付健麗,曹文勝
?
(1,1)上伴隨作用的實(shí)矩陣表示
付健麗,曹文勝
(五邑大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,廣東 江門 529020)
本文用類似文獻(xiàn)[1]的方法,先得到的李代數(shù)的一組標(biāo)準(zhǔn)正交基. 利用此組標(biāo)準(zhǔn)正交基建立了的李代數(shù)的Cartan分解,根據(jù)具體的基和Cartan分解求出的李代數(shù)的李乘積,并由此得到了的李代數(shù)在李群上的伴隨作用的實(shí)矩陣表示.
;李乘積;伴隨作用
Adeboye 和Wei 在文獻(xiàn)[1]中得到了復(fù)雙曲空間上等距群的李代數(shù)的實(shí)數(shù)維、李基及相應(yīng)的Cartan分解,并得到了的李代數(shù)上伴隨作用的實(shí)矩陣表示. 本文在此基礎(chǔ)上研究了四元數(shù)雙曲空間維數(shù)為1的情況.
,
,
,
定義1 令
且令
.
,
,.
命題2
其中:
.
.
則由命題3有如下式子成立:
又因?yàn)?/p>
由于復(fù)雙曲空間可嵌入到四元數(shù)雙曲空間,從方法論上說(shuō),復(fù)雙曲幾何的一些方法可借鑒到四元數(shù)雙曲幾何的研究中. 但由于四元數(shù)乘法的非交換性,四元數(shù)雙曲幾何的研究比復(fù)雙曲幾何的研究要困難得多. 本文在實(shí)數(shù)域上考慮四元數(shù)向量空間的相關(guān)問(wèn)題,克服了這種困難,同時(shí),本文的計(jì)算方法和結(jié)論可以推廣到維四元數(shù)雙曲空間上.
[1] ADEBOYE I, WEI G F. On volumes of hyperbolic hyperbolic orbifolds[J]. Algebraic Geometric Topology, 2012, 12(1): 215-233.
[2] ZHANG Fuzhen. Quaternions and matrices of quaternions [J]. Linear Algebra & Its Applications, 1997, 251(2): 21-57.
[3] PRUDHON N. K-theory for(,1) [J]. Journal of Functional Analysis, 2005, 221(1): 226-249.
[4] CAO Wensheng. Balls in quaternionic hyperbolic manifolds [J]. Kodai Mathematical Journal, 2016, 39(2): 439-454.
[5] GILMORE R, HERMANN R. Lie groups, Lie algebras, and some of their applications [J]. Physics Today, 1974, 27(11): 54-55.
[6] CAO Wensheng, PARKER J R. J{o}rgensen's inequality and collars in-dimensional quaternionic hyperbolic space [J]. Quart J Math, 2009, 62(3): 523-543.
[7] CAO Wensheng, GONGOPADHYAY K. Algebraic characterization of isometries of the complex and the quaternionic hyperbolic planes [J]. Geometriae Dedicata, 2012, 157(1):23-29.
[8] PARKER J R. Notes on complex hyperbolic geometry [M]. Cambridge: Cambridge University Press, 2003.
[9] GOLDMAN W M. Complex hyperbolic geometry [M]. Oxford: Oxford University Press, 1999.
[責(zé)任編輯:韋 韜]
Real Matrix Presentation of the Adjoint Action of(1,1)
FU Jian-li, CAO Wen-sheng
(School of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, China)
In this paper, we obtain a set of orthonormal bases of theLie algebras by the method of Similar Literature [1] . We then use the set to establish the Cartan decomposition of theLie algebra. Finally, according to the specific bases and the Cartan decomposition, we obtain the Lie product of theLie algebra andthe real matrix presentation of the adjoint representation.
; Lie bracket product; adjoint representation
1006-7302(2017)03-0027-04
O151.21
A
2017-01-03
付健麗(1990—),女,廣東清遠(yuǎn)人,在讀碩士生,研究方向?yàn)閺?fù)分析;曹文勝,教授,博士,碩士生導(dǎo)師,通信作者,研究方向?yàn)閺?fù)分析.