梁美霞,喬緒強(qiáng),郭笑彤,張洪霞
?
柱型蘋(píng)果生長(zhǎng)特性及Co基因定位研究進(jìn)展
梁美霞,喬緒強(qiáng),郭笑彤,張洪霞
(魯東大學(xué)農(nóng)學(xué)院,山東煙臺(tái) 264025)
柱型蘋(píng)果是一類特殊的矮生類型突變體,其樹(shù)體矮小、主干粗壯直立、節(jié)間短、短枝多,無(wú)需修剪、管理方便,是現(xiàn)代蘋(píng)果產(chǎn)業(yè)實(shí)現(xiàn)矮化密植栽培獲得高產(chǎn)的優(yōu)良資源。自柱型蘋(píng)果產(chǎn)生以來(lái),其獨(dú)特樹(shù)形的生長(zhǎng)特性一直是國(guó)內(nèi)外研究者關(guān)注的焦點(diǎn)。當(dāng)前國(guó)內(nèi)外取得的研究成果主要包括:(1)柱型蘋(píng)果的生長(zhǎng)發(fā)育與其內(nèi)源激素含量密切相關(guān)。柱型蘋(píng)果腋芽中自由態(tài)IAA/總IAA的比值明顯高于普通型。柱型蘋(píng)果多發(fā)短枝的原因是頂芽和側(cè)芽中玉米素類物質(zhì)含量較高。柱型蘋(píng)果樹(shù)體生長(zhǎng)矮小原因可能是赤霉素含量低。(2)蘋(píng)果的柱形性狀是由顯性基因控制的質(zhì)量性狀,位點(diǎn)與枝干、分枝、葉片和果實(shí)品質(zhì)等多種性狀連鎖成簇。精細(xì)定位于蘋(píng)果第10號(hào)染色體18.52—19.09 Mb。(3)目前報(bào)道的有5個(gè)候選基因,其中最有希望的候選基因轉(zhuǎn)入蘋(píng)果和煙草中均表現(xiàn)節(jié)間變短,但是否介入減少側(cè)枝和增加短枝的形成需要進(jìn)一步驗(yàn)證。由于與植物激素代謝和信號(hào)傳導(dǎo)均密切相關(guān),通過(guò)RNAi及轉(zhuǎn)基因等技術(shù)驗(yàn)證的詳細(xì)功能,不但可以揭示柱型蘋(píng)果獨(dú)特樹(shù)形生長(zhǎng)特性的分子機(jī)理,還可以為選育優(yōu)良品質(zhì)的柱型蘋(píng)果提供理論基礎(chǔ)。
柱型蘋(píng)果;生長(zhǎng)特性;Co基因定位;候選基因挖掘
蘋(píng)果矮化密植栽培是世界蘋(píng)果生產(chǎn)先進(jìn)國(guó)家普遍采用的栽培模式,也是中國(guó)現(xiàn)代蘋(píng)果生產(chǎn)的發(fā)展趨勢(shì)。生產(chǎn)上主要通過(guò)矮化砧木和矮化品種來(lái)實(shí)現(xiàn)果樹(shù)的矮化密植栽培。部分發(fā)達(dá)國(guó)家矮化蘋(píng)果面積已占蘋(píng)果栽培總面積的90%以上。而中國(guó)矮化栽培尚處于起步階段,矮化栽培占蘋(píng)果栽培面積的比例不足5%,中國(guó)矮化密植栽培模式推廣緩慢的原因是核心技術(shù)掌握不夠,生產(chǎn)條件尚不具備及缺乏優(yōu)良的矮化種質(zhì)資源等。
樹(shù)形是果樹(shù)重要的農(nóng)藝性狀,對(duì)于果園的定植密度、機(jī)械采收、優(yōu)質(zhì)高產(chǎn)以及果樹(shù)修剪都有至關(guān)重要的作用。柱型蘋(píng)果是一種特殊的矮生突變體,其特異的樹(shù)形特別適于高度密植栽培模式,是實(shí)現(xiàn)矮化密植栽培的重要資源,也是選育蘋(píng)果矮化新品種的優(yōu)良種質(zhì)資源。自柱型蘋(píng)果產(chǎn)生以來(lái),其獨(dú)特樹(shù)形生長(zhǎng)特性一直是育種者研究的熱點(diǎn)和難點(diǎn),各國(guó)研究者試圖從遺傳、生理、細(xì)胞和分子等方面揭示其獨(dú)特樹(shù)形生長(zhǎng)特性的機(jī)理,為將來(lái)篩選培育優(yōu)異柱型蘋(píng)果新品種提供重要的理論依據(jù)和技術(shù)保障。
柱型蘋(píng)果是1961年加拿大種植者在‘旭’蘋(píng)果品種上發(fā)現(xiàn)的芽變突變體,是自發(fā)的體細(xì)胞突變[1-3],為了紀(jì)念發(fā)現(xiàn)者,這個(gè)突變體后來(lái)被命名為‘威賽克旭’。由于該突變體生長(zhǎng)特別緊湊,主干直立粗壯,節(jié)間短,分枝少,萌芽率高,產(chǎn)生短果枝,因其樹(shù)形類似直立的支柱,而稱為柱型蘋(píng)果(Columnar apple)。因其樹(shù)姿緊湊挺立,猶如跳芭蕾舞的美女,又稱芭蕾蘋(píng)果(Ballerina apple)。
自1970年以來(lái),英國(guó)東茂林國(guó)際園藝研究所用‘威賽克旭’與普通栽培品種進(jìn)行雜交,育出‘Telamon’‘Tuscan’‘Trajan’‘Maypole’‘Charlotte’等一系列柱型蘋(píng)果品種。之后,塞爾維亞、俄羅斯、德國(guó)等也相繼開(kāi)展柱型蘋(píng)果育種工作[4-5]。德國(guó)獲得了5個(gè)柱型品種‘Pomgold’‘Pompink’‘Pomforyou’‘Pomfit’和‘Pomfital’,羅馬尼亞獲得了2個(gè)抗黑星病的柱型蘋(píng)果品種‘Nicol’和‘Colmar’。中國(guó)柱型蘋(píng)果的引種和育種研究始于20世紀(jì)90年代[6-7]。青島農(nóng)業(yè)大學(xué)已成功選育出‘魯加’系列柱型蘋(píng)果新品種[8-9]。中國(guó)農(nóng)業(yè)大學(xué)已選育出‘金蕾1號(hào)’和‘金蕾2號(hào)’兩個(gè)柱型蘋(píng)果新品種[10]。
經(jīng)典遺傳學(xué)研究證明,蘋(píng)果的柱形性狀是由顯性基因控制的質(zhì)量性狀。柱型蘋(píng)果與普通型蘋(píng)果品種雜交,雜交后代通常小于50%的植株表現(xiàn)柱型特征[11-15],這可能是由于修飾基因的影響。商業(yè)上選擇利用的柱型蘋(píng)果為的雜合體[16],兩個(gè)柱型蘋(píng)果雜交產(chǎn)生的子代中柱型蘋(píng)果最多為75%[17-18]。雜交子代中柱型蘋(píng)果數(shù)量的不足可能是由或與花粉活力、種子和實(shí)生苗萌發(fā)相聯(lián)系的基因的負(fù)面影響[18]。采用嫁接措施會(huì)減少F1子代群體中柱型蘋(píng)果的數(shù)量[19],柱型植株數(shù)量的減少是嫁接過(guò)程中或嫁接后短時(shí)間內(nèi)造成的缺失,當(dāng)用矮化砧木M9時(shí),這種現(xiàn)象更突出。
控制蘋(píng)果柱形生長(zhǎng)的基因位點(diǎn)與枝干高度、生長(zhǎng)速率、節(jié)間長(zhǎng)度、分枝數(shù)目、分枝長(zhǎng)度等QTL連鎖成簇[20]。與樹(shù)形相關(guān)的QTL連鎖群定位在第10號(hào)染色體的Co區(qū)域。1—3年樹(shù)齡蘋(píng)果的節(jié)間數(shù)量、莖基部直徑的生長(zhǎng)量、枝條數(shù)量、節(jié)間長(zhǎng)度都與有關(guān)[21]。蘋(píng)果的表型特征比如總生長(zhǎng)量的增量,總枝量、枝的長(zhǎng)度、節(jié)間長(zhǎng)度,主干生長(zhǎng)速率和主干高度增產(chǎn)量相關(guān)的QTL連鎖群均定位在第10號(hào)染色體上[13]。相對(duì)于枝條的數(shù)量,對(duì)枝條長(zhǎng)度的影響更強(qiáng)些,這可能是單一基因多效性的作用。另外,位點(diǎn)與葉片的單葉重、葉片厚度、葉片形狀、葉柄長(zhǎng)度等QTL也連鎖[22]。
蘋(píng)果的樹(shù)形特征位點(diǎn)和果實(shí)品質(zhì)性狀(果肉重、果肉維生素C含量、可溶性糖、硬度和酸度)連鎖群定位在第10號(hào)染色體的Co區(qū)域[23-24]。第10號(hào)染色體上特定區(qū)域可能控制蘋(píng)果生長(zhǎng)和發(fā)育的許多方面,同時(shí)具有多效性,影響著果實(shí)的品質(zhì)??赡芘c果實(shí)品質(zhì)差緊密連鎖[25],試圖通過(guò)常規(guī)育種打破這種連鎖獲得高品質(zhì)的柱型蘋(píng)果不太可能,只有通過(guò)分子育種手段才能獲得品質(zhì)優(yōu)良的柱型蘋(píng)果。
柱型蘋(píng)果生長(zhǎng)特性為自然單干型,主干粗壯直立,不需要支撐物,可通過(guò)修剪控制其植株高度。主干上著生大量的短枝,節(jié)間短,開(kāi)花早,定植后2—3年開(kāi)花,生命周期一般20年,是實(shí)施矮化密植栽培的優(yōu)良資源,也是觀賞園林的優(yōu)良樹(shù)種[12,26]。
蘋(píng)果種子萌發(fā)后2周到2個(gè)月,其柱型生長(zhǎng)特性就能被識(shí)別[18,27],但是早期的鑒定往往不準(zhǔn)確。真正可靠的表型鑒定一般需要2—3年后[19,28]。蘋(píng)果表型的分類比較困難,主要原因是缺乏一個(gè)清晰明了的分類標(biāo)準(zhǔn),并且存在不同的生長(zhǎng)類型和中間類型[4,19,25,29-30]。
柱型蘋(píng)果花期多在4月中下旬,花量很大,花冠白色或淺粉紅色,花期20 d左右,開(kāi)花的物候期與生產(chǎn)上的主栽品種‘紅富士’‘嘎拉’等相近,因此,生產(chǎn)上可以互為授粉樹(shù)[7]。另外,柱型蘋(píng)果樹(shù)之間也可相互授粉。嫁接時(shí)使用的砧木也能影響柱型蘋(píng)果的成花率,一般而言,砧木的矮化勢(shì)越強(qiáng),柱型蘋(píng)果的成花率越高[31]。柱型蘋(píng)果為短果枝結(jié)果,坐果率高,平均每個(gè)花序坐果數(shù)最少2—3個(gè),果實(shí)成熟期較早,為中熟品種。由于樹(shù)體較小,單株產(chǎn)量低,但果園總體產(chǎn)量很高,這主要靠所有植株的整體產(chǎn)量。
柱型蘋(píng)果的生長(zhǎng)發(fā)育狀況受砧木影響。不同的砧木能影響其高度、干徑和枝量。矮化砧木M9能有效的控制柱型蘋(píng)果的高度和枝量[32]。當(dāng)使用西府海棠或M7為砧木時(shí),柱型蘋(píng)果的新梢與中干的夾角較小,圍繞中干直立生長(zhǎng)。當(dāng)使用M26或M9矮化中間砧時(shí),柱型蘋(píng)果很少產(chǎn)生側(cè)生新梢[31]。生產(chǎn)上一般用M26和M9中間砧控制側(cè)生新梢的產(chǎn)生和樹(shù)體高度,促進(jìn)成花和提早結(jié)果。
柱型蘋(píng)果的抗寒性和抗旱性較強(qiáng),這可能與其起源加拿大有關(guān)[33],也可能和其葉片上表皮細(xì)胞表面褶皺、氣孔密度高、葉片背面富含大量的表皮毛有關(guān)[34]。
柱型蘋(píng)果根莖葉的解剖結(jié)構(gòu)與普通型蘋(píng)果存在差異。柱型蘋(píng)果葉片顏色深綠,葉片厚、邊緣有鋸齒[11,35-36],葉片的解剖結(jié)構(gòu)與樹(shù)體的生長(zhǎng)勢(shì)密切相關(guān)[6,37]。柱型蘋(píng)果的總?cè)~面積高于普通型蘋(píng)果[38],葉片總厚度、柵欄組織厚度顯著高于普通型蘋(píng)果,每一層內(nèi)的柵欄組織細(xì)胞大小不等,細(xì)胞排列相對(duì)雜亂,各層細(xì)胞之間相互交錯(cuò),層與層之間分界線不明顯[34,38-40]。柱型蘋(píng)果上表皮細(xì)胞表面的褶皺明顯多于普通型蘋(píng)果,表皮細(xì)胞隆起的高度較高,氣孔密度顯著高于普通型[34]。柱型蘋(píng)果根和莖的木質(zhì)部導(dǎo)管直徑和導(dǎo)管數(shù)量均高于普通型蘋(píng)果。另外,柱型蘋(píng)果葉片、根、莖微觀結(jié)構(gòu)的特征導(dǎo)致其具有較高的凈光合速率和蒸騰速率,產(chǎn)生大量的糖化合物,這也可能是其具有高產(chǎn)特性的主要原因[38]。
1.3.1 生長(zhǎng)素 與普通型蘋(píng)果相比,柱型蘋(píng)果具有很強(qiáng)的頂端優(yōu)勢(shì),因而生長(zhǎng)素IAA的含量是重點(diǎn)研究對(duì)象。柱型蘋(píng)果春梢、夏梢和秋梢中總的IAA含量與普通型蘋(píng)果的無(wú)明顯差異[40]。而王茂興[41]發(fā)現(xiàn)柱型蘋(píng)果早春梢尖內(nèi)具有較高的IAA。植物中IAA存在形式有自由態(tài)和結(jié)合態(tài)兩種。枝條頂端自由態(tài)IAA的含量與果樹(shù)樹(shù)體的緊湊程度呈正相關(guān)。柱型蘋(píng)果腋芽中自由態(tài)IAA/總IAA明顯高于普通型蘋(píng)果,這是因?yàn)槠浣Y(jié)合態(tài)IAA的含量低[42]。Watanabe等[43-45]發(fā)現(xiàn)柱型蘋(píng)果和普通型蘋(píng)果側(cè)枝(前一年修剪口下形成的枝條)中總的IAA含量沒(méi)有明顯差異,但柱型蘋(píng)果中心枝IAA含量明顯高于側(cè)枝,并且柱型蘋(píng)果側(cè)枝中總的IAA含量明顯高于普通型蘋(píng)果1—2年生側(cè)枝中的IAA含量。由于不同的樹(shù)齡、取樣樣本數(shù)的多少、取樣時(shí)期的不同等因素均能導(dǎo)致IAA含量存在嚴(yán)重差異,因此,在今后的研究中,加大取樣樣本量、同一樹(shù)齡、取樣時(shí)期的一致性等都是研究者應(yīng)該關(guān)注的問(wèn)題。另外,IAA的絕對(duì)含量可能并非影響其生長(zhǎng)的主要因素,其在樹(shù)體內(nèi)的移動(dòng)也應(yīng)該是今后的研究方向。
1.3.2 細(xì)胞分裂素 細(xì)胞分裂素(CTK)的濃度與蘋(píng)果芽的萌發(fā)密切相關(guān)。整個(gè)年生長(zhǎng)周期,柱型蘋(píng)果頂芽和側(cè)芽中的玉米素類物質(zhì)明顯高于普通型蘋(píng)果[42-44],這也是柱型蘋(píng)果多發(fā)短枝的原因。柱型蘋(píng)果中異戊烯腺苷與總細(xì)胞分裂素的比值在11月達(dá)到最高值,而普通型蘋(píng)果卻是在7月,這可能與冬季休眠啟動(dòng)時(shí)間早晚有關(guān)[45]。柱型和普通型蘋(píng)果組培苗經(jīng)6-BA處理后,CTK含量均上升,但柱型蘋(píng)果CTK含量上升幅度最小。普通型蘋(píng)果CTK含量上升后依舊低于柱型蘋(píng)果,由此推斷高CTK含量是柱型蘋(píng)果特殊生長(zhǎng)習(xí)性的原因之一[46]。大田和離體培養(yǎng)條件下,側(cè)芽的誘導(dǎo)伸長(zhǎng)、數(shù)量和培養(yǎng)物重量的增加與外源細(xì)胞分裂素濃度呈正相關(guān)[47]。離體培養(yǎng)條件下,柱型蘋(píng)果葉片在高濃度的細(xì)胞分裂素上生長(zhǎng)良好,而普通型蘋(píng)果葉片在低濃度的細(xì)胞分裂素上生長(zhǎng)良好[36,47],柱型蘋(píng)果芽的分化再生需要更高的細(xì)胞分裂素[48],這可能是柱型蘋(píng)果能代謝過(guò)量的細(xì)胞分裂素或者通過(guò)調(diào)節(jié)其他生長(zhǎng)因子抵消[47]。
1.3.3 赤霉素 柱型蘋(píng)果生長(zhǎng)矮小,葉片深綠的特征類似于GA缺陷型突變體的生長(zhǎng)特點(diǎn)[49-52]。目前,人們已經(jīng)從玉米、豌豆、番茄、擬南芥等植物中發(fā)現(xiàn)了50多種不同的GA缺陷型突變體[53],研究發(fā)現(xiàn)均是赤霉素合成受阻造成其含量下降。柱型蘋(píng)果內(nèi)源赤霉素水平的確低于普通型蘋(píng)果[41-42]。大田和組培條件下,外源噴施GA3均能促進(jìn)柱型蘋(píng)果新梢的伸長(zhǎng)生長(zhǎng),且與普通型和短枝型蘋(píng)果相比,柱型蘋(píng)果的GAs含量上升幅度最大[40,46],進(jìn)一步驗(yàn)證了柱型品種內(nèi)源激素組成的特殊性,即GA3含量很低。通過(guò)外源噴施GA3能促進(jìn)柱型蘋(píng)果的生長(zhǎng)增加,但是達(dá)不到普通型蘋(píng)果的高度[42]。柱型蘋(píng)果實(shí)生苗的莖尖提取物能促進(jìn)矮化豌豆的生長(zhǎng),但促進(jìn)生長(zhǎng)的程度不及普通型蘋(píng)果莖尖提取物的影響,這表明柱型蘋(píng)果含有較低水平的活性GA。柱型蘋(píng)果矮化生長(zhǎng)的特性與其說(shuō)是可能與低水平的GA含量相關(guān),倒不如說(shuō)柱型蘋(píng)果的緊湊矮化生長(zhǎng)只是一種表型特征。
GA信號(hào)傳導(dǎo)途徑的抑制因子DELLA蛋白因其N端有高度保守的結(jié)構(gòu)域DELLA而被命名[54]。模式植物擬南芥中DELLA蛋白是多基因家族,有、RGL、RGL、RGL,其中和是莖伸長(zhǎng)的主要負(fù)調(diào)控因子[55-57]。擬南芥、葡萄、水稻等植物中編碼DELLA結(jié)構(gòu)域的發(fā)生缺失、突變或超量表達(dá)均能導(dǎo)致植物表型發(fā)生改變,表現(xiàn)矮化特征[58-61]。DELLA蛋白可能參與多種激素的信號(hào)途徑,同時(shí)DELLA蛋白的量又受到赤霉素、生長(zhǎng)素、乙烯和脫落酸等多種激素的共同調(diào)節(jié)[62-67]。柱型蘋(píng)果中,赤霉素合成途徑中貝殼杉烯氧化酶基因的表達(dá)量低于普通型蘋(píng)果,柱型蘋(píng)果莖尖中的相對(duì)表達(dá)量均高于3個(gè)普通型蘋(píng)果。柱型蘋(píng)果的表達(dá)量高可能抑制了植株的生長(zhǎng),也可能是對(duì)外界環(huán)境更加適應(yīng)的表現(xiàn)[68]。植物體內(nèi)的DELLA蛋白含量越多,對(duì)逆境的適應(yīng)性越強(qiáng),高鹽環(huán)境下,植物通過(guò)增加DELLA蛋白的含量,進(jìn)而增強(qiáng)DELLA蛋白對(duì)植物生長(zhǎng)的抑制作用[65]。
1.3.4 脫落酸 樹(shù)體內(nèi)高ABA含量與樹(shù)體矮化有很大的相關(guān)性,矮化的蘋(píng)果樹(shù)比喬化樹(shù)中ABA含量高。與普通型蘋(píng)果相比,柱型蘋(píng)果的果臺(tái)芽相對(duì)更大,雖然其總ABA含量更高,但每單位鮮重中含有較少自由態(tài)和結(jié)合態(tài)的ABA[42]。通常,每單位鮮重中ABA含量越高越能加速芽的伸長(zhǎng)生長(zhǎng)[69],因此,較低水平的ABA可能是減緩短果枝生長(zhǎng)的結(jié)果,而不是原因[42]。在柱型蘋(píng)果與非柱型蘋(píng)果雜交獲得的種子和早期實(shí)生苗子代中,不同品種中ABA和GA的含量是相似的,這暗示后期發(fā)育過(guò)程中,激素的差異導(dǎo)致實(shí)生苗形成緊湊生長(zhǎng)的特征[70]。
綜合考慮上述原因,柱型蘋(píng)果在激素水平上存在的差異是很微妙的,它們和表型的相關(guān)性僅僅被當(dāng)作一種假設(shè)。一、由于芽中IAA含量高和IAA/CTK比率低,柱型蘋(píng)果的頂端優(yōu)勢(shì)比普通型強(qiáng),因而它們不能產(chǎn)生長(zhǎng)的側(cè)枝。二、由于CTK含量高,結(jié)合ABA含量低,產(chǎn)生結(jié)果短枝,這有助于芽的萌發(fā),但是阻礙了伸長(zhǎng)生長(zhǎng),只是少量短枝在有時(shí)候(比如中央領(lǐng)導(dǎo)干被破壞)能克服頂端優(yōu)勢(shì)而生長(zhǎng)。三、低水平的GA可能阻礙伸長(zhǎng)生長(zhǎng),這和許多柱型蘋(píng)果具有矮化作用相關(guān)。
目前測(cè)定植物激素濃度的方法均比較繁瑣和困難,而植物的年齡、季節(jié)和環(huán)境因子等均能影響其內(nèi)源激素的含量,因此,樣品本身的差異和外界環(huán)境因素均可能影響其內(nèi)源激素水平的差異。另外,到底是因?yàn)橹参飪?nèi)源激素水平含量的變化導(dǎo)致樹(shù)體生長(zhǎng)特性改變,還是因?yàn)闃?shù)體生長(zhǎng)特性的改變而導(dǎo)致植物激素水平的含量差異,關(guān)于二者之間的直接關(guān)聯(lián)報(bào)道還很少見(jiàn)。
蘋(píng)果柱型性狀為顯性單基因()控制的質(zhì)量性狀[71]。在蘋(píng)果基因組序列公布之前[72],各國(guó)研究者用分子標(biāo)記的方法將定位于第10號(hào)染色體17.0—19.5 cM[13-14,16,29-30,73-74]。最早進(jìn)行柱型蘋(píng)果分子標(biāo)記研究的是美國(guó)康奈爾大學(xué)[75]。隨后,各國(guó)學(xué)者用RAPD、SSR、AFLP和SCAR等方法對(duì)柱型性狀進(jìn)行標(biāo)記,或?qū)FLP轉(zhuǎn)換成SCAR或?qū)APD轉(zhuǎn)換成SCAR對(duì)柱型性狀進(jìn)行標(biāo)記[13,21,30,76-77]。由于使用的蘋(píng)果品種和個(gè)體數(shù)量存在差異,標(biāo)記的重組頻率和遺傳距離不同[14,16,73,78-79]。雖然的遺傳距離不同,但它們的序列排列大體相同[14,16,30,74]。但是,通過(guò)蘋(píng)果基因組的BLAST發(fā)現(xiàn),CH02a10和SCB82670序列圖譜定位在第3號(hào)染色體上,約30 Mb。KIM等[30]用柱型蘋(píng)果的父本(非柱型蘋(píng)果)擴(kuò)增獲得SCB82670片段,因此它不可能與連鎖[14,16,78]。而CH02a10共分離的原因仍不清楚,暗示著對(duì)柱型蘋(píng)果發(fā)育發(fā)揮重要作用的關(guān)鍵基因被選擇性清除,或者基因序列可能錯(cuò)誤的安排在第3號(hào)染色體上[30]。
2010年金冠蘋(píng)果基因組序列公布以來(lái),加速了的精細(xì)作圖。目前已經(jīng)將其定位在第10號(hào)染色體上18.52—19.09 Mb(表1)。BAI等[15]界定的區(qū)域包含20個(gè)已經(jīng)注釋的16基因和7個(gè)預(yù)測(cè)基因,其中3個(gè)編碼擬南芥?zhèn)戎ζ鞴龠吔绲霓D(zhuǎn)錄因子同源序列[83],被認(rèn)為是最有可能的候選基因[15]。MORIYA等[14]通過(guò)SSR將界定的大小與BAI等[15]描述的大小相似[15]。BALDI等[19]認(rèn)為Co區(qū)域有36個(gè)潛在的基因,若干基因(basic helix-loop-helix andAP2/ERF classes,MYB)編碼轉(zhuǎn)錄因子,它們?cè)跇?shù)形調(diào)節(jié)方面發(fā)揮作用。目標(biāo)區(qū)域和MORIYA等[14]認(rèn)定的區(qū)域有重疊,但是不覆蓋BAI等[15]預(yù)測(cè)的染色體位置。OKADA[82]參考蘋(píng)果基因組序列,的精細(xì)圖縮小在101 kb區(qū)域,研究結(jié)果與BALDI[19]報(bào)道的相一致,與BAI等[15]報(bào)道的結(jié)果不同。Co區(qū)域邊界位置不同的原因可能是:不同研究小組采用了不同的蘋(píng)果基因型,這可能產(chǎn)生完全不同的重組頻率。標(biāo)記界定的右邊界[15]來(lái)源于基因組中未錨定的一個(gè)序列,因此它的精準(zhǔn)定位不容易建立,這可能是個(gè)體單株表型分類存在某些困難。
表1 蘋(píng)果基因組序列公布以來(lái)Co的精細(xì)作圖
2.2.1 轉(zhuǎn)錄組學(xué)分析 近5年來(lái),各國(guó)學(xué)者以柱型蘋(píng)果的莖尖或胚根作為試材,利用高通量組學(xué)的方法試圖從轉(zhuǎn)錄組學(xué)層面揭示柱型蘋(píng)果與非柱型蘋(píng)果基因的表達(dá)差異[84-87]。ZHANG等[84]以‘富士’ב特拉蒙’雜交后代柱型以及非柱型分離群體的新梢為試材,發(fā)現(xiàn)24%的差異表達(dá)基因在GA、IAA和BR生物合成中發(fā)揮重要作用。287個(gè)基因序列參與樹(shù)形調(diào)控,其中25個(gè)基因序列是在調(diào)控柱型蘋(píng)果樹(shù)形過(guò)程中發(fā)揮重大作用的轉(zhuǎn)錄因子。KROST等[85-86]研究發(fā)現(xiàn),柱型蘋(píng)果中參與DNA合成、RNA加工和蛋白質(zhì)合成的基因表達(dá)發(fā)生下調(diào),而參與運(yùn)輸和蛋白質(zhì)修飾的基因表達(dá)發(fā)生了上調(diào),這些都與減少柱型蘋(píng)果的生長(zhǎng)有關(guān)。明顯影響柱型蘋(píng)果內(nèi)源激素的動(dòng)態(tài)平衡。在附近存在大量調(diào)控基因,其中的4個(gè)基因是和植物激素調(diào)控相關(guān)。生長(zhǎng)促進(jìn)因子(IAA、CTK和GA)和抑制因子(茉莉酸JA和木葡聚糖內(nèi)轉(zhuǎn)糖苷酶/水解酶XTH)之間的相互影響都是上調(diào)表達(dá),這和植株的高度相關(guān)。柱型蘋(píng)果的細(xì)胞周期在G2期被抑制,這導(dǎo)致細(xì)胞數(shù)量減少,因此其生長(zhǎng)受阻。PETERSEN等[87]以柱型蘋(píng)果(雜合型和純合型兩種)和普通型蘋(píng)果的胚根為試驗(yàn)材料,發(fā)現(xiàn)柱型蘋(píng)果胚根中的基因表達(dá)發(fā)生上調(diào),這些基因主要參與纖維素和苯丙素的生物合成,細(xì)胞壁修飾、轉(zhuǎn)錄和翻譯,乙烯和茉莉酸的生物合成。雜合型柱型蘋(píng)果中Gypsy-44插入位點(diǎn)下游方向的表達(dá)發(fā)生下調(diào),但在枝條頂端組織中出現(xiàn)嚴(yán)重上調(diào)表達(dá)。由此推測(cè),不同調(diào)控的第一步有可能發(fā)生在反轉(zhuǎn)錄插入?yún)^(qū)域內(nèi),組織的特異性表明一個(gè)或多個(gè)組織特異調(diào)控因子參與其中。
2.2.2 關(guān)鍵候選基因挖掘 關(guān)于,若干相關(guān)的候選基因已經(jīng)被報(bào)道[82-83,87-89]。MORIMOTO等[81]預(yù)測(cè)在估計(jì)的Co區(qū)域,有55個(gè)基因,包括AP2/ERF,2OG-Fe(II)氧化酶、非頂端分生組織、水解酶和側(cè)生器官轉(zhuǎn)錄因子等。LBD轉(zhuǎn)錄因子被當(dāng)做的候選基因,主要原因是在擬南芥和其他物種中已證明LBD蛋白在調(diào)控側(cè)生器官的發(fā)育中發(fā)揮著重要作用。OKADA等[82]以柱型蘋(píng)果‘威賽克旭’和普通型蘋(píng)果‘旭’莖尖為試材,為了確定的候選基因,用RNA序列分析不同的表達(dá)基因,共發(fā)現(xiàn)6個(gè)候選基因表達(dá)水平明顯不同。4個(gè)候選基因在柱型蘋(píng)果‘威賽克旭’中上調(diào)表達(dá),僅僅在柱型蘋(píng)果‘威賽克旭’中表達(dá),而在非柱型蘋(píng)果中不表達(dá)。而且在離體培養(yǎng)的柱型蘋(píng)果‘威賽克旭’和普通型蘋(píng)果‘旭’中,也僅僅只是在柱型蘋(píng)果‘威賽克旭’的葉片和莖尖中表達(dá)。依此推斷,是最有希望的候選基因,而其他5個(gè)基因不可能是的候選基因。
PETERSEN等[87]報(bào)道在柱型蘋(píng)果‘P28’頂端分生組織中兩個(gè)候選基因(ATL5K- like)和(ACC1-like)也是上調(diào)表達(dá)。BALDI等[20]分析Co區(qū)域的ORFs發(fā)現(xiàn):存在若干潛在的候選基因,包括AP2/ERF、bHLH、MYB和NAM轉(zhuǎn)錄因子。
WOLTERS等[88]分析了定位于50 kb區(qū)域間6個(gè)預(yù)測(cè)基因的表達(dá)模式,與‘旭’蘋(píng)果相比,基因在‘威賽克旭’蘋(píng)果腋芽中上調(diào)表達(dá)。OTTO等[89]參考‘金冠’蘋(píng)果基因組,發(fā)現(xiàn)兩個(gè)候選基因(bHLH155-lile)和(ACC1-like),這兩個(gè)候選基因在‘威賽克旭’葉片中顯著上調(diào)表達(dá)。OTTO等[89]發(fā)現(xiàn),與普通型蘋(píng)果‘A14’相比,已經(jīng)確定的候選基因(bHLH155-lile)在柱型蘋(píng)果‘P28’頂端分生組織中約有2倍的上調(diào)表達(dá),而(downy mildew resistance 6-like)僅僅在‘P28’中表達(dá),在‘A14’中不表達(dá)。
先前報(bào)道的有5個(gè)候選基因:、6、、和[87-89]。其中的就是相對(duì)應(yīng)的,該基因在柱型蘋(píng)果和普通型蘋(píng)果之間表達(dá)有差異,其他候選基因表達(dá)水平相似,沒(méi)有差異[87]。因此更加說(shuō)明()是最有希望的基因候選基因。OKADA等[82]將候選基因轉(zhuǎn)入煙草中,轉(zhuǎn)基因煙草的植株高度和節(jié)間長(zhǎng)度均變短,這與WOLTERS等[88]報(bào)道擬南芥中過(guò)表達(dá)該基因?qū)е鹿?jié)間變短類似。同時(shí),在蘋(píng)果中過(guò)表達(dá)該基因也引起節(jié)間變短,但柱型蘋(píng)果的生長(zhǎng)表型不僅僅是節(jié)間短,有可能區(qū)域的其他基因參與減少側(cè)枝和增加短枝的形成。在未來(lái),驗(yàn)證該基因是否引起側(cè)枝減少和增加短枝也非常重要[83]。
柱型蘋(píng)果是一類特殊的自然突變體,前期的研究表明其內(nèi)源激素的含量與其樹(shù)體生長(zhǎng)密切相關(guān),但到底哪一個(gè)是原因哪一個(gè)是結(jié)果或者說(shuō)二者之間的直接關(guān)聯(lián)還有待進(jìn)一步探討。傳統(tǒng)遺傳學(xué)分析證實(shí)柱型蘋(píng)果樹(shù)形性狀是由顯性的控制的質(zhì)量性狀,已經(jīng)被精細(xì)定位于第10號(hào)染色體上的18.52—19.09 Mb區(qū)間,的產(chǎn)物可能不是在根上而是在枝條上發(fā)揮作用,也可能以某種方式參與營(yíng)養(yǎng)生長(zhǎng)到生殖生長(zhǎng)的轉(zhuǎn)變,還可能與植物激素IAA、CK和GA的代謝和信號(hào)轉(zhuǎn)導(dǎo)有關(guān),因此,的詳細(xì)功能尚需要驗(yàn)證,其基因產(chǎn)物或者突變類型仍然未知。另外,在株形調(diào)控方面是單獨(dú)發(fā)揮作用,還是同多個(gè)基因聯(lián)合發(fā)揮作用?如何通過(guò)信號(hào)轉(zhuǎn)導(dǎo)途徑發(fā)揮功能?這一系列問(wèn)題仍然是未來(lái)科學(xué)研究的焦點(diǎn)。
隨著分子生物學(xué)的迅猛發(fā)展,未來(lái)對(duì)位點(diǎn)區(qū)域的進(jìn)一步深度挖掘和分析勢(shì)在必行。今后應(yīng)進(jìn)一步采用蛋白-蛋白互作(Y2H、BIFC、Pull-Down及CoIP)、蛋白-DNA啟動(dòng)子結(jié)合(Y1H、EMSA及ChIP)、啟動(dòng)子活性檢測(cè)(LUC和GUS報(bào)告試驗(yàn)),RNAi及轉(zhuǎn)基因植株等基因功能驗(yàn)證技術(shù),對(duì)相關(guān)的候選關(guān)鍵基因進(jìn)行功能驗(yàn)證,以進(jìn)一步揭示柱型蘋(píng)果獨(dú)特生長(zhǎng)特性的分子機(jī)理。只有明確柱型蘋(píng)果獨(dú)特樹(shù)形生長(zhǎng)特性的分子機(jī)理,果樹(shù)育種工作者才能打破傳統(tǒng)育種方式中柱型性狀和果實(shí)品質(zhì)差緊密連鎖的弊端,通過(guò)分子育種手段創(chuàng)造出品質(zhì)優(yōu)良的柱型蘋(píng)果新種質(zhì),為矮化密植高產(chǎn)提供優(yōu)良資源,這也是未來(lái)柱型蘋(píng)果發(fā)展利用的最理想途徑和根本出路。
[1] FISHER D V. Spur-type strains of McIntosh for high density plantings.,1969, 14: 3-10.
[2] FISHER D V. The ‘Wijcik spur McIntosh’., 1995, 49: 212-213.
[3] KELSEY D F, BROWN S K. ‘McIntosh Wijcik’: A columnar mutation of ‘McIntosh’ apple proving useful in physiology and breeding research., 1992, 46(2): 83-87.
[4] IKASE L, DUMBRAVS R. Breeding of columnar apple-trees in Latvia., 2004, 2: 8-10.
[5] BRANISTE N, MILITARU M, BUDAN S. Two scab resistant columnar apple cultivars.2008, 767: 351-354.
[6] 張勇, 李光晨, 李正應(yīng). 芭蕾蘋(píng)果枝條和葉片特性研究. 北京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1995, 21(3): 275-279.
ZHANG Y, LI G C, LI Z Y. The studies of branches and leaves characteristics of columnar apple varieties-ballerina., 1995, 21(3): 275-279. (in Chinese)
[7] 戴洪義, 王善廣, 于士梅, 王然, 于秀敏. 柱型蘋(píng)果引種研究. 果樹(shù)科學(xué), 1998, 15(1): 13-19.
DAI H Y, WANG S G, YU S M, WANG R, YU X M. Study on the performance of columnar apple varieties., 1998, 15(1): 13-19. (in Chinese)
[8] 戴洪義, 王彩虹, 遲斌, 祝軍, 王然, 李貴學(xué), 莊麗麗. 柱型蘋(píng)果品種選育研究. 果樹(shù)學(xué)報(bào), 2003, 20(2): 79-83.
DAI H Y, WANG C H, CHI B, ZHU J, WANG R, LI G X, ZHUANG L L. Report on breeding columnar apple varieties., 2003, 20(2): 79-83. (in Chinese)
[9] 祝軍, 戴洪義. 擁有我國(guó)自主產(chǎn)權(quán)的6個(gè)蘋(píng)果新品種. 落葉果樹(shù), 2005, 37(1): 20-21.
ZHU J, DAI H Y. Six new apple varieties with independent property rights in China., 2005, 37(1): 20-21. (in Chinese)
[10] 張文, 朱元娣, 王濤, 胡建芳, 李光晨. 芭蕾蘋(píng)果新品種金蕾1號(hào)和金蕾2號(hào)的選育. 中國(guó)果樹(shù), 2007(1): 1-3.
ZHANG W, ZHU Y D, WANG T, HU J F, LI G C. Breeding report of new Ballerina apple (columnar apple) cultivar ‘Jinlei 1’ and ‘Jinlei 2’., 2007(1): 1-3. (in Chinese)
[11] LAPINS K O. Segregation of compact growth types in certain apple seedling progenies., 1969, 49(6): 765-768.
[12] TOBUTT K R. Combining apetalous parthenocarpy with columnar growth habit in apple., 1994, 77(1): 51-54.
[13] KENIS K, KEULEMANS J. Study of tree architecture of apple (Borkh.) by QTL analysis of growth traits., 2007, 19(3): 193-208.
[14] Moriya S, Okada K, Haji T, Yamamoto T, Abe K. Fine mapping of Co, a gene controlling columnar growth habit located on apple (Borkh.) Linkage group 10., 2012, 131(5): 641-647.
[15] BAI T, ZHU Y, FERNA′NDEZ-FERNA′NDEZ F, KEULEMANS J, BROWN S, XU K. Fine genetic mapping of the Co locus controlling columnar growth habit in apple., 2012, 287(5): 437-450.
[16] TIAN Y K, WANG C H, ZHANG J S, JAMES C, DAI H Y. Mapping Co, a gene controlling the columnar phenotype of apple, with molecular markers., 2005, 145(1): 181-188.
[17] LAPINS K O. Inheritance of compact growth type in apple.1976, 101(2): 133-135.
[18] Meulenbroek B, Verhaegh J, Janse J. Inheritance studies with columnar type trees., 1998, 484(484): 255-260.
[19] BALDI P, WOLTERS P J, KOMJANC M, VIOLA R, VELASCO R, SALVIS. Genetic and physical characterisation of the locus controlling columnar habit in apple (×Borkh.).2013, 31(2): 429-440.
[20] LAWSON D M, HEMMAT M, WEEDEN N F. The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple.Science, 1995, 120(3): 79-82.
[21] CONNER P J, BROWN S K, WEEDEN N F. Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees., 1998, 96(8): 1027-1035.
[22] Morimoto T, Ohnishi H,Banno K. QTLs for some leaf traits linked to the columnar gene in apple.(), 2013, 12(suppl. 2): 71.
[23] DAVEY M W, KENIS K, KEULEMANS J. Genetic control of fruit vitamin C contents., 2006, 142(1): 343-351.
[24] KENIS K, KEULEMANS J, DAVEY M W. Identification and stability of QTLs for fruit quality traits in apple., 2008, 4(4): 647-661.
[25] MORIYA, S, IWANAMI H, KOTODA N, TAKAHASHI S, YAMAMOTO T, ABE K. Development of a marker-assisted selection system for columnar growth habit in apple breeding., 2009, 78(3): 279-287.
[26] Tobutt K R. Breeding columnar apples at East Malling., 1985, 159(159): 63-68.
[27] LEE J M, LOONEY N E. Abscisic acid levels and genetic compaction in apple seedlings., 1977, 57(1): 81-85.
[28] BLAZEK J. Segregation and general evaluation of spur type or compact growth habits in apples., 1992, 317: 71-79.
[29] HEMMAT M, WEEDEN N F, CONNER P J, BROWN S K. A DNA marker for columnar growth habit in apple contains a simple sequence repeat., 1997, 122(122): 347-349.
[30] Kim M Y, Song K J, Hwang J H, Shin Y U, Lee H J. Development of RAPD and SCAR markers linked to thegene conferring columnar growth habit in apple (Mill.), 2003, 78(4): 559-562.
[31] 張上隆, 陳昆松. 園藝學(xué)進(jìn)展. 北京: 中國(guó)農(nóng)業(yè)出版社, 1994.
ZHANG S L, CHEN K S.. Beijing:Journal of China Agricultural Press, 1994. (in Chinese)
[32] GELVONAUSKIENE? D, GELVONAUSKIS B, SASNAUSKAS A. Impact of rootstocks on columnar apple tree growth in a nursery., 2006, 25: 51-56.
[33] JACOB H B, HERTER F G, LEITE G B, RASEIRA M D C B. Breeding experiments of apple varieties with columnar growth and low chilling requirements., 2010(872): 159-164.
[34] 梁美霞, 戴洪義, 葛紅娟. 柱型與普通型蘋(píng)果葉片結(jié)構(gòu)與葉綠體超微結(jié)構(gòu)比較. 園藝學(xué)報(bào), 2009, 36(10): 1504-1510.
LIANG M X, DAI H Y, GE H J. Comparison of leaf structure and chloroplast ultrastructure between columnar and standard apple.,2009,36(10): 1504-1510. (in Chinese)
[35] TOBUTT K R. Columnar apple tree-Maypole variety., 1988, 6: 184.
[36] Sarwar M, Skirvin R M, Kushad M, Norton M A. Selecting dwarf apple (Borkh.) trees: Multiple cytokinin tolerance expressed among three strains of ‘McIntosh’ that differ in their growth habit under field conditions., 1998, 54:71-76.
[37] 王彩虹, 田義軻, 初慶剛, 張曉芹, 孫太娟. 柱型蘋(píng)果葉片的解剖學(xué)研究. 果樹(shù)學(xué)報(bào), 2005, 22(4): 311-314.
WANG C H, TIAN Y K, CHU Q G, ZHANG X Q, SUN T J. Study on the leaf anatomical structure of columnar apples.22(4): 311-314. (in Chinese)
[38] ZHANG Y G, DAI H Y. Comparison of photosynthetic and morphological characteristics, and microstructure of roots and shoots, between columnar apple and standard apple trees of hybrid seedlings., 2011, 80(1): 119-125.
[39] GELVONAUSKIS B, BRAZAITYTE? A, SASNAUSKAS A, DUCHOVSKIS P, ELVONAUSKIENE? D. Morphological and physiological characteristics of columnar apple trees.,200625:350-356.
[40] 梁美霞. 柱型蘋(píng)果生長(zhǎng)特性的細(xì)胞學(xué)與分子生物學(xué)研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué), 2010.
LIANG M X. Cytological and molecular biology in relation to the growing habit of columnar apple [D]. Changsha: Hunan Agricultural University, 2010. (in Chinese)
[41] 王茂興. 芭蕾蘋(píng)果超緊湊性狀的激素機(jī)制研究[D]. 北京: 北京農(nóng)業(yè)大學(xué), 1994.
WANG M X. Study on the hormonal mechanism of super compact characters in Ballerina apple (columnar apple) [D]. Beijing: Beijing Agricultural University, 1994. (in Chinese)
[42] LOONEY N E, LANE W D. Spur-type growth mutants of McIntosh apple: A review of their genetics, physiology and field performance., 1984, 146(146): 31-46.
[43] WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Comparison of endogenous iaa and cytokinins in shoots of columnar and normal type apple trees., 2004, 73(1): 19-24.
[44] WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Effects of heading-back pruning on shoot growth and IAA and cytokinin concentrations at bud burst of columnar-type apple trees., 2006, 75(3): 224-230.
[45] WATANABE M, SUZUKI A, KOMORI S, BESSHO H. Seasonal changes of IAA and cytokinin concentration in shoots of columnar type apple trees., 2008, 774(774): 75-80.
[46] 朱元娣, 袁麗慧, 李光晨. 植物生長(zhǎng)調(diào)節(jié)劑對(duì)芭蕾蘋(píng)果組培苗內(nèi)源激素含量的影響. 園藝學(xué)報(bào), 1999, 26(4): 259-260.
ZHU Y D, YUAN L H, LI G C. Influence of plant growth regulators on endo-hormones in ballerina apple’s self-rooted seeding., 1999, 26(4): 259-260. (in Chinese)
[47] LANE W D, LOONEY N E, MAGE F. A selective tissue culture medium for growth of compact (dwarf) mutants of apple., 1982, 61(3): 219-223.
[48] SARWAR M, SKIRVIN R M. Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘McIntosh’ apple (Borkh)., 1997, 68(1-4): 95-100.
[49] KOORNNEEF M, VEEN J H V D. Induction and analysis of gibberellin sensitive mutants in(L.) heynh., 1980, 58(6): 257-263.
[50] TALON M, KOORNNEEF M, ZEEVAART J A. Endogenous gibberellins inand possible steps blocked in the biosynthetic pathways of the semi-dwarf ga4 and ga5 mutants., 1990, 87(20): 7983.
[51] SUN T P, KAMIYA Y. The Arabidopsislocus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis., 1994, 6(10): 1509-1518.
[52] PENG J, HARBERD N P. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome- deficient mutants of., 1997, 113(4): 1051-1058.
[53] MUANGPROM A, THOMAS S G, SUN T, OSBORN T C. A novel dwarfing mutation in a green revolution gene from., 2005, 137(3): 931-938.
[54] Dill A, Jung H S, Sun T P. The DELLA motif is essential for gibberellin-induced degradation of.Sciences, 2001, 98: 14162-14167.
[55] Dill A, Sun T P. Synergistic de-repression of gibberellin signaling by removingandfunction in.2001, 159: 777-785.
[56] Dill A, Thomas S G, Hu J H, Steber C M, Sun T P. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation., 2004, 16: 1392-1405.
[57] King K, Moritz T, Harberd N. Gibberellins are not required for normal stem growth inin the absence ofand., 2001, 159: 767-776.
[58] Ogawa M, Kusano T, Katsumi M, Sano H. Rice gibberellin- insensitive gene homolog,, encodes a nuclear-localized protein capable of gene activation at transcriptional level., 2000, 245: 21-29.
[59] Fu X D, Sudhakar D, Peng J R, Richards D E, Christou P, Harberd N P. Expression of Arabidopsisin transgenic rice represses multiple gibberellin responses., 2001, 13: 1791-1802.
[60] Olszewki N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism and response pathways., 2002, 14: 61-80
[61] Boss P K, Thomas M R. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation., 2002, 1416: 847-850.
[62] Hartweck L M, Olszewski N E. Rice GIBBERELLIN INSENSITIVE WARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling., 2006, 18(2): 278-282.
[63] FuX D, Harberd N P. Auxin promotes arabidopsis root growth by modulating gibberellin response., 2003, 421: 740-743.
[64] Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van D, Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals.2006, 311: 91-94.
[65] Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd N P. DELLAs contribute to plant photomorphogenesis., 2007, 143: 1163-1172.
[66] Ma L, Zhao H, Deng X W. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulatingseedling development., 2003, 130: 969-981.
[67] Alabadi D, Gil J, Blazquez M, Garcia-Martinez J. Gibberellins repress photomorphogenesis in darkness., 2004, 134: 1050-1057.
[68] 梁美霞, 祝軍, 戴洪義. 柱型蘋(píng)果基因的克隆及表達(dá)分析. 園藝學(xué)報(bào), 2011, 38(10): 1969-1975.
LIANG M X, ZHU J, DAI H Y. Cloning and expression analyzing ofgene of columnar apples.,2011, 38(10): 1969-1975. (in Chinese)
[69] FEUCHT W, KHAN M Z, DANIEL P. Abscisic acid in prunus trees: isolation and the effect on growth of excised shoot tissue., 1974, 32(3): 247-252.
[70] LEE J M, LOONEY N E. Changes in abscisic acid and gibberellin levels in apple seeds during stratification and their relationship to genetic compactation.1978, 58(3): 761-767.
[71] FIDEGHELLI C, SARTORI A, GRASSI F. Fruit tree size and architecture., 2003, 13(6): 1-15.
[72] Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro1 A, Kalyanaraman A, Fontana1 P, Bhatnagar S K , Troggio1 M, Pruss D, Salvi1 S. et al.The genome of the domesticated apple (Borkh.)., 2010, 42(10): 833-839.
[73] ZHU Y D,ZHANG W, LI G C, WANG T. Evaluation of inter-simple repeat analysis for mapping the Co gene in apple (Mill), 2007, 82: 371-376.
[74] BENDOKAS V, GELVONAUSKIENE? D, GELVONAUSKIS B, VINSKIENE? J, STANYS V. Identification of apple columnar hybrids in juvenile phase using molecular markers., 2007, 26(3): 289-295.
[75] WEEDEN N F, HEMMAT M, LAWSON D M. Development and application of molecular marker linkage maps in woody fruit crops., 1994, 77(1): 71-75.
[76] 祝軍, 李光晨, 王濤, 張文, 趙玉軍. 威賽克柱型蘋(píng)果與旭的AFLP多態(tài)性研究. 園藝學(xué)報(bào), 2000, 27(6): 447-448.
ZHU J, LI G C, WANG T, ZHANG W, ZHAO Y J. AFLP polymorphism between McIntosh and Wijcik columnar apple., 2000,27(6): 447-448. (in Chinese)
[77] 王彩虹, 王倩, 戴洪義, 田義軻, 賈建航, 束懷瑞, 王斌. 蘋(píng)果柱型基因的一個(gè)AFLP標(biāo)記的SCAR轉(zhuǎn)換. 園藝學(xué)報(bào), 2002, 29(2): 100-104.
WANG C H, WANG Q, DAI H Y, TIAN Y K, JIA J H, SHU H R, WANG B. Development of a SCAR marker linked togene of apple an AFLP marker., 2002,29(2): 100-104.(in Chinese)
[78] FERNáNDEZ-FERNáNDEZ F, EVANS K. M, CLARKE J B, GOVAN C L, JAMES C M, MARI? S, TOBUTT K R. Development of an STS map of an interspecific progeny of Malus.2008, 4(3): 469-479.
[79] LIEBHARD R, GIANFRANCESCHI L, KOLLER B, RYDER C D, TARCHINI R, WEG E VD, GESSLER C. Development and characterisation of 140 new microsatellites in apple (Borkh.)., 2002, 10(4): 217-241.
[80] OTTO D, PETERSEN R, KROST C, BRANDL R, BRAUKSIEPE B, BRAUN P, SCHMIDT ER. Molecular characterization of the co gene region in., 2014, 1048(1048): 87-95.
[81] MORIMOTO T, BANNO K. Genetic and physical mapping of Co, A gene controlling the columnar trait of apple., 2015, 11(1): 1-11.
[82] OKADA K, MASATO W, SHIGEKI M, YUICHI K, HIROKO F, JIANZHONG WU, HIROYUKI KANAMORI, KANAKO KURITA, HARUMI SASAKI, HIROSHI FUJII, SHINGO TERAKAMI, HIROSHI IWANAMI, TOSHIYA YAMAMOTO, KAZUYUKI. Expression of a putative dioxygenase gene adjacent to an insertion mutation is involved in the short internodes of columnar apples ()., 2016, 129(6): 1109-1126.
[83] MAJER C, HOCHHOLDINGER F. Defining the boundaries: structure and function of LOB domain proteins., 2011, 16(1): 47-52.
[84] ZHANG Y G, ZHU J, DAI H Y. Characterization of transcriptional differences between columnar and standard apple trees using RNA-Seq., 2012, 30(4): 957-965.
[85] KROST C, PETERSEN R, Schmidt E R. The transcriptomes of columnar and standard type apple trees (Borkh.) –A comparative study., 2012, 498(2): 223.
[86] KROST C, PETERSEN R, LOKAN S, BRAUKSIEPE B, BRAUN P, SCHMIDT E R. Evaluation of the hormonal state of columnar apple trees () based on high throughput gene expression studies., 2013, 81(3): 211-220.
[87] PETERSEN R, DJOZGIC H, RIEGER B, RAPP S, SCHMIDT E R. Columnar apple primary roots share some features of the columnar- specific gene expression profile of aerial plant parts as evidenced by RNA-Seq analysis., 2015, 15(1): 34.
[88] Wolters P J, Schouten H J, Velasco R, Siammour A, Baldi P. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase., 2013, 200(4): 993-999.
[89] OTTO D, PETERSEN R, BRAUKSIEPE B, BRAUN P, SCHMIDT E R. The columnar mutation (‘Co gene’) of apple () is associated with an integration of a Gypsy-like retrotransposon., 2014, 33(4): 863-880.
(責(zé)任編輯 趙伶俐)
Research Progresses in mechanisms of Growth Habits andGene Mapping of Columnar Apple (× Borkh.)
LIANG MeiXia, QIAO XuQiang, GUO XiaoTong, ZHANG HongXia
(College of Agriculture, Ludong University, Yantai 264025, Shandong)
Columnar apple is a dwarfed mutant with thick, upright main stems and shortened internodes, and generates short fruit spurs instead of long lateral branches. It is a good resource for high dense planting and high yield production in the modern apple industry. Therefore, to understand its unique growth habit was highly interested for all research groups. The current research achievements are summarized as follows: (1) The growth habits of columnar apple is closely related with its endogenous hormones. The free IAA to total IAA ratio was found higher in the axillary buds of columnar apple trees than in the standard type apple trees. The columnar apple producing high number of spurs is because the higher level of zeatin-like growth substances exists in both apical and lateral shoots. The dwarfed growth phenotype is probably correlated with the lower GA level in the columnar apple trees. (2) The columnar phenotype is controlled by a single dominant allele of the columnar gene, which is clustered with the genes controlling main stem growth, branching habit, leaf feature and fruit quality. Thegene has been fine-mapped to chromosome 10 within the region of 18.51-19.09 Mb. (3) Fivecandidate genes has been reported till today. As the observation that expression ofin apple and tobacco led to shortened internodes in transgenic plants,was taken as the most promisingcandidate gene, although more studies are needed to clarify whether thegene also causes the reduced lateral branches and increased spurs in columnar apple. Sincegene is closed related with both plant hormone metabolism and signal transduction, studies on its biological functions by RNAi and transgenic technologies can not only reveal the molecular mechanism of the unique growth characteristics of columnar apple tree, but also provide the theoretical basis for the molecular breeding of columnar apple with improved quality.
columnar apple; growth habit;gene mapping; mining of candidate genes
2017-06-20;
國(guó)家自然科學(xué)基金(31601816)、山東省自然科學(xué)基金(ZR2016CQ27)、煙臺(tái)市科技攻關(guān)項(xiàng)目(2014ZH115,2015ZH071)
接受日期:2017-09-01
聯(lián)系方式:梁美霞,E-mail:mxliangdd@163.com