王亞利,楊 光,熊才耘,謝尚宏,李銀生,曹林奎,趙 琦
蔬菜廢棄物蚯蚓堆肥對雞毛菜生長的影響
王亞利,楊 光,熊才耘,謝尚宏,李銀生,曹林奎,趙 琦*
(上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院,上海 200240)
為降低蔬菜廢棄物帶來的潛在農(nóng)業(yè)面源污染風(fēng)險(xiǎn),并探討其資源化利用的可行性,本研究以4種蔬菜廢棄物堆肥產(chǎn)物為主要對象,研究其與2種商品有機(jī)肥在施氮量水平一致的條件下,對雞毛菜(Brassica chinensis,Linné)生長的影響。研究結(jié)果表明,加入10%秸稈的蔬菜廢棄物蚯蚓堆肥種植的雞毛菜,無論株高、葉面積,還是營養(yǎng)元素N、P、K、Ca和Mg的含量,都顯著高于其他處理。該處理雞毛菜株高和葉面積分別是商品有機(jī)肥處理的3.10~4.00倍和3.20~3.53倍。與蔬菜廢棄物普通堆肥相比,蔬菜廢棄物蚯蚓堆肥種植的雞毛菜株高和葉面積可分別增加25%~35%和16%~42%,雞毛菜中N、P含量也有所增加,但差異不顯著,而K、Ca和Mg含量顯著增加。無論是施用蔬菜廢棄物普通堆肥還是蚯蚓堆肥,雞毛菜的生長情況均顯著優(yōu)于施用商品有機(jī)肥。
蚯蚓堆肥;蔬菜廢棄物;雞毛菜;營養(yǎng)元素
我國是蔬菜大國,蔬菜種植面積和產(chǎn)量均居世界第一,分別占世界蔬菜種植面積和產(chǎn)量的41.75%和50.96%[1]。據(jù)統(tǒng)計(jì),2013年我國蔬菜種植面積為2.09×107hm2,各類蔬菜年產(chǎn)量高達(dá)7.35×108t,又因蔬菜在流通中的折損比例較高(約37%),同年,我國蔬菜廢棄物的總產(chǎn)量高達(dá)約2.69×108t[2],成為我國僅次于水稻、玉米和小麥秸稈的第四大農(nóng)作物廢棄物[3]。蔬菜廢棄物的含水量可高達(dá)75%~95%[4],且具有保存周期短、不易運(yùn)輸和易腐爛等特點(diǎn)。尤其是夏天,腐爛的蔬菜廢棄物更易為病害微生物的繁殖與傳播提供條件,所含的礦質(zhì)元素也會(huì)經(jīng)地表徑流沖刷和滲漏等途徑進(jìn)入地表水和地下水,造成農(nóng)業(yè)面源污染。但同時(shí),蔬菜廢棄物中含有較高的營養(yǎng)成分,如氮(2.02%~5.69%)、磷(0.29%~3.25%)和鉀(0.49%~5.37%)(以干物質(zhì)計(jì)算),這與常用的天然有機(jī)肥料相當(dāng)[5-7]。因此如何將蔬菜廢棄物資源化再利用,實(shí)現(xiàn)蔬菜廢棄物處理的減量化、能源化和資源化成為目前亟待解決的問題。
蚯蚓作為生態(tài)系統(tǒng)的工程師,被認(rèn)為是農(nóng)業(yè)治污除臭,變廢為肥的重要土壤動(dòng)物。它可利用自身豐富的酶系統(tǒng)(蛋白酶、脂肪酶、纖維酶、淀粉酶等)將有機(jī)廢棄物迅速分解,并轉(zhuǎn)化成易于利用的營養(yǎng)物質(zhì)[8]。從90年代起,蚯蚓堆肥就已經(jīng)被認(rèn)為是一種低成本的生態(tài)環(huán)境友好的技術(shù)[9-12]。蚯蚓不僅每日能處理與其體重相當(dāng)?shù)挠袡C(jī)廢棄物,如污泥、動(dòng)物糞便、蔬菜廢棄物、秸稈和工業(yè)垃圾等[13-15],降低它們對周圍環(huán)境的影響,而且可獲得高效、穩(wěn)定的有機(jī)肥,促進(jìn)農(nóng)作物生長,提高作物產(chǎn)量。蚯蚓堆肥富含大量腐植酸、有益微生物菌、多種氨基酸和微量元素,其團(tuán)粒結(jié)構(gòu)特殊,保水性強(qiáng),是一種集營養(yǎng)、防病和刺激生長于一體的多功能有機(jī)肥料,同時(shí)也是貧瘠土壤和長期施用化肥導(dǎo)致板結(jié)的土壤的改良劑。因此,蚯蚓堆肥在農(nóng)業(yè)生產(chǎn)中具有重大的發(fā)展?jié)摿16-17]。目前蚯蚓堆肥原料多為牛糞、污泥和秸稈等,鮮少使用蔬菜廢棄物。蔬菜廢棄物的高有機(jī)質(zhì)含量和無毒害的特性使其成為蚯蚓較好的食物來源,而同常規(guī)高溫堆肥相比,蚯蚓輔助堆肥工藝簡單、能耗低,同時(shí)蚓糞和蚓體又可循環(huán)利用,可在處理廢棄物的同時(shí)增加經(jīng)濟(jì)效益,是能夠?qū)崿F(xiàn)蔬菜廢棄物循環(huán)利用的一項(xiàng)新處理技術(shù)[18]。
因此,本研究選取4種蔬菜廢棄物有機(jī)肥和2種商品有機(jī)肥,研究其對雞毛菜(Brassicachinensis,Linné)生長的影響,以期為蔬菜廢棄物堆肥在農(nóng)業(yè)生產(chǎn)上的應(yīng)用提供數(shù)據(jù)支持和理論依據(jù)。
1.1.1 有機(jī)肥
本研究中使用的商業(yè)有機(jī)肥,一種是畜禽糞便(T1),來自奉賢農(nóng)業(yè)技術(shù)推廣服務(wù)中心,另一種是蚯蚓糞(T2),購于綠陽園藝。
T3~T6處理均為實(shí)驗(yàn)室制備的有機(jī)肥。制備有機(jī)肥的蔬菜廢棄物來自松江葉榭鎮(zhèn)蔬菜廢棄物回收站,主要為葉菜類和果皮。蚯蚓(Eisenia fetida)購于上海桃源蚯蚓養(yǎng)殖場。有機(jī)肥制備方法如下:
T3:新鮮蔬菜廢棄物+10%小麥秸稈普通堆肥(濕重比)
T4:新鮮蔬菜廢棄物+10%小麥秸稈預(yù)發(fā)酵40 d后蚯蚓堆肥(濕重比)
T5:新鮮蔬菜廢棄物普通堆肥
T6:新鮮蔬菜廢棄物預(yù)發(fā)酵40 d后蚯蚓堆肥
堆肥前,將所有蔬菜廢棄物放入具孔的塑料箱(長×寬×高=50cm×40cm×30cm)中,周圍鋪設(shè)一圈細(xì)紗布以防止蚯蚓逃逸。在T4和T6處理中投放蚯蚓成體100條。第70d停止堆肥,將所有堆肥產(chǎn)物作為有機(jī)肥。6種肥料的理化性質(zhì)參數(shù)如表1所示。
表1 6種肥料的理化參數(shù)Table 1 The physical-chemical parameters of six fertilizers
1.1.2 雞毛菜
雞毛菜(Brassica chinensis L.)的種子購于上海欣藝花園。
1.1.3 土壤
土壤取自上海交通大學(xué)農(nóng)場,理化性質(zhì)如下:pH=7.75,EC=130 μS·cm-1,土壤為粘土,20%粘粒,有機(jī)質(zhì) 32.1 g·kg-1,總磷 0.958 g·kg-1,總氮 1.85 g·kg-1,總鉀 2.53 g·kg-1。
本實(shí)驗(yàn)在上海交通大學(xué)溫室大棚中進(jìn)行。溫室大棚控制溫度為(25±5)℃,濕度控制在 60%~70%,雞毛菜種植于底部具孔的泡沫箱(長×寬×高=23 cm×33 cm×23 cm)中,放入10.0 kg土壤,土壤取自上海交通大學(xué)農(nóng)場,過2 mm篩。首先,將種子均勻?yàn)⒉ピ诒韺樱昃酁? cm。使用6種不同的有機(jī)肥種植雞毛菜,每個(gè)處理3個(gè)重復(fù),施氮量以上海菜地平均施氮水平 37.5 kg·hm-2為標(biāo)準(zhǔn)(表 2)。以不施肥(CK)處理為對照,在雞毛菜種植后的第1、5、10、15 d和25 d分別測定株高和葉面積。為減少誤差,株高低于2 cm和葉面積小于2 cm2的樣本忽略不計(jì)。在第25 d,收獲雞毛菜,殺青,烘干,研磨樣品并過60目篩,備用。
表2 不同處理的有機(jī)肥用量Table 2 The amount of fertilizers used in different treatments
全氮采用H2SO4-H2O2消煮法測定。全磷、全鉀、全鈣和全鎂采用電感耦合等離子體發(fā)射光譜儀(i-CAP6300-ICP,Thermo fisher)測定。
試驗(yàn)數(shù)據(jù)使用SPSS 22.0軟件進(jìn)行方差分析,多重比較采用LSD法檢測5%顯著性水平。
2.1.1 株高
圖1顯示了不同處理間雞毛菜株高在第10、15 d和25 d的變化。第1 d和第5 d的高度低于檢測水平,因此不在本研究討論范圍。所有處理的植物株高前10 d變化相似,差異不顯著(P>0.05)。第15 d后,不同處理間的雞毛菜株高變化較為明顯。施用商品有機(jī)肥(T1和T2)的雞毛菜株高顯著低于其他處理(p<0.05)。第25 d時(shí),T4處理的雞毛菜株高值達(dá)到最大,顯著高于其他處理,且比株高值最小的T1處理高了3.00倍。T4與T6處理(蔬菜廢棄物蚯蚓堆肥)的雞毛菜株高顯著高于T3和T5處理(蔬菜廢棄物普通堆肥)。T3處理下的雞毛菜株高高于T5處理。
2.1.2 葉面積
圖2顯示了不同處理間雞毛菜葉面積在第10、15 d和25 d的變化。第1 d和第5 d的葉面積,以及T1、T2和T6處理在第10 d的葉面積低于檢測水平,因此不在本研究討論范圍。在15 d后,T4處理葉面積顯著高于T5和T6處理(p<0.05)。與株高相似,在第25 d,T4處理的雞毛菜葉面積值達(dá)到最大,T1處理最小,兩者之比達(dá)到3.53。加入10%秸稈的蔬菜廢棄物堆肥處理(T3和T4)顯著高于無秸稈的蔬菜廢棄物堆肥處理(T5和T6)。T4和T6處理(蔬菜廢棄物蚯蚓堆肥)的雞毛菜葉面積分別高于T3和T5處理(蔬菜廢棄物普通堆肥),且差異顯著。
圖1 不同處理下雞毛菜株高的變化Figure 1 Height of Brassica chinensis under seven treatments
圖2 不同處理下雞毛菜葉面積的變化Figure 2 Leaf area of Brassica chinensis under seven treatments
2.2.1 氮、磷
雞毛菜和肥料中的氮、磷含量如表3所示。氮、磷含量在商品肥料(T1和T2)中最高,尤其是磷的含量顯著高于蔬菜廢棄物堆肥。其次是無秸稈的蔬菜廢棄物堆肥(T5和T6),加入10%秸稈的蔬菜廢棄物堆肥處理氮、磷含量(T3和T4)均最低。氮磷比與氮、磷含量呈相反的趨勢,T4處理的氮磷比最高。然而在雞毛菜中,T4處理的氮含量顯著高于其他處理,T3、T5和T6處理的氮含量也高于商品有機(jī)肥處理(T1和T2)。從氮肥利用率來看,T4處理最高,達(dá)32.67%。T3~T6處理的氮肥利用率均遠(yuǎn)高于T1和T2處理。蚯蚓堆肥處理(T4和T6)的氮肥利用率比普通堆肥(T3和T5)高。
2.2.2 鉀、鈣、鎂
雞毛菜和肥料中的鉀、鈣和鎂含量如表4所示。在T4處理下雞毛菜中鉀、鈣和鎂的含量最高,顯著高于其他處理(p<0.05)。其次是T5和T6處理,雞毛菜中鉀、鈣和鎂的含量較高,與其他處理相比,部分差異顯著。此外,T4和T6處理中,雞毛菜中除鉀外,鈣和鎂含量均顯著高于T3和T5處理,T3~T6處理(蔬菜廢棄物堆肥)中雞毛菜的鉀和鎂含量顯著高于T1和T2處理(商品有機(jī)肥)。
本研究結(jié)果表明,新鮮蔬菜廢棄物堆肥處理的雞毛菜株高和葉面積顯著高于商品有機(jī)肥處理下的雞毛菜,這與楊森等[19]的研究結(jié)果一致。他們研究了堆肥處理下蕹菜的生長情況,結(jié)果表明,堆肥可以促進(jìn)蕹菜的生長,增加株高。
堆肥可改善土壤礦質(zhì)養(yǎng)分和其他微量元素。施用堆肥后,土壤的有機(jī)質(zhì)和氮、磷、鉀等含量明顯提高[20],土壤結(jié)構(gòu)改善,土壤保水保肥能力增強(qiáng)[21-22],土壤微生物活性提高,進(jìn)而提高作物產(chǎn)量和改善品質(zhì)[23-25]。杜連鳳等[26]利用腐熟秸稈堆肥顯著增加了土壤中K+、Ca2+、Mg2+和Cl-等離子的含量。本研究也表明,蔬菜廢棄物堆肥處理的雞毛菜中氮的有效性高于商品有機(jī)肥(表3),磷、鉀和鎂的含量顯著高于商品有機(jī)肥處理(p<0.05)。這是由于蔬菜廢棄物堆肥提高了養(yǎng)分的可利用性[2]。與大多數(shù)作物一樣,雞毛菜的生長對氮較為敏感。本研究中,雖然商品有機(jī)肥的氮和磷的含量均高于蔬菜廢棄物堆肥,但是作物吸收情況卻與之相反,這與李惠等[27]研究蚯蚓堆肥對番茄、黃瓜中營養(yǎng)元素的吸收利用結(jié)果一致。劉吉?jiǎng)偟萚28]認(rèn)為適當(dāng)提高氮磷比可以顯著促進(jìn)番茄幼苗的生長。我們的研究結(jié)果顯示商品有機(jī)肥的氮磷比(1.09~1.14)遠(yuǎn)低于蔬菜廢棄物堆肥的氮磷比(4.02~5.97),較低的氮磷比無法提供雞毛菜生長所需的足夠養(yǎng)分,尤其是氮素。本研究結(jié)果還表明,加入10%秸稈的蔬菜廢棄物堆肥處理下的雞毛菜的長勢及其營養(yǎng)元素含量均高于無秸稈的蔬菜廢棄物堆肥處理,這可能與相同施氮量條件下該處理的肥料施用量高于其他處理有關(guān),同時(shí),加入的秸稈可以提供大量的碳源,改變蔬菜廢棄物中的碳氮比,繼而改變蔬菜廢棄物中的微生物群落結(jié)構(gòu)。
表3 7個(gè)處理中肥料和雞毛菜中氮、磷含量及氮磷比和氮肥利用率(以干物質(zhì)計(jì))Table 3 N and P contents,N/P and nitrogen use efficiency in fertilizers and Brassica chinensis under seven treatments(dry mass)
表4 7個(gè)處理中肥料和雞毛菜中鉀、鈣和鎂含量(以干物質(zhì)計(jì))Table 4 K,Ca and Mg contents in fertilizers and Brassica chinensis under seven treatments(dry mass)
營養(yǎng)物質(zhì)的釋放和植物吸收的同步性對植物的生長非常重要。Cantanazaro等[29]和Cox[30]認(rèn)為營養(yǎng)物的緩慢釋放可以提高作物產(chǎn)量,同時(shí)又可以減少營養(yǎng)成分的淋失。蚯蚓堆肥增強(qiáng)了土壤對營養(yǎng)物質(zhì)的固持能力,提高了土壤通透性,有利于植物根系的生長[31]。Singh等[32]研究發(fā)現(xiàn)噴施蚯蚓糞浸提液能顯著提高草莓的葉面積和植物干重。蚯蚓堆肥可以顯著提高番茄植株中的氮、磷、鉀含量[33-34],這與本研究結(jié)果一致。可能是由于蚯蚓的排泄物富含氮,增加了堆肥產(chǎn)物氮含量,或蚯蚓堆肥中的低pH值減少了氨氣揮發(fā)從而增加了氮的固持[35-36]。蚯蚓腸道中存在的磷酸酶也有助于提高堆肥過程中磷的可利用率[37]。
蚯蚓堆肥處理中雞毛菜營養(yǎng)元素的增加可能是因?yàn)轵球径逊士梢杂行У靥岣呱锓€(wěn)定性,改變微生物群落結(jié)構(gòu)的組成,增加土壤有益微生物,抑制有害菌生長[38-42]。蚯蚓堆肥比表面積較大,適合微生物增殖,提高土壤的生物學(xué)活性,此過程中植物所需的營養(yǎng)元素,特別是氮、磷、鉀、鈣被釋放后通過微生物轉(zhuǎn)化為更易溶和更易被植物利用的成分,如可溶性磷、硝態(tài)氮和交換性鉀、鈣和鎂等[43-44]。
(1)與商品有機(jī)肥相比,蔬菜廢棄物堆肥可顯著增加雞毛菜的株高和葉面積,并顯著提高雞毛菜中氮、磷、鉀、鈣和鎂元素的含量。氮磷比可以作為蔬菜生長的評價(jià)指標(biāo)之一。
(2)加入10%秸稈的蔬菜廢棄物蚯蚓堆肥處理更有利于雞毛菜的生長和對營養(yǎng)元素的吸收。第25 d該處理下的雞毛菜的株高和葉面積是商品有機(jī)肥處理下的3.10~4.00和3.20~3.53倍。
總之,蔬菜廢棄物蚯蚓堆肥比蔬菜廢棄物普通堆肥更有利于雞毛菜的生長和對營養(yǎng)元素的吸收。
致謝:感謝上海交通大學(xué)分析測試中心鄒亞娟老師和上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院王秀紅老師在數(shù)據(jù)測試過程中給予的無私幫助,也感謝上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院的謝強(qiáng)老師提供溫室,并在實(shí)驗(yàn)過程中幫助種植和收割雞毛菜。
[1]陳富橋,祁春節(jié).中外園藝產(chǎn)業(yè)比較及中國的發(fā)展對策[J].世界農(nóng)業(yè),2006(10):12-15.CHEN Fu-qiao,Qi Chun-jie.Comparison of horticulture industry between China and other countries and development countermeasures of China[J].World Agriculture,2006(10):12-15.
[2]杜鵬祥,韓 雪,高杰云.我國蔬菜廢棄物資源化高效利用潛力分析[J].中國蔬菜,2015(7):15-20.DU Peng-xiang,HAN Xue,GAO Jie-yun.Potential analysis on high efficient utilization of waste vegetable resources in China[J].China Vegetables,2015(7):15-20.
[3]畢于運(yùn),王亞靜,高春雨.中國主要秸稈資源數(shù)量及其區(qū)域分布[J].農(nóng)機(jī)化研究,2010(3):1-7.BI Yu-yun,WANG Ya-jing,GAO Chun-yu.Straw resource quantity and its regional distribution in China[J].Journal of Agricultural Mechanization Research,2010(3):1-7.
[4]Wang L Y,Wu S,Zhang Y C,et al.Research progress on composting treatment of vegetable wastes[J].China Vegetables,2014,6:6-12.
[5]黃鼎曦,陸文靜,王洪濤.農(nóng)業(yè)蔬菜廢物處理方法研究進(jìn)展和探討[J].環(huán)境污染治理與設(shè)備,2002,3(11):38-42.HUANG Ding-xi,LU Wen-jing,WANG Hong-tao.Progress on study of agricultural vegetable waste treatment[J].Techniques and Equipment for Environmental Pollution Control,2002,3(11):38-42.
[6]Lu W J,Wang H T,Nie Y F,et al.Effect of inoculating flower stalks and vegetable waste with lingo-cellulolytic microorganisms on the composting process[J].Journal of Environmental Science&Health,2004,39:871-887.
[7]Maniadakis K,Lasaridi K,Manios Y,et al.Integrated waste management through producers and consumers education:Composting of vegetable crop residues for reuse in cultivation[J].Journal of Environmental Science&Health,2004,39:169-183.
[8]孫振鈞.蚯蚓反應(yīng)器與廢棄物肥料化技術(shù)[M].北京:化學(xué)工業(yè)出版社,2004:1-280.SUN Zhen-jun.Earthworm reactor and waste fertilization technology[M].Beijing:Chemical Industry Press,2004:1-280.
[9]Hand P,Hayes W A,Frankland J C,et al.The vermicomposting of cow slurry[J].Pedobiologia,1988,31:199-209.
[10]Loehr R C,Martin J H,Neuhauser E F.Stabilization of liquid municipal sludge using earthworms[M]//Edwards C A,Neuhauser E F.Earthworms in waste and in environment management.Netherlands:SPB A-cademic Publishing,1988:95-110.
[11]Harris G D,Platt W L,Price B C.Vermicomposting in a rural community[J].BioCycle,1990,10:48-51.
[12]Logsdon G.Worldwide progress in vermicomposting[J].BioCycle,1994,35:63-65.
[13]Bansal S,Kapoor K K.Vermicomposting of crop residues and cattle dung with Eisenia foetida[J].Bioresource Technology,2000,73:95-98.
[14]Kaushik P,Garg V K.Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida[J].Bioresource Technology,2003,90:311-316.
[15]Shak K P Y,Wu T Y,Lim S L,et al.Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production[J].Environmental Science and Pollution Research,2004,21:1349-1359.
[16]張 寧.蚯蚓堆肥對西瓜和番茄生長、品質(zhì)及產(chǎn)量的影響[D].泰安:山東農(nóng)業(yè)大學(xué),2012.ZHANG Ning.Effect of vermicompost on the growth,quality and production of watermelon and tomato[D].Tai′an:Shandong Agriculture University,2012.
[17]李繼蕊.蚯蚓堆肥在黃瓜育苗及栽培上的應(yīng)用研究[D].泰安:山東農(nóng)業(yè)大學(xué),2013.LI Ji-rui.Application of vermicompost in cucumber seedling and cultivation[D].Tai′an:Shandong Agriculture University,2012.
[18]楊 帆,董燕,徐明崗,等.南方地區(qū)秸稈還田對土壤綜合肥力和作物產(chǎn)量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2012,23(11):3040-3944.YANG Fan,DONG Yan,XU Ming-gang,et al.Effects of straw returning on the integrated soil fertility and crop yield in Southern China[J].Chinese Journal of Applied Ecology,2012,23(11):3040-3944.
[19]楊 森,李裕榮,彭志良,等.施用產(chǎn)沼廢棄物和堆肥對蕹菜生長的影響[J].南方農(nóng)業(yè)學(xué)報(bào),2015,46(3):391-396.YANG Sen,LI Yu-rong,PENG Zhi-liang,et al.Influence of biogas residues from biogas generation and composts on Ipomoea aquatica Forsk growth[J].Journal of Southern Agriculture,2015,46(3):391-396.
[20]周建斌,李昌緯.化肥及有機(jī)肥配施定位試驗(yàn)的研究:作物產(chǎn)量及土壤養(yǎng)分含量的變化[J].西北農(nóng)林科技大學(xué)學(xué)報(bào),1993(2):61-65.ZHOU Jian-bin,LI Chang-wei.Fixed position experiments of inorganic fertilizer and organic manure in balance application to Lou soil:Variations in crop yields and soil nutrients[J].Journal of Northwest A&F University,1993(2):61-65.
[21]高峻嶺,宋朝玉,李祥云,等.不同有機(jī)肥配比對蔬菜產(chǎn)量和品質(zhì)及土壤肥力的影響[J].中國土壤與肥料,2008(1):48-51.GAO Jun-ling,SONG Chao-yu,LI Xiang-yun,et al.Effect of different combinations of organic manures on vegetables yield,quality and soil fertility[J].Soil and Fertilizer Sciences in China,2008(1):48-51.
[22]陳曉萍.蠶沙堆肥及其堆肥產(chǎn)品的生物學(xué)效應(yīng)研究[D].杭州:浙江大學(xué),2011.CHEN Xiao-ping.Study on silkworm excrement compost and biological effects of its composted products[D].Hangzhou:Zhejiang University,2011.
[23]羅安程,Subedi T B,章永松,等.有機(jī)肥對水稻根際土壤中微生物和酶活性的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),1999,5(4):321-327.LUO An-cheng,Subedi T B,ZHANG Yong-song,et al.Effect of organic manure on the numbers of microbes and enzyme activity in rice rhizosphere[J].Plant Nutrition and Fertilizer Science,1999,5(4):321-327.
[24]李本銀,黃紹敏,張玉亭,等.長期施用有機(jī)肥對土壤和糙米銅、鋅、鐵、錳和鎘積累的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2010,16(1):129-135.LI Ben-yin,HUANG Shao-min,ZHANG Yu-ting,et al.Effect of long-term application of organic fertilizer on Cu,Zn,Fe,Mn and Cd in soil and brown rice[J].Plant Nutrition and Fertilizer Science,2010,16(1):129-135.
[25]陶 磊,褚貴新,劉 濤,等.有機(jī)肥替代部分化肥對長期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響[J].生態(tài)學(xué)報(bào),2014,34(21):6137-6146.TAO Lei,CHU Gui-xin,LIU Tao.et al.Impacts of organic manure partial substitution for chemical fertilizer on cotton yield,soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J].Acta Ecologica Sinica,2014,34(21):6137-6146.
[26]杜連鳳,劉文科,劉建玲.三種秸稈有機(jī)肥改良土壤次生鹽漬化的效果及生物效應(yīng)[J].土壤通報(bào),2005,36(3):309-312.DU Lian-feng,LI Wen-ke,LIU Jian-ling.Effects on rape biomass and salty concentration of salinity soil applied with three straw manures and effective dose[J].Chinese Journal of Soil Science,2005,36(3):309-312.
[27]李 惠,李建明,丁 明,等.堆肥浸提液對番茄、黃瓜種苗生長及養(yǎng)分吸收的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,45(2):121-127.LI Hui,LI Jian-ming,DING Ming.et al.Effect of compost extracts on growth and nutrition absorption of tomato and cucumber seedlings[J].Journal of Northwest A&F University(Nat Sci Ed),2017,45(2):121-127.
[28]劉吉?jiǎng)?費(fèi)素娥,劉冬梅,等.育苗基質(zhì)中氮磷比及其含量對番茄穴盤苗生長及營養(yǎng)狀況的影響[J].西南農(nóng)業(yè)學(xué)報(bào),2007,20(1):84-86.LIU Ji-gang,FEI Su-e,LIU Dong-mei.et al.Effects of different ratio and amount of nitrogen and phosphorus in nursery substrate on growth and nutrition of tomato plug seedlings[J].Southwest China Journal of Agricultural Sciences,2007,20(1):84-86.
[29]Catanzaro C J,Williams K A,Sauve R J.Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum[J].Journal of Plant Nutrition,1998,21(5):1025-1036.
[30]Cox J S,Shamu C E,Walter P.Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase[J].Cell,1993,73(6):1197-1206.
[31]Kwon Y T,Lee C W,Yun J H,et al.Development of vermicast from sludge and powdered oyster shell[J].Journal of Cleaner Production,2009,7(17):708-711.
[32]Singh R,Sharma R R,Singh D B.Effect of vermicompost on plant growth,fruit yield and quality of strawberries in irrigated arid region of northern plains[J].India Journal of Horticulture,2010,3(67):318-321.
[33]Fornes F,Mendoza H D,Garcia de la Fuente R,et al.Composting ver-sus vermicomposting:A comparative study of organic matter evolution through straight and combined processes[J].Bioresource Technology,2012,118:296-305.
[34]Garg V K,Gupta R.Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida[J].Ecotoxicology and Environmental Safety,2011,74:19-24.
[35]Hartenstein R,Hartenstein F.Physicochemical changes effected in activated sludge by the earthworm Eisenia foetida[J].Journal of Environmental Quality,1981,10(3):377-382.
[36]于建光,胡 鋒,李輝信,等.接種蚯蚓對土壤團(tuán)聚體分布、穩(wěn)定性及有機(jī)碳賦存的影響[J].水土保持學(xué)報(bào),2010,24(3):175-179.YU Jian-guang,HU Feng,LI Hui-xin,et al.Effects of earthworms on soil aggregates formation,stability and soil organic carbon distribution[J].Journal of Soil and Water Conservation,2010,24(3):175-179.
[37]Suther S.Vermicomposting of vegetable-market solid waste using Eisenia fetida:Impact of bulking material on earthworm growth and decomposition rate[J].Ecological Engineering,2009,35:914-920.
[38]胡艷霞,孫振鈞,王東輝,等.蚯蚓糞中拮抗微生物分析[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2004,10(1):99-103.HU Yan-xia,SUN Zhen-jun,WANG Dong-hui,et al.Analysis of antagomistic microorganism in vermicompost[J].Chinese Journal of Applied&Environmental Biology,2004,10(1):99-103.
[39]Arancon N Q,Edwards C A,Bierman P,et al.Influences of vermicomposts on field strawberries:1.Effects on growth and yields[J].Bioresource Technology,2004,93:145-153.
[40]張俊英,許永利,劉志強(qiáng).蚯蚓糞緩解大棚黃瓜連作障礙的研究[J].北方園藝,2010(4):58-60.ZHANG Jun-ying,XU Yong-li,LIU Zhi-qiang.Study of the alleviate of earthworm manure on continuous cropping obstacle of cucumber growth in plastic greenhouse[J].Northern Horticulture,2010(4):58-60.
[41]Huang K,Li F S,Wei Y F,et al.Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida[J].Bioresource Technology,2013,150:235-241.
[42]申 飛,劉滿強(qiáng),李輝信,等.蚓糞和益生菌互作對土壤性狀、菠菜產(chǎn)量和品質(zhì)的影響[J].中國土壤與肥料,2016(5):90-95.SHEN Fei,LIU Man-qiang,LI Hui-xin,et al.Effect of vermicompost and probiotics interaction on yield and quality of spinach and soil properties[J].Soil and Fertilizer Sciences in China,2016(5):90-95.
[43]Orozco F H,Cegarra J,Trujillo L M,et al.Vermicomposting of coffee pulp using the earthworm Eisenia fetida:Effects on C and N contents and the availability of nutrients[J].Biology and Fertility of Soils,1996,22(1):162-166.
[44]Edwards C A,Neuhauser E F.Earthworms in waste and environment management[M].Netherlands:SPB Academic Press,1988:21-32.
Effect of vegetable waste vermicompost on the growth of Brassica chinensis
WANG Ya-li,YANG Guang,XIONG Cai-yun,XIE Shang-hong,LI Yin-sheng,CAO Lin-kui,ZHAO Qi*
(School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China)
Indiscriminate distribution of vegetable waste can increase the risk of nonpoint agricultural pollution.In this study,a comparison was made among four composts formed from vegetable waste and two commercial fertilizers used to promote the growth of Brassica chinensis.All six agents were matched at a nitrogen contents of 37.5 kg·hm-2.The height,leaf area,and nutrient contents of N,P,K,Ca,and Mg of Brassica chinensis were measured.We found that a vermicompost formed from vegetable waste and 10%wheat straw was the most effective treatment for Brassica chinensis growth.Cabbage height and leaf area with this treatment were 3.10~4.00 and 3.20~3.53 times as large,respectively,as those grown with commercial organic fertilizer.Cabbage height and leaf area were also 25%~35%and 16%~42%larger,respectively,than those for cabbages grown in the presence of the other vegetable waste composts.The N and P contents of the cabbage increased when a vermicompost was used in comparison to the other composts but the difference was not statistically significant.However,the K,Ca,and Mg contents of the cabbage increased significantly.These results highlight the advantages of using vermicompost for the production of green vegetables.They also provide a scientific reason for encouraging the responsible use of vegetable waste in agriculture.
vermicompost;vegetable waste;Brassica chinensis;nutrients
X712
A
1672-2043(2017)10-2129-07
10.11654/jaes.2017-0335
王亞利,楊 光,熊才耘,等.蔬菜廢棄物蚯蚓堆肥對雞毛菜生長的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2017,36(10):2129-2135.
WANG Ya-li,YANG Guang,XIONG Cai-yun,et al.Effect of vegetable waste vermicompost on the growth of Brassica chinensis[J].Journal of Agro-Environment Science,2017,36(10):2129-2135.
2017-03-10 錄用日期:2017-05-23
王亞利(1987—),女,河南濟(jì)源人,博士研究生,從事蚯蚓生態(tài)學(xué)研究。E-mail:609987640@qq.com
*通信作者:趙 琦 E-mail:zhaoq@sjtu.edu.cn
國家重點(diǎn)研發(fā)計(jì)劃課題(2016YFD0801106);國家星火計(jì)劃重點(diǎn)項(xiàng)目(2015GA680004);上海市國內(nèi)科技合作項(xiàng)目(16295810300);上海市閔行區(qū)產(chǎn)學(xué)研項(xiàng)目;國家自然科學(xué)基金青年基金項(xiàng)目(31401967)
Project supported:National Key Research and Development Program of China(2016YFD0801106);China Spark Program(2015GA680004);Domestic Science and Technology Cooperation Project in Shanghai(16295810300);Minhang "Production-Study-Research"Project in Shanghai;The Young Scientists Fund of the National Natural Science Foundation of China(31401967)