫瘤微環(huán)境中的重要作用,有望發(fā)展出針對(duì)不同亞型GBM的特異性分子診斷和治療方法,改善GBM的治療效果.

      本文將從HSPG的功能到其與腫瘤微環(huán)境的關(guān)系展開(kāi)討論,探討HSPG在GBM臨床診斷與治療中的應(yīng)用前景.

      1 HSPG在人類腫瘤中的生物學(xué)功能

      HSPG是一種蛋白聚糖,由一個(gè)核心蛋白和與核心蛋白相連的HS粘多糖鏈組成.Protein Atlas數(shù)據(jù)庫(kù)顯示,HSPG廣泛存在于多個(gè)人體器官和組織的細(xì)胞中,在小腦、骨髓、心肌、乳腺、前列腺等器官和脂肪組織以及軟組織中均有較高表達(dá),是正常腦組織和GBM中主要的細(xì)胞外環(huán)境成分[9-11].通過(guò)結(jié)合生長(zhǎng)因子、趨化因子、成形素(morphogens)、基質(zhì)蛋白、細(xì)胞粘附分子和蛋白酶等蛋白配體,如核轉(zhuǎn)錄因子κB(nuclear factor of κB,NF?κB)、血小板生長(zhǎng)因子(platelet?derived growth factor,PDGF)、成纖維母細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)等,HSPG可以阻斷配體與其受體結(jié)合,防止其接觸同源受體以減少信號(hào)傳播,或者作為信號(hào)傳播的共同受體促進(jìn)信號(hào)傳播,從而發(fā)揮調(diào)節(jié)細(xì)胞增殖、遷移和粘附的功能[9-14].

      以分泌蛋白Wnt家族的細(xì)胞外調(diào)控為例,從細(xì)胞中釋放后,Wnt配體會(huì)被HSPG等細(xì)胞外蛋白結(jié)合并隔離,只有當(dāng)配體從HSPG上釋放時(shí),才可以結(jié)合并激活Frizzled受體[14],從而發(fā)揮其調(diào)節(jié)細(xì)胞增殖的作用.而另一方面,HSPG也可以作為配體介導(dǎo)的信號(hào)通路的共同受體來(lái)促進(jìn)信號(hào)的傳播,例如具有細(xì)胞增殖、存活、遷移和分化等廣泛的生物學(xué)效應(yīng)的FGF信號(hào)通路.在這一信號(hào)通路中,HSPG就起到了穩(wěn)定FGF配體受體復(fù)合物的作用[15-18].

      HSPG在調(diào)控針對(duì)腫瘤的免疫反應(yīng)中也發(fā)揮著重要作用.HSPG的HS鏈結(jié)合L選擇素后,能夠穩(wěn)定白細(xì)胞的滾動(dòng),使其粘附于上皮.HSPG還能將細(xì)胞因子呈遞給受體,比如巨噬細(xì)胞釋放的CXC細(xì)胞因子配體8(CXC?chemokine ligand 8,CXCL8),從而激活白細(xì)胞的整合蛋白,并促進(jìn)更多穩(wěn)定白細(xì)胞的粘附.此外,HSPG還能通過(guò)結(jié)合激肽原(kininogen)等蛋白協(xié)助白細(xì)胞的跨內(nèi)皮運(yùn)動(dòng)(transendothelial migration),調(diào)控血管的滲透性[19].

      HSPG相關(guān)酶在其生物學(xué)功能的發(fā)揮中也起到了重要作用.如上所述,HSPG由核心蛋白和HS鏈構(gòu)成.HS鏈由以重復(fù)雙糖為單位的碳水化合物鏈組成,經(jīng)過(guò)廣泛的轉(zhuǎn)錄后修飾才能實(shí)現(xiàn)調(diào)控細(xì)胞信號(hào)傳導(dǎo)的功能.其中,葡萄糖胺6O的硫酸化是HSPG與生長(zhǎng)因子結(jié)合以及介導(dǎo)組織正常發(fā)育的重要決定因素[20-21].細(xì)胞外的硫酸酯酶SULF1和SULF2,通過(guò)去除HS鏈6O上的硫基和調(diào)控細(xì)胞外環(huán)境HSPG的蛋白配體,可以激活眾多關(guān)鍵的信號(hào)通路,包括Wnt、Shh及PDGF信號(hào)通路等[14,22-24].

      通過(guò)采用確定基礎(chǔ)數(shù)法來(lái)開(kāi)展預(yù)算編制工作,能夠防止企業(yè)財(cái)務(wù)信息不對(duì)稱現(xiàn)象出現(xiàn),引導(dǎo)預(yù)算體系將預(yù)算目標(biāo)管理中各個(gè)問(wèn)題加以處理。在企業(yè)運(yùn)營(yíng)發(fā)展過(guò)程中,大部分企業(yè)都會(huì)面臨財(cái)務(wù)信息不對(duì)稱現(xiàn)象,使得企業(yè)財(cái)務(wù)預(yù)算管理目標(biāo)和實(shí)際狀況脫節(jié)。在實(shí)際中,頻頻出現(xiàn)“討價(jià)還價(jià)”狀況,使得預(yù)算編制工作過(guò)于形式化。所以,企業(yè)需要采用確定基數(shù)法來(lái)實(shí)現(xiàn)預(yù)算管理,利用委托管理方式,給代理人及委托人提供對(duì)應(yīng)的預(yù)算指標(biāo),并在函數(shù)加權(quán)平均法的引導(dǎo)下,對(duì)企業(yè)預(yù)算指標(biāo)進(jìn)行明確。假設(shè)企業(yè)在年末最終獲取的效益小于預(yù)算標(biāo)準(zhǔn),則可以根據(jù)有關(guān)規(guī)章體系給代理人提出相應(yīng)處理,反之則給予適當(dāng)激勵(lì)。

      另外,HPSE還是一種重要的HSPG相關(guān)酶.它是一種能夠促進(jìn)HS鏈片段生物活性的葡萄糖醛酸糖苷酶.白細(xì)胞需要HPSE的幫助來(lái)溶解內(nèi)皮細(xì)胞基底膜.在溶解基底膜時(shí),HPSE可以釋放 VEGF和FGF2等一系列生長(zhǎng)因子,這些生長(zhǎng)因子最終會(huì)介導(dǎo)血管生成和組織重構(gòu),引起慢性炎癥反應(yīng)[19](圖2).在對(duì)髓母細(xì)胞瘤(medulloblastoma)病理機(jī)制的研究中發(fā)現(xiàn)HPSE能夠調(diào)控Shh和Wnt 3信號(hào)通路,而在GBM等多種惡性腫瘤中,HPSE的水平均有所上調(diào),這說(shuō)明HPSE的水平與腫瘤的形成和侵襲有關(guān)[25-26].

      圖2 FGF2被分泌到細(xì)胞表面后可以與FGFR和HSPG相連,VEGF被分泌到細(xì)胞表面后可以與VEGFR和HSPG相連,在HPSE的作用下,F(xiàn)GF2和VEGF從HSPG上釋放,最終介導(dǎo)血管生成和組織重構(gòu).

      除了HSPG相關(guān)酶,HSPG的核心蛋白在細(xì)胞信號(hào)傳導(dǎo)中也起著重要作用.核心蛋白決定了蛋白聚糖的定位,從而影響細(xì)胞內(nèi)外的信號(hào)傳導(dǎo).以粘結(jié)合蛋白聚糖(syndecans,SDCs)和磷脂酰肌醇聚糖 1(phosphatidylinositol glycan,GPC?1)為例:SDCs包含一個(gè)連接細(xì)胞骨架蛋白的胞漿結(jié)構(gòu)域,與細(xì)胞膜相連,可以作為酶底物介導(dǎo)細(xì)胞信號(hào)傳播[27].粘結(jié)合蛋白多糖?1(syndecan?1,SDC1)是細(xì)胞表面HSPG核心蛋白SDCs的一種,調(diào)控SDC1的表達(dá)水平能夠改變HGF?Met和Wnt信號(hào)的傳導(dǎo),這說(shuō)明SDCs在細(xì)胞信號(hào)傳導(dǎo)、細(xì)胞粘附和遷移中起重要作用[28-30].而GPC?1則是通過(guò)GPI與細(xì)胞膜連接.在人類胰腺癌中,GPC?1的表達(dá)發(fā)生了減少或消失,從而減少了其對(duì)FGF2和HB?EGF的作用,減弱了下游MAPK信號(hào)及腫瘤增殖和血管生成因子,最終使體內(nèi)腫瘤的生長(zhǎng)和轉(zhuǎn)移受到抑制[31].

      2 HSPG在GBM中的研究現(xiàn)狀

      2.1 HSPG與腫瘤微環(huán)境有研究表明,在腫瘤對(duì)TME主要應(yīng)激因素的適應(yīng)反應(yīng)中,HSPG可能起到重要的作用.由于失去控制的增殖與活性,惡性腫瘤細(xì)胞常有嚴(yán)重的缺氧和酸性應(yīng)激,從而引起TME結(jié)構(gòu)和功能的異常.GBM細(xì)胞系U87?MG中,缺氧和酸中毒對(duì)LDL攝取的影響可被肝素有效的逆轉(zhuǎn).LDL和VLDL能引起ERK1/2磷酸化,導(dǎo)致ERK/MAPK通路的激活,該激活在缺氧環(huán)境下更為顯著,而在HSPG缺陷細(xì)胞中,缺氧導(dǎo)致的ERK1/2磷酸化則被削弱[32].該研究結(jié)果證明缺氧時(shí)腫瘤細(xì)胞對(duì)脂蛋白的攝取高度依賴完整的 HSPG表達(dá)和 HS硫化水平[33].

      此外,從腫瘤細(xì)胞表面脫落的SDC1與血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的結(jié)合能夠促進(jìn)內(nèi)皮的侵襲和血管形成[34].對(duì)小鼠內(nèi)皮細(xì)胞進(jìn)行條件性敲除實(shí)驗(yàn)使HSPG成分減少,腫瘤中FGF2和VEGF信號(hào)的傳導(dǎo)將隨之降低,而小鼠體內(nèi)腫瘤的血管形成也將減少[35].有趣的是,在這些被敲除了基因的小鼠正常發(fā)育的組織中,血管的形成并未受到影響,這提示我們可通過(guò)腫瘤組織與正常組織中蛋白聚糖的不同,特異性地抑制腫瘤的血管形成而不損傷正常組織的血管[34].

      2.2 HSPG的修飾酶與腫瘤微環(huán)境HPSE、SULF1

      以及SULF2已經(jīng)被證明可以通過(guò)其酶修飾作用影響一系列介導(dǎo)腫瘤生長(zhǎng)和進(jìn)展的蛋白.這三種酶通過(guò)以下信號(hào)通路發(fā)揮其作用.

      首先,HPSE和SULF通過(guò)修飾HSPG的HS鏈來(lái)改變HSPG相關(guān)的信號(hào)分子及其受體[7].HPSE對(duì)HS鏈的切除作用能夠增加VEGF和FGF2等信號(hào)分子的溶解度,從而促進(jìn)一系列促腫瘤生長(zhǎng)的信號(hào)通路,如血管形成、細(xì)胞增殖和侵襲等,并可抑制腫瘤的凋亡和轉(zhuǎn)移[7,34,36].而SULF1和SULF2對(duì)腫瘤的作用相反,其通過(guò)降低FGF2,VEGF,雙調(diào)蛋白(amphi?regulin),HB?EGF和HGF等信號(hào)蛋白對(duì)血管內(nèi)皮HS的親和性減弱這些與HS結(jié)合的生長(zhǎng)因子的信號(hào)傳導(dǎo)作用[37-38].在 GBM中,敲除 SULF2會(huì)降低多種RTK信號(hào)通路的活性[39],包括 PDGFR?α,IGF1R?β和EPHA2這三條被認(rèn)為與星形膠質(zhì)瘤生長(zhǎng)和侵襲有關(guān)的通路[26,40-41].此外,在相關(guān)的星形膠質(zhì)瘤小鼠模型中觀察到,SULF2的脫落會(huì)導(dǎo)致PDGFR?α的活性降低,并減少腫瘤細(xì)胞的增殖,延長(zhǎng)宿主的生存時(shí)間[39].這些數(shù)據(jù)表明SULF2的表達(dá)對(duì)GBM的進(jìn)展十分重要.

      另外,HPSE和SULF2還能夠調(diào)控HSPG在細(xì)胞表面的表達(dá),由此促進(jìn) HS依賴的信號(hào)傳導(dǎo).如SULF2能通過(guò)上調(diào)細(xì)胞表面蛋白聚糖3的水平激活Wnt信號(hào)通路,從而促進(jìn)Wnt?Frz復(fù)合體的形成,增強(qiáng)Wnt?β?連環(huán)素信號(hào)通路[42].同樣,HPSE也能通過(guò)促進(jìn)細(xì)胞表面HSPG的表達(dá)增強(qiáng)FGF2、Wnt和FGF等信號(hào)通路的傳導(dǎo)[28,30,45].

      最新研究顯示,HPSE還能激活腫瘤細(xì)胞外泌體的形成.腫瘤細(xì)胞外泌體是與脂膜相連的細(xì)胞外囊泡,它能夠促進(jìn)腫瘤細(xì)胞和周圍細(xì)胞的聯(lián)系,幫助修飾腫瘤微環(huán)境,從而促進(jìn)腫瘤的生長(zhǎng)和播散[46].另有研究發(fā)現(xiàn),給予GL261小鼠 GBM細(xì)胞重組 HPSE(recombinant HPSE,rHPSE)能夠增強(qiáng)腫瘤細(xì)胞聚集和生存能力,而給予其HPSE抑制劑PG545處理則會(huì)減弱GBM的生長(zhǎng)和繁殖[47].與野生型小鼠相比,GBM在HPSE轉(zhuǎn)基因小鼠中生長(zhǎng)更快,而在HPSE基因敲除小鼠中生長(zhǎng)更慢,提示HPSE的水平?jīng)Q定GBM的成瘤能力.而HPSE基因敲除小鼠腦腫瘤周圍的膠質(zhì)瘢痕比野生型小鼠腦內(nèi)的要薄,說(shuō)明HPSE的缺乏可能會(huì)影響宿主腦內(nèi)星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞遷移到腫瘤微環(huán)境的能力[5].

      2.3 HSPG是GBM潛在的診斷及判斷預(yù)后的生物標(biāo)記物已有研究顯示,HSPG可以作為血液中的生物標(biāo)記物.Kundu等[5]通過(guò)對(duì)182例患者的觀察以及含有不同數(shù)量HPSE的小鼠模型的研究發(fā)現(xiàn),HPSE在各級(jí)膠質(zhì)瘤中的表達(dá)都比在正常腦組織中的高,其中,高級(jí)別腫瘤相對(duì)于低級(jí)別腫瘤表達(dá)高.此外,HPSE蛋白表達(dá)低(<75%)的患者3年生存率顯著高于蛋白表達(dá)高的患者(>75%),HPSE表達(dá)最低的人群生存率最高.

      如上文所述,HSPG的核心蛋白SDCs在細(xì)胞信號(hào)傳導(dǎo)中起到了重要的作用.值得注意的是,脫落SDC的胞外域可以在血漿或血清樣本中被檢測(cè)到,因此可以將其作為檢測(cè)腫瘤惡性程度的生物標(biāo)記物[7].另外,可以利用細(xì)胞表面SDCs的水平來(lái)判斷GBM患者的預(yù)后.Xu等[48]從基因和蛋白水平上分析了116例膠質(zhì)瘤患者SDC1的表達(dá),并且比較了其表達(dá)與腫瘤級(jí)別和患者預(yù)后的關(guān)系.結(jié)果證明高SDC1蛋白水平是膠質(zhì)瘤患者預(yù)后較差的一個(gè)獨(dú)立判斷指標(biāo)[48].

      3 研究現(xiàn)狀與展望

      HSPG及其修飾酶是腫瘤微環(huán)境中重要的信號(hào)調(diào)控分子.HSPG能夠與受體競(jìng)爭(zhēng)相關(guān)蛋白配體,抑制信號(hào)傳播,或者作為共同受體促進(jìn)信號(hào)的傳遞,從而調(diào)控相關(guān)的細(xì)胞信號(hào)通路,并調(diào)節(jié)腫瘤細(xì)胞的增殖、遷移和粘附.此外,它還能通過(guò)對(duì)VEGF相關(guān)信號(hào)通路的調(diào)控,介導(dǎo)腫瘤中的血管形成.HSPG的修飾酶(HPSE和SULF)可通過(guò)修飾HSPG的HS鏈來(lái)影響腫瘤微環(huán)境中的信號(hào)通路,并調(diào)控HSPG在細(xì)胞表面的表達(dá),促進(jìn)信號(hào)的傳導(dǎo).HPSE還可以促進(jìn)SDC1從細(xì)胞表面的脫落和激活腫瘤外泌體的形成.HPSE與SULF能夠促進(jìn)GBM中多種RTK信號(hào)通路的活性,在腫瘤細(xì)胞的發(fā)展中起重要作用.同時(shí),HSPG的核心蛋白也能夠作為酶底物與細(xì)胞膜相連,從而介導(dǎo)細(xì)胞信號(hào)的傳播.

      HSPG在GBM腫瘤微環(huán)境中重要的信號(hào)調(diào)控作用提示我們其作為GBM治療靶點(diǎn)的可行性.通過(guò)HSPG,可以調(diào)控與腫瘤相關(guān)的下游信號(hào)通路,從而抑制腫瘤的發(fā)生.此外,HSPG及其修飾酶在前神經(jīng)元型和間質(zhì)性GBM中表達(dá)的顯著不同,說(shuō)明HSPG具有該腫瘤亞型特異性.因此,可將其作為GBM不同亞型的潛在治療靶點(diǎn).前文提到的PG545就是一種能抑制GL261腫瘤生長(zhǎng)的HPSE抑制物,與之相似,SULF2抑制劑OKN?007能顯著降低GL261小鼠膠質(zhì)瘤模型中VEGFR?2的水平,從而減少腫瘤血管的生成.SST0001也是一種HPSE抑制劑,目前正處于多發(fā)性骨髓瘤的臨床Ⅰ期實(shí)驗(yàn)中[49].此外,目前正處于胰腺癌的臨床Ⅱ期實(shí)驗(yàn)中的HS類似物M402(圖3),其臨床前研究結(jié)果顯示它可以抑制體內(nèi)腫瘤細(xì)胞和宿主細(xì)胞的功能,減少腫瘤中微血管的密度[50].諸多HSPG修飾酶抑制劑的臨床前研究預(yù)示了其臨床治療前景,有力證明了以HSPG為治療靶點(diǎn)的可行性.

      圖3 M402作為硫酸乙酰肝素的類似物,能競(jìng)爭(zhēng)性抑制HS與配體的連接

      大量關(guān)于GBM相關(guān)分子研究的進(jìn)展為我們提供了基因靶向治療的思路.HSPG的實(shí)驗(yàn)室研究及臨床前研究結(jié)果預(yù)示了其良好的靶向治療前景.構(gòu)建能夠反映GBM遺傳異質(zhì)性的模型,加深對(duì)HSPG在不同亞型GBM中的功能和致病機(jī)制的認(rèn)識(shí),使其轉(zhuǎn)化到臨床應(yīng)用中,最終為GBM患者開(kāi)展精準(zhǔn)治療提供新策略.

      [1]Saygin C,Carraway HE.Emerging therapies for acute myeloid leuke?mia[J].J Hematology Oncol,2017,10(1):93.

      [2]Szopa W,Burley TA,Kramer?Marek G,et al.diagnostic and thera?peutic biomarkers in glioblastoma:current status and future perspec?tives[J].Biomed Res Int,2017,2017:8013575.

      [3]Verhaak RGW,Hoadley KA,Purdom E,et al.An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma charac?terized by abnormalities in PDGFRA,IDH1,EGFR and NF1[J].Cancer Cell,2009,17(1):98.

      [4]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high?grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.

      [5]Kundu S,Xiong A,Spyrou A,et al.Heparanase promotes glioma progression and is inversely correlated with patient survival[J].Mol Cancer Res,2016,14(12):1243-1253.

      [6]Phillips JJ.Novel therapeutic targets in the brain tumor microenviron?ment[J].Oncotarget,2012,3(5):568-575.

      [7]Hammond E,Khurana A,Shridhar V,et al.The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancertherapeutics[J].Front Oncol,2014,4:195.

      [8]Justus CR,Sanderlin EJ,Yang LV.Molecular connections between cancer cell metabolism and the tumor microenvironment[J].Int J Mol Sci,2015,16(5):11055-11086.

      [9]Watanabe A,Mabuchi T,Satoh E,et al.Expression of syndecans,a heparan sulfate proteoglycan,in malignant gliomas:participation of nuclear factor?kappa B in upregulation of syndecan?1 expression[J].J Neurooncol,2006,77(1):25-32.

      [10]Smith EM,Mitsi M,Nugent MA,et al.PDGF?A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation[J].Proc Natl Acad Sci U S A,2009,106(51):21683-21688.

      [11]Feyzi E,Lustig F,F(xiàn)ager G,et al.Characterization of heparin and heparan sulfate domains binding to the long splice variant of platelet?derived growth factor a chain[J].J Biol Chem,1997,272(9):5518-5524.

      [12]Kreuger J,Salmivirta M,Sturiale L,et al.Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2[J].J Biol Chem,2001,276(33):30744-30752.

      [13]Ashikari?Hada S,Habuchi H,Kariya Y,et al.Characterization of growth factorbinding structures in heparin/heparan sulfate using an octasaccharide library[J].J Biol Chem,2004,279(13):12346-12354.

      [14]Dhoot GK,Gustafsson MK,Ai X,et al.Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase[J].Science,2001,293(5535):1663-1666.

      [15]Turner N,Grose R.Fibroblast growth factor signalling:from devel?opment to cancer[J].Nat Rev Cancer,2010,10(2):116-129.

      [16]Rapraeger AC,Krufka A,Olwin BB.Requirement of heparan sulfate for bFGF?mediated fibroblast growth and myoblast differentiation[J].Science,1991,252(5013):1705-1708.

      [17]Ford?Perriss M,Guimond SE,Greferath U,et al.Variant heparan sulfates synthesized in developing mouse brain differentially regulate FGF signaling[J].Glycobiology,2002,12(11):721-727.

      [18]Goodger SJ,Robinson CJ,Murphy KJ,et al.Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mecha?nisms[J].J Biol Chem,2008,283(19):13001-13008.

      [19] Parish CR.The role of heparan sulphate in inflammation[J].Nat Rev Immunol,2006,6(9):633-643.

      [20]Kamimura K,F(xiàn)ujise M,Villa F,et al.Drosophila heparan sulfate 6?O?sulfotransferase(dHS6ST) gene.Structure,expression,and function in the formation of the tracheal system[J].J Biol Chem,2001,276(20):17014-17021.

      [21]Habuchi H,Habuchi O,Kimata K.Sulfation pattern in glycosamin?oglycan:does it have a code[J].Glycoconj J,2004,21(1-2):47-52.[22]Ai X,Do AT,Lozynska O,et al.QSulf1 remodels the 6?O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling[J].J Cell Biol,2003,162(2):341-351.

      [23]Danesin C,Agius E,Escalas N,et al.Ventral neural progenitors switch toward an oligodendroglial fate in response to increased Sonic hedgehog(Shh)activity:involvement of Sulfatase 1 in modulating Shh signaling in the ventral spinal cord[J].J Neurosci,2006,26(19):5037-5048.

      [24]Ai X,Kitazawa T,Do AT,et al.SULF1 and SULF2 regulate hepa?ran sulfate?mediated GDNF signaling for esophageal innervation[J].Development,2007,134(18):3327-3338.

      [25]Hong X,Nelson KK,deCarvalho AC,et al.Heparanase expression of glioma in human and animal models[J].J Neurosurg,2010,113(2):261-269.

      [26]Ridgway LD,Wetzel MD,Marchetti D.Heparanase modulates Shh and Wnt3a signaling in human medulloblastoma cells[J].Exp Ther Med,2011,2(2):229-237.

      [27]Rapraeger AC.Syndecan?regulated receptor signaling[J].J Cell Biol,2000,149(5):995-998.

      [28]Derksen PW,Keehnen RM,Evers LM,et al.Cell surface proteoglycan syndecan?1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma[J].Blood,2002,99(4):1405-1410.

      [29]Ramani VC,Yang Y,Ren Y,et al.Heparanase plays a dual role in driving hepatocyte growth factor(HGF) signaling by enhancing HGF expression and activity[J].J Biol Chem,2011,286(8):6490-6499.

      [30]Alexander CM,Reichsman F,Hinkes MT,et al.Syndecan?1 is required for Wnt?1?induced mammary tumorigenesis in mice[J].Nat Genet,2000,25(3):329-332.

      [31]Whipple CA,Young AL,Korc M.A Kras(G12D)?driven genetic mouse model of pancreatic cancer requires glypican?1 for efficient proliferation and angiogenesis[J].Oncogene,2011,31(20):2535-2544.

      [32]Christianson HC,Svensson KJ,van Kuppevelt TH,et al.Cancer cell exosomes depend on cell?surface heparan sulfate proteoglycans for their internalization and functional activity[J].Proc Natl Acad Sci U S A,2013,110(43):17380-17385.

      [33]Menard J,Christianson HC,Kucharzewska P,et al.Metastasis stim?ulation by hypoxia and acidosis?induced extracellular lipid uptake is mediated by proteoglycan?dependent endocytosis[J].Cancer Res,2016,76(16):4828-4840.

      [34]Ferreras C,Rushton G,Cole CL,et al.Endothelial heparan sulfate 6?o?sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor[J].J Biol Chem,2012,287(43):36132-36146.

      [35]Fuster MM,Wang L,Castagnola J,et al.Genetic alteration of endo?thelial heparan sulfate selectively inhibits tumor angiogenesis[J].J Cell Biol,2007,177(3):539-549.

      [36]Tan KW,Chong SZ,Wong FH,et al.Neutrophils contribute to in?flammatory lymphangiogenesis by increasing VEGF?A bioavailability and secreting VEGF?D[J].Blood,2013,122(22):3666-3677.

      [37]Lai J,Chien J,Staub J,et al.Loss of HSulf?1 up?regulates heparin?binding growth factor signaling in cancer[J].J Biol Chem,2003,278(25):23107-23117.

      [38]Narita K,Staub J,Chien J,et al.HSulf?1 inhibits angiogenesis and tumorigenesis in vivo[J].Cancer Res,2006 66(12):6025-60232.

      [39]Lerner I,Hermano E,Zcharia E,et al.Heparanase powers a chronic inflammatory circuit that promotes colitis?associated tumorigenesis in mice[J].J Clin Invest,2011,121(5):1709-1721.

      [40]Carapancea M,Cosaceanu D,Budiu R,et al.Dual targeting of IGF?1R and PDGFR inhibits proliferation in highgrade gliomas cells and induces radiosensitivity in JNK?1 expressing cells[J].J Neurooncol,2007,85(3):245-254.

      [41] Liu TJ,LaFortune T,Honda T,et al.Inhibition of both focal adhesion kinase and insulin?like growth factor?I receptor kinase suppresses glioma proliferation in vitro and in vivo[J].Mol Cancer Ther,2007,6(4):1357-1367.

      [42]Lai JP,Sandhu DS,Yu C,et al.Sulfatase 2 up?regulates glypican 3,promotes fibroblast growth factor signaling,and decreases survival in hepatocellular carcinoma[J].Hepatology,2008,47(4):1211-1222.

      [43]Purushothaman A,Chen L,Yang Y,et al.Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma[J].J Biol Chem,2008,283(47):32628-32636.

      [44]Purushothaman A,Uyama T,Kobayashi F,et al.Heparanase?en?hanced shedding of syndecan?1 by myeloma cells promotes endothelial invasion and angiogenesis[J].Blood,2010,115(12):2449-2457.

      [45]Filla MS,Dam P,Rapraeger AC.The cell surface proteoglycan syn?decan?1 mediates fibroblast growth factor?2 binding and activity[J].J Cell Physiol,1998,174(3):310-321.

      [46]Atay S,Godwin AK.Tumor?derived exosomes:a message delivery system for tumor progression[J].Commun Integr Biol,2014,7(1):e28231.

      [47]Hammond E,Handley P,Dredge K,et al.Mechanisms of hepara?nase inhibition by the heparan sulfate mimetic PG545 and three structural analogues[J].FEBS Open Bio,2013,3(1):346-351.

      [48]Xu Y,Yuan J,Zhang Z,et al.Syndecan?1 expression in human glioma is correlated with advanced tumor progression and poor prognosis[J].Mol Biol Rep,2012,39(9):8979-8985.

      [49]Souza PC,Smith N,Pody R,et al.OKN?007 decreases VEGFR?2 levels in a preclinical GL261 mouse glioma model[J].Am J Nucl Med Mol Imaging,2015,5(4):363-378.

      [50]Zhou H,Roy S,Cochran E,et al.M402,a novel heparan sulfate mimetic,targets multiple pathways implicated in tumor progression and metastasis[J].PloS One,2011,6(6):e21106.

      消 息

      《轉(zhuǎn)化醫(yī)學(xué)電子雜志》征訂啟事

      《轉(zhuǎn)化醫(yī)學(xué)電子雜志》是經(jīng)國(guó)家新聞出版廣電總局批準(zhǔn),中國(guó)人民解放軍總后勤部主管,第四軍醫(yī)大學(xué)出版社主辦,唐都醫(yī)院承辦的以光盤(CD?ROM)附紙質(zhì)導(dǎo)讀形式公開(kāi)發(fā)行的醫(yī)學(xué)電子專業(yè)學(xué)術(shù)期刊(月刊).圖文聲像并茂,報(bào)道信息容量大,具有很強(qiáng)的互動(dòng)性.以全國(guó)各級(jí)醫(yī)療機(jī)構(gòu)臨床醫(yī)護(hù)工作者、醫(yī)教科研人員及醫(yī)藥衛(wèi)生管理者為主要讀者對(duì)象,開(kāi)展學(xué)術(shù)交流,服務(wù)軍隊(duì)和地方醫(yī)學(xué)事業(yè)發(fā)展.設(shè)置的欄目有專家視野(述評(píng))、基礎(chǔ)與轉(zhuǎn)化醫(yī)學(xué)、預(yù)防與轉(zhuǎn)化醫(yī)學(xué)、生物醫(yī)學(xué)工程與轉(zhuǎn)化醫(yī)學(xué)、臨床與轉(zhuǎn)化醫(yī)學(xué)、短篇報(bào)告、醫(yī)學(xué)教育、綜述、轉(zhuǎn)化醫(yī)學(xué)動(dòng)態(tài)與咨訊、轉(zhuǎn)化醫(yī)學(xué)多媒體課件等.

      本刊為月刊,大16開(kāi),96頁(yè),每月最后一日出版.中國(guó)標(biāo)準(zhǔn)連續(xù)出版物號(hào):ISSN 2095?6894,CN 61?9000/R.每期定價(jià)20元(含光盤和紙質(zhì)),全年定價(jià)240元.可向編輯部訂閱.

      編輯部地址:陜西省西安市灞橋區(qū)新寺路569號(hào)第四軍醫(yī)大學(xué)唐都醫(yī)院《轉(zhuǎn)化醫(yī)學(xué)電子雜志》編輯部;

      郵政編碼:710038;

      聯(lián)系電話:029?84778169;

      傳真:029?84778169.

      Research progresson effectsofheparan sulfate proteoglycans in GBM tumor micro?environment

      JI Qing1,CHANG Qing1,2
      1Department of Pathology,School of Basic Medical Sciences,Peking University Health Science Center,2Department of Pathology,Peking University Third Hospital,Beijing 100191,China

      Glioblastoma(GBM)is a highly malignant glioma,diffusely invading brain tissue.Tumor microenvironment(TME)plays a critical role in the progression of GBM.Heparan sulfate proteoglycan(HSPG)is one of the important components in the TME of GBM.HSPGs can regulate the activity of several ligand?mediated signaling pathways by interacting with various protein ligands.HPSE and SULF,the modification enzymes of HSPGs,can also regulate signaling pathways and modulate the growth of tumor via enzymatic alteration of heparan sulfate chains.There are subtype?specific expressions of the modulation enzymes of HSPGs between proneual and mesenchymal GBM.Based on this charac?teristic,HSPGs will improve the treatment effect through the development subtype?specific therapy.Actually,HSPGs?targeted medicines such as PG545,OKN?007,M402 and SST0001 have acquired promising results of preclinical experiments,which shed lights in the precision medicine on GBM patients.

      glioblastoma;heparan sulfate proteoglycans;tumor microenvironment

      R739.41

      A

      2095?6894(2017)07?01?06

      2017-05-02;接受日期:2017-05-17

      國(guó)家自然科學(xué)基金資助項(xiàng)目(81101900);(能力提高)國(guó)家基礎(chǔ)科學(xué)人才培養(yǎng)基金(J1030831/J0108)

      紀(jì) 青.E?mail:sy.1995@foxmail.com

      常 青.博士,副教授.研究方向:神經(jīng)系統(tǒng)腫瘤的診斷與分子病理研究.E?mail:qingchang@bjmu.edu.cn

      猜你喜歡
      蛋白聚糖配體調(diào)控
      如何調(diào)控困意
      經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
      基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
      磷脂酰肌醇蛋白聚糖3在肝細(xì)胞癌組織中的表達(dá)及臨床意義
      順勢(shì)而導(dǎo) 靈活調(diào)控
      新型三卟啉醚類配體的合成及其光學(xué)性能
      核心蛋白聚糖對(duì)人甲狀腺乳頭狀癌CGTHW3細(xì)胞增殖的影響
      SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
      競(jìng)爭(zhēng)性ELISA法測(cè)定軟骨細(xì)胞蛋白聚糖代謝片段的可行性分析
      基于Schiff Base配體及吡啶環(huán)的銅(Ⅱ)、鎳(Ⅱ)配合物構(gòu)筑、表征與熱穩(wěn)定性
      常德市| 商洛市| 新巴尔虎右旗| 蓝山县| 乌兰县| 静安区| 正蓝旗| 顺义区| 启东市| 古蔺县| 西林县| 阿拉善左旗| 广宗县| 务川| 和硕县| 怀化市| 昌邑市| 乐至县| 新乡县| 托克托县| 台北县| 临西县| 明水县| 金坛市| 古丈县| 金寨县| 平湖市| 英德市| 荔波县| 右玉县| 衡东县| 天峨县| 宁国市| 钦州市| 黄冈市| 米泉市| 达孜县| 定边县| 广水市| 乐山市| 伊春市|