李之達(dá),邵玉
(武漢理工大學(xué) 交通學(xué)院,湖北 武漢 430063)
基于初始孔壓非均布條件的軟黏土地基固結(jié)特性分析
李之達(dá),邵玉
(武漢理工大學(xué) 交通學(xué)院,湖北 武漢 430063)
將初始孔壓非均布條件用統(tǒng)一表達(dá)式表示,采用Merchant模型推導(dǎo)了初始孔壓非均布條件下的豎井地基黏彈性解。通過與初始孔壓均勻分布條件下的黏彈性解對(duì)比,驗(yàn)證了本文解的正確性。并編制計(jì)算程序分別分析黏彈性參數(shù)、初始孔壓參數(shù)對(duì)于豎井地基固結(jié)特性的影響。研究表明:k及η值的增大均使固結(jié)速率降低,使同等深度的平均孔壓增大,且對(duì)豎井地基平均孔壓的影響較其對(duì)平均固結(jié)度的影響明顯;同樣條件下,k值的變化對(duì)豎井地基固結(jié)特性的影響更大。
巖土工程;非均布初始孔壓;黏彈性;固結(jié)特性
為緩解土地壓力,圍海造地已成為廣泛推廣的有效方法之一,其中真空預(yù)壓法與堆載預(yù)壓法也得到了廣泛應(yīng)用,進(jìn)而帶動(dòng)豎向排水地基理論的發(fā)展。近年來,現(xiàn)場(chǎng)試驗(yàn)與室外試驗(yàn)均表明,由于井阻作用的存在[1],使得真空加載所產(chǎn)生的負(fù)壓及堆載施加所產(chǎn)生的附加應(yīng)力隨著豎井的深度遞減。B.INDRARATNA等[2]引入負(fù)壓線性衰減模式,得到徑向滲流情況下的豎井地基解析解;周琦等[1]引入時(shí)間衰減系數(shù)得到了相應(yīng)的解析解;徐妍等[3]針對(duì)初始孔壓非均布的情況,將初始孔壓分為3種形式進(jìn)行了線彈性固結(jié)理論的推導(dǎo);近年來學(xué)者們結(jié)合涂抹區(qū)滲透系數(shù)[4]、復(fù)合地基[5]、豎井地基起始比降[6]和雙層地基[7]進(jìn)行了研究。因此考慮初始孔壓具有實(shí)際意義與理論意義。
而就豎向排水地基而言,考慮土力流變模型更貼近工程實(shí)際。多年來已有大量學(xué)者基于Merchant模型對(duì)豎井地基黏彈性理論進(jìn)行了深入研究:劉興旺等[8]分別考慮自由應(yīng)變和等應(yīng)變,給出了豎井地基固結(jié)特性黏彈性解;王瑞春等[9-10]就半透水邊界和變荷載條件進(jìn)行了推導(dǎo);劉加才等[11-12]分別針對(duì)均質(zhì)深厚軟土地基豎井未打穿情況,就層狀黏彈性地基得到了相應(yīng)的解答。
但是在黏彈性理論中,尚未考慮初始孔壓非均勻分布的情況。有鑒于此,筆者將其采用統(tǒng)一表達(dá)形式表示,基于Merchant模型給出了初始孔壓非均布條件下的解析解,并在此基礎(chǔ)上進(jìn)行程序編制分析黏彈性參數(shù)及初始孔壓參數(shù)對(duì)地基固結(jié)的影響。
圖1為筆者所用計(jì)算簡(jiǎn)圖。豎井地基為打穿,邊界條件為單面排水。不考慮側(cè)向變形。圖1中:l為豎井計(jì)算長(zhǎng)度,等于其軟土層厚度;Kh、Kv分別為豎井水平向和豎向滲透系數(shù);Ks、Kw分別為涂抹區(qū)和豎井區(qū)滲透系數(shù);rw、rs、re分別為豎井區(qū)、涂抹區(qū)和豎井影響區(qū)的半徑。
圖1豎井地基計(jì)算簡(jiǎn)圖Fig.1Calculation sketch of soil ground with vertical drain well
圖2為Merchant流變模型示意,假定應(yīng)力不變的條件,應(yīng)變隨時(shí)間的關(guān)系式為
(1)
式中:E0、E1分別是兩彈簧的模量;K1是黏壺的黏滯系數(shù)。
圖2Merchant模型Fig.2Merchant model
其柔度函數(shù)為
(2)
式中:η=E1/K1。
主要假設(shè)與文獻(xiàn)[11]相同。
控制方程如下:
(3)
(4)
(5)
(6)
1) 連續(xù)條件:
usr=rw=uw;
2) 邊界條件:
3) 初始條件:
u0(z)為沿深度分布的初始孔壓:
其中當(dāng)k=0時(shí),初始孔壓分布為倒三角形分布;當(dāng)k變動(dòng)時(shí)呈梯形分布;當(dāng)k=1時(shí),初始孔壓分布為矩形分布。具體見圖3。
圖3孔壓分布Fig.3Distribution of initial pore pressure
根據(jù)文獻(xiàn)[8]的推導(dǎo)思路,設(shè):
uw(z,t)=Zw(z)T(t)
可得:
(7)
可得兩個(gè)微分方程:
(8)
(9)
先求解方程(8)的解為
(10)
(11)
再求解方程(9),得
Twm(t)=AwmTm(t)=
(12)
則:
(13)
(14)
(15)
而u0(z)=p0[1+(k-1)z/l],則根據(jù)三角函數(shù)的正交關(guān)系可得:
(16)
所以:
(17)
(18)
按孔壓定義的固結(jié)度為
(19)
(20)
當(dāng)k=0(即初始孔壓呈三角形分布)時(shí)
(21)
(22)
當(dāng)k=1(即初始孔壓呈矩形分布)時(shí):
(23)
(24)
令η=0時(shí)所得結(jié)果與文獻(xiàn)[3]結(jié)果一致,可證明其正確性。
重點(diǎn)為分析黏彈性參數(shù)η和初始孔壓參數(shù)k對(duì)固結(jié)特性的影響,因此取某高速公路試驗(yàn)段參數(shù)進(jìn)行分析。豎井打設(shè)長(zhǎng)度為20 m,軟土層以下視為不透水層。采用排水固壓預(yù)壓法。其計(jì)算參數(shù)為
l=20 m,re=0.35 m,rs=0.07 m,rw=0.035 m,n=re/rw=10,s=rs/rw=2,Kh=2.0×10-8m/s,Kw=2.0×10-4m/s,Ks=1.0×10-8m/s。
軟土的力學(xué)指標(biāo)為
Es=1.5 MPa,Ch=2Cv=3×10-7m2/s,E1=3 MPa。
為便于工程應(yīng)用,將以上解答編制成為相應(yīng)的計(jì)算程序,并結(jié)合實(shí)例進(jìn)行分析。
圖4、圖5反映了k=1(初始孔壓為矩形分布)時(shí),η變化時(shí)平均孔壓及豎井打設(shè)區(qū)平均固結(jié)度的變化情況。從圖4、圖5可以看到:取Th=200時(shí)豎井打設(shè)區(qū)η=0(線彈性解)的平均固結(jié)度與黏彈性解相差約為4%。黏彈性參數(shù)η由小變大時(shí),即K1由大變小時(shí),黏彈性土體前期固結(jié)速率較快,后期固結(jié)速率反而降低,而平均孔壓在相同時(shí)間的條件下隨之增大。
圖4不同η時(shí)平均固結(jié)度比較Fig.4Comparison of average consolidation degrees with different η
圖5不同η時(shí)平均孔壓比較(Th=10)Fig.5Comparison of average EPP with different η(Th=10)
圖6不同k時(shí)平均固結(jié)度比較Fig.6Comparison of average consolidation degrees with different k
圖6、圖7反映了當(dāng)η=5×10-8/s時(shí),k=0,0.5,1.0時(shí)豎井區(qū)內(nèi)的平均孔壓及平均固結(jié)度的變化情況。
圖7不同k時(shí)平均孔壓比較(Th=10)Fig.7Comparison of average EPP with different k(Th=10)
從圖6、圖7可以看到:取Th=200時(shí)豎井打設(shè)區(qū)k=0,0.5,1.0時(shí)的平均固結(jié)度分別為95.79%、94.73%和94.21%。隨著k值增大,平均固結(jié)度及平均孔壓曲線右移,其固結(jié)速率減慢,相同深度下平均孔壓增大。說明在初始孔壓均布由倒三角形向矩形分布變動(dòng)的過程中,三角形的分布形式最利于固結(jié)度的完成,但是對(duì)于平均孔壓來說,最有利形式為矩形分布形式。
圖8不同k,η時(shí)平均固結(jié)度比較Fig.8Comparison of average consolidation degrees with different k,η
圖8、圖9反映了不同k,η取值下平均孔壓及平均固結(jié)度的變化情況。從圖8中可以看到,當(dāng)k=0,1.0時(shí),η的增大對(duì)于土體固結(jié)度的影響分別為0.38%、0.54%,且隨著η的增大,前期土體固結(jié)速率較慢,后期較快;當(dāng)η=5×10-8,5×10-6時(shí),k的增大對(duì)于土體固結(jié)度的影響分別為1.65%、1.5%,且隨著k的增大,固結(jié)曲線右移,固結(jié)速率減慢。從圖9中可以看到,k極大的影響平均孔壓的變化形式,而η只在一定程度影響其變化速率。綜合而言,k值的變化對(duì)豎井地基固結(jié)特性的影響更大。
圖9不同k,η時(shí)平均孔壓比較(Th=10)Fig.9Comparison of average EPP with different k,η(Th=10)
1) 采用基礎(chǔ)的Merchant流變模型,從現(xiàn)有的初始孔壓非均布線彈性解答出發(fā),得到了相應(yīng)的豎井地基黏彈性解答,并分析了初始孔壓參數(shù)及黏彈性參數(shù)。
2) 黏彈性參數(shù)η的增大,對(duì)基于孔壓的固結(jié)度的影響是負(fù)面的,對(duì)平均孔壓的影響是正面的。
3) 在初始孔壓非均布的黏彈性解答中,k值的變化對(duì)豎井地基平均固結(jié)度及平均孔壓均產(chǎn)生影響且對(duì)后者影響較明顯。初始孔壓均布由倒三角形向矩形分布變動(dòng)的過程中,三角形的分布形式最利于固結(jié)度的完成,但是對(duì)于平均孔壓來說,最有利形式為矩形。
4)k值會(huì)極大的影響地基固結(jié)特性的變化形式,而η只在一定程度影響其變化速率。相較而言,k值的變化對(duì)豎井地基固結(jié)特性的影響更大。
[1] 周琦,張功新,王友元,等.真空預(yù)壓條件下的砂井地基Hansbo固結(jié)解[J].巖石力學(xué)與工程學(xué)報(bào),2010,29(增刊2):3994-3999.
ZHOU Qi,ZHANG Gongxin,WANG Youyuan,et al.Hansbo’s consolidation solution for sand-drained ground under vacuum preloading[J].ChineseJournalofRockMechanicsandEngineering,2010,29(Sup2): 3994-3999.
[2] INDRARATNA B,RUJIKIATKAMIORN C,SATHANANTHAN L.Analytical and numerical solutions for a single vertical drain including the effects of vacuum preloading[J].CanadianGeotechnicalJournal,2005,42(4): 994-1014.
[3] 徐妍,吳芳,謝康和,等.初始孔壓非均布豎向排水井地基固結(jié)方程的解析解[J].水利學(xué)報(bào),2008,39(7):829-835.
XU Yan,WU Fang,XIE Kanghe, et al. Analytic solution of consolidation equation for soft soil with vertical drains subject to non-uniformly distributed initial pore water pressure[J].JournalofHydraulicEngineering,2008,39(7): 829-835.
[4] 蔡新,謝康和,徐妍,等.初始孔壓非均布條件下涂抹區(qū)滲透系數(shù)變化的砂井地基固結(jié)解[J].巖土工程學(xué)報(bào),2010,32(1):104-108.
CAI Xin,XIE Kanghe,XU Yan,et al.Analytical solution for consolidation of sand-drained ground under non-uniform distribution of initial excess pore water pressure and variation of permeability coefficient in smear zone[J].ChineseJournalofGeotechnicalEngineering,2010,32(1):104-108.
[5] 張玉國(guó),岳峰,謝康和.初始孔壓非均布條件下散體材料樁復(fù)合地基固結(jié)理論研究[J].巖土力學(xué),2011,32(9):2675-2680.
ZHANG Yuguo,YUE Feng,XIE Kanghe.Study of consolidation theory of composite ground with granular columns under non-uniform distribution of initial excess pore water pressure[J].RockandSoilMechanics,2011,32(9):2675-2680.
[6] 王坤,謝康和,劉興旺,等.初始孔壓非均布考慮起始比降的一維固結(jié)解[J].巖石工程學(xué)報(bào),2011,33(9):1419-1424.
WANG Kun,XIE Kanghe,LIU Xingwang,et al.Solution for one-dimensional consolidation with threshold gradient subjected to non-uniformly distributed initial pore water pressure[J].ChineseJournalofGeotechnicalEngineering,2011,33(9):1419-1424.
[7] 江唯偉,張軍輝.初始孔壓非均布雙層地基一維固結(jié)性狀分析[J].長(zhǎng)江科學(xué)院院報(bào),2013,30(9):80-84.
JIANG Weiwei,ZHANG Junhui.One dimensional consolidation behavior of double-layered ground with non-uniform distribution of initial pore water pressure[J].JournalofYangtzeRiverScientificResearchInstitute,2013,30(9): 80-84.
[8] 劉興旺,謝康和,潘秋元,等.豎向排水井地基粘彈性固結(jié)解析理論[J].土木工程學(xué)報(bào),1998,31(1):10-19.
LIU Xingwang,XIE Kanghe,PAN Qiuyuan,et al.Viscoelastic consolidation theories of soils with vertical drain wells[J].ChinaCivilEngineeringJournal, 1998,31(1): 10-19.
[9] 王瑞春,謝康和.半透水邊界的豎向排水井地基粘彈性固結(jié)分析[J].長(zhǎng)江科學(xué)院院報(bào),2001,18(6):33-36.
WANG Ruichun,XIE Kanghe.Analysis on viscoelastic consolidation of soil foundations by vertical drain wells considering semi-permeable boundary[J].JournalofYangtzeRiverScientificResearchInstitute,2001,18(6): 33-36.
[10] 王瑞春,謝康和.變荷載下豎向排水井地基粘彈性固結(jié)沉降解析解[J].土木工程學(xué)報(bào),2001,34(6):93-99.
WANG Ruichun,XIE Kanghe.Analytical solutions for viscoelastic consolidation by vertical drains under time-dependent loading[J].ChinaCivilEngineeringJournal,2001,34(6): 93-99.
[11] 劉加才,趙維炳,明經(jīng)平,等.均質(zhì)未貫穿豎井地基粘彈性固結(jié)分析[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(11):1972-1977.
LIU Jiacai,ZHAO Weibing,MING Jingping,et al.Viscoelastic consolidation analysis of homogeneous ground with partially penetrated vertical drains[J].ChineseJournalofRockMechanicsandEngineering,2005,24(11):1972-1977.
[12] 劉加才,馬強(qiáng).層狀粘彈性地基一維固結(jié)特性[J].土木建筑與環(huán)境工程,2012,34(3):34-38.
LIU Jiacai,MA Qiang.One dimensional consolidation analysis of layered clay soils exhibiting rheological characteristics[J].JournalofCivil,ArchitecturalandEnvironmentalEngineering,2012,34(3): 34-38.
(責(zé)任編輯:譚緒凱)
Consolidation Characteristics of Soft Clay Ground Subject to Non-uniformly Distributed Initial Pore Pressure
LI Zhida,SHAO Yu
(School of Transportation,Wuhan University of Technology,Wuhan 430063,Hubei,P. R. China)
A new solution under the non-uniform distribution of initial pore pressure expressed in a unified expression was derived from the equivalent strain governing equation for the consolidation by vertical drain wells on the basis of the Merchant rheological model.The correctness of the proposed solution was verified by comparing with the viscoelastic solution under the uniform distribution of initial pore pressure.The calculation program was coded to analyze the influence of the viscoelastic parameters and the initial pore pressure parameters (described bykandη)on the consolidation characteristics of soil ground with vertical drain wells.The research shows that the increase ofkandηwill slow down the rate of the consolidation,and increase the average pore pressure at the same depth.The increase ofkandηhas more significant influence on the average pore pressure of soil ground with vertical drain wells than that on the average degree of consolidation; under the same condition,the change ofkmakes much more influence on the average degree of consolidation than that on the average pore pressure of soil ground with vertical drain wells.
geotechnical engineering; non-uniformly distributed initial pore pressure; viscoelastic characteristics; consolidation characteristics
U416.1;TV223.2
A
1674-0696(2017)10-045-06
2016-08-20;
2017-02-13
李之達(dá)(1957—),男,湖南平江人,教授,博士生導(dǎo)師,主要從事工程材料流變、破壞與損傷方面的研究。E-mail: zhidali@163.com。
10.3969/j.issn.1674-0696.2017.10.08