張影,彭雪蓮,王月嬌
(1. 長(zhǎng)沙理工大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長(zhǎng)沙,410000;2. 中南大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長(zhǎng)沙,410083)
隨機(jī)環(huán)境中多型分枝過程研究概述及一類鞅收斂
張影1,彭雪蓮1,王月嬌2
(1. 長(zhǎng)沙理工大學(xué) 數(shù)學(xué)與計(jì)算科學(xué)學(xué)院,湖南 長(zhǎng)沙,410000;2. 中南大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 長(zhǎng)沙,410083)
隨機(jī)環(huán)境;多型分枝過程;鞅
本文將對(duì)1971年至今的MBPRE的研究現(xiàn)狀進(jìn)行簡(jiǎn)要的概述,并構(gòu)造一個(gè)鞅過程,討論其極限隨機(jī)變量存在性。
本文將一些文獻(xiàn)的研究結(jié)論進(jìn)行符號(hào)上統(tǒng)一并做簡(jiǎn)要概述。首要問題就是研究其分類,不過在研究滅絕問題之后,分類問題隨之也會(huì)解決。Athreya、Karlin、E W Weissner、N Kaplan、D tanny都對(duì)MBPRE的滅絕問題進(jìn)行了研究,先來看他們所給出的滅絕條件。
N Kaplan[4]也討論了有關(guān)MBPRE的滅絕問題,在存在常數(shù)C,D>0情況下有
1981年,D Tanny[5]在給出大數(shù)定律表達(dá)式前,先對(duì)界C及廣義的MBPRE進(jìn)行了定義,指出其大數(shù)定律形式:
根據(jù)上述構(gòu)造的鞅是否可以研究MBPRE的中心極限定理問題,關(guān)于它的大偏差問題是否存在,矩的有限性及比率定理問題等可以繼續(xù)深入探討。
[1] Athreya K B,Ney P E. Branching processes [M]. Berlin:Springer,1972:181–219.
[2] Athreya K B,Karlin S. on branching process with random environments:I:E-xtinction probabilities [J]. Adv Appl Probab,1971,42(5):1 499–1 520.
[3] Weissner E W. Multitype branching processes in random environments [J]. Journal of Applied Probability,1971,8(1):17–31.
[4] Kaplan N. Some results about multidimensional branching Processes with Random Environments [J]. The annuls of Probability,1974,2(3):441–455.
[5] Tanny D. On Multitype branching processes in a random environment [J]. Advances in Applied Probability,1981,13(3):464–497.
[6] Dyakonova E E. Asymptotic behaviour of probobility of non-extincton for a multi-type branching process in random environment [J]. Discrete Math Appl,1999,9(2):119–136.
[7] Dyakonova E E. Multitype branching processes in a Random Environment [J]. J M Sciences,2002,111(3):3 537–3 540.
[8] Harry Cohn. On the growth of the multitype supercritical branching process in a random environment [J]. The Ann Probability,1989,17(3):1 118–1 123.
[9] Vatutin V A.Polling system and multitype branching processes in random environment counted by random characteristics[J]. Math P R,2009,10(6):156–194.
[10] Mode C D,Raj T,Sleeman C K. Simulating the emergence and survival of mutations using a self regulating multitype branching processes [J]. Probability and Statistics,2011:223–262.
[11] Wang H M.A note on multitype branching process with bounded immigration in random environment [J]. Acta Mathematica Sinica,2013,29(6):1 095–1 110.
[12] Dyakonova E E. Critical multitype branching process in a randomenvironment [J]. Discrete Math Appl,2007,17(6):587–606.
Summary of research and a class of martingale convergence for multi-type branching process in random environments
Zhang Ying1,Peng Xuelian1,Wang Yuejiao2
(1. School of Mathematics,Changsha University of Science and Technology,Changsha 410000,China;2. School of Mathematics and Statistics of CSU,Changsha 410083,China)
random environment;multi-type branching process;martingale
O 211.65
A
1672–6146(2017)04–0008–04
doi∶ 10.3969/j.issn.1672–6146.2017.04.003
張影,1102573750@qq.com。
2017–01–20
國(guó)家自然科學(xué)基金(11571052,11171044);湖南省研究生科研創(chuàng)新項(xiàng)目(CX2016B417)。
(責(zé)任編校:劉剛毅)