• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      腦缺血再灌注損傷與自噬關(guān)系的研究進(jìn)展

      2018-01-16 16:21:50楊綜述娟審校
      關(guān)鍵詞:溶酶體谷氨酸表型

      侯 楊綜述, 馮 娟審校

      缺血性腦卒中是神經(jīng)系統(tǒng)中最為高發(fā)的疾病之一,且在腦血流再灌注后會(huì)引發(fā)一系列的病理反應(yīng)從而造成更為嚴(yán)重的二次損傷。自噬是一種復(fù)雜的細(xì)胞代謝過程,在不同因素刺激下促使溶酶體吞噬細(xì)胞器等胞質(zhì)組分,廣泛參與機(jī)體的生理及病理過程,它是異于壞死和凋亡的并可作為細(xì)胞自我防御的代謝過程。腦缺血再灌注損傷(cerebral ischemia-reperfusion injury,CIRI)可激活受損后的神經(jīng)細(xì)胞發(fā)生自噬,自噬又與CIRI的發(fā)展緊密相關(guān)。本文對(duì)自噬的形成過程及其與CIRI的關(guān)系機(jī)制進(jìn)行綜述,為進(jìn)一步研究CIRI的治療靶點(diǎn)提供依據(jù)。

      1 缺血再灌注損傷與自噬

      缺血性卒中是最常見的神經(jīng)系統(tǒng)疾病之一,其特征在于大腦動(dòng)脈阻塞導(dǎo)致腦部的血液循環(huán)不暢,而血流再灌注又造成血液供應(yīng)再循環(huán)和氧氣、營養(yǎng)物質(zhì)再供應(yīng)的二次神經(jīng)損傷[1,2]。在生理情況下,自噬通常處于較低水平,其主要作用是通過降解細(xì)胞內(nèi)的缺陷蛋白和長壽命蛋白等,為細(xì)胞提供所需的基礎(chǔ)營養(yǎng)物質(zhì),以實(shí)現(xiàn)生存原料的再更新循環(huán)[3];在如腦缺血損傷等病理生理情況下自噬可被激活,但其對(duì)受損細(xì)胞有利與否目前仍存在爭(zhēng)議,越來越多的證據(jù)支持自噬是雙刃劍的概念[4]。

      1.1 炎癥損傷與自噬 炎癥損傷在缺血再灌注損傷(ischemia reperfusion injury,I/R)的病理生理過程中起著關(guān)鍵作用,抑制炎癥可改善I/R的神經(jīng)功能缺損。小膠質(zhì)細(xì)胞分為促炎癥作用的M1表型和抗炎作用的M2表型,兩者的比例決定著炎癥損傷程度。核轉(zhuǎn)錄因子-κB(nuclear transcription factor-κB,NF-κB)是M1表型的主要調(diào)節(jié)劑伴隨著高水平的腫瘤壞死因子-α( tumer necrosis factor-α,TNF-α)、誘導(dǎo)型一氧化氮合成酶( inducible Nitric Oxide Synthase,iNOS)、環(huán)氧化酶2( cyclooxygenase-2,COX2);環(huán)腺苷酸反應(yīng)元件結(jié)合蛋白( cAMP-response element binding protein,CREB) 是NF-ΚB轉(zhuǎn)錄競(jìng)爭(zhēng)者參與M2表型的極化伴隨著高水平白介素10( interleukin 10,IL-10)、腦源性神經(jīng)營養(yǎng)因子( brain derived neurotrophic factor,BDNF)[5,6]。研究發(fā)現(xiàn)在氧糖剝奪/再灌注( oxygen-glucose deprivation/ reoxygenation,OGD/R)發(fā)生時(shí)自噬即被激活,而在OGD/R 72 h時(shí)自噬通量卻被抑制,抑制后的自噬流可增強(qiáng)NF-κB通路上調(diào),M1表型標(biāo)志物TNF-α、iNOS、COX2表達(dá),促進(jìn)小膠質(zhì)細(xì)胞向M1表型極化,并且通過抑制CREB通路下調(diào)M2標(biāo)志物IL-10、BDNF水平[7]。

      1.2 谷氨酸毒性損傷、鈣超載與自噬 N-甲基-D-天冬氨酸受體( N-methyl-D-aspartate receptor,NMDAR) 為離子型谷氨酸受體,谷氨酸可使大量的鈣離子流入神經(jīng)細(xì)胞造成鈣超載引起嚴(yán)重的神經(jīng)興奮性毒性損傷,在I/R的神經(jīng)元損傷中起關(guān)鍵作用[8]。R025-6981是NMDAR的選擇性拮抗劑,可通過抑制I/R激活的自噬發(fā)揮對(duì)I/R損傷神經(jīng)細(xì)胞的保護(hù)作用[9]。此外,Ca+內(nèi)流還依靠α-氨基-3-羥基-5-甲基-4異惡唑丙酸型谷氨酸受體( α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor,AMPAR) 形成的Ca+內(nèi)流通道完成,該通道主要由谷氨酸受體1-4組成,而谷氨酸受體的降解與自噬也密切相關(guān)[10,11]。

      1.3 氧化應(yīng)激與自噬 缺血組織再灌注后會(huì)引起明顯的氧化應(yīng)激,伴隨著活性氧(reactive oxygen species,ROS)、活性氮( reactive nitrogen species,RNS) 等產(chǎn)生量的明顯升高,氧化應(yīng)激觸發(fā)蛋白質(zhì)損傷,形成毒性蛋白質(zhì)低聚物,蛋白質(zhì)聚集和氧化細(xì)胞成分的積累,最終導(dǎo)致神經(jīng)元的死亡和損傷[12,13]。ROS自噬的內(nèi)部調(diào)控機(jī)制可歸納為轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控,其包括各種分子信號(hào)途徑,如ROS-FOXO3-LC3 / BNIP3自噬,ROS-NRF2-P62自噬,ROS-HIF1-BNIP3 / NIX自噬和ROS-TIGAR-自噬;自噬也可以通過線粒體途徑、P62傳遞等途徑等調(diào)節(jié)ROS水平[14]。而RNS調(diào)節(jié)的自噬是否對(duì)缺血組織有益目前仍存在爭(zhēng)議,但越來越多的證據(jù)表明RNS介導(dǎo)的自噬會(huì)加重I/R損傷,可作為未來治療的靶點(diǎn)[15]。

      1.4 內(nèi)質(zhì)網(wǎng)應(yīng)激與自噬 內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)主要負(fù)責(zé)分泌蛋白和跨膜蛋白等的合成、折疊和加工,但當(dāng)ER的加工能力不能滿足蛋白質(zhì)的折疊要求時(shí),錯(cuò)誤折疊及未折疊的蛋白質(zhì)就會(huì)在ER管腔中逐漸積累導(dǎo)致ER應(yīng)激,造成觸發(fā)信號(hào)進(jìn)入一個(gè)自適應(yīng)的信號(hào)網(wǎng)絡(luò)中即未折疊蛋白反應(yīng)( unfolded protein response,UPR),而UPR可能會(huì)誘導(dǎo)細(xì)胞發(fā)生功能障礙進(jìn)而引起細(xì)胞凋亡[16]。蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶( protein kinase R-like ER kinase,PERK)、需肌醇酶1(Inositol-requiring kinase 1,IRE1 )是ER應(yīng)激誘導(dǎo)自噬的潛在介質(zhì),一些研究發(fā)現(xiàn)在I/R中ER應(yīng)激明顯增高,未折疊的蛋白通過PERK、IRE1通路激活自噬來加重神經(jīng)元的損傷[17]。一些研究發(fā)現(xiàn)激活的自噬可以降解內(nèi)質(zhì)網(wǎng)內(nèi)錯(cuò)誤折疊的蛋白以減輕ER應(yīng)激來發(fā)揮對(duì)細(xì)胞的保護(hù)作用[18]。

      泛素-蛋白酶系統(tǒng)(ubiquitin-proteasome system,UPS)和自噬溶酶體系統(tǒng)是真核細(xì)胞內(nèi)蛋白質(zhì)降解的兩條主要途徑,兩者可相互影響且與ER應(yīng)激關(guān)系密切。蛋白酶體抑制劑預(yù)處理缺氧再復(fù)氧( hypoxia-reoxygenation,H/R) 的細(xì)胞后其自噬水平顯著增強(qiáng)且ER應(yīng)激相關(guān)蛋白如X盒結(jié)合蛋白、CCAAT/增強(qiáng)子結(jié)合蛋白同源蛋白表達(dá)明顯增加,而經(jīng)蛋白酶體促進(jìn)劑阿霉素處理后的自噬和ER應(yīng)激相關(guān)蛋白水平均顯著降低,提示UPS可負(fù)向調(diào)節(jié)自噬和ER應(yīng)激水平;經(jīng)自噬激活劑預(yù)處理的H/R細(xì)胞后其自噬與UPS共同聯(lián)系蛋白即組蛋白脫乙酰酶6( histone deacetylase,HDAC6)、P62表達(dá)升高,ER應(yīng)激相關(guān)蛋白和促凋亡相關(guān)蛋白csapase-3等表達(dá)降低,說明UPS、ER應(yīng)激、細(xì)胞凋亡均受自噬的影響,且ER應(yīng)激被自噬和UPS負(fù)向調(diào)節(jié)[19]。

      1.5 線粒體功能障礙與自噬 缺血后的氧化應(yīng)激和ER應(yīng)激可誘發(fā)線粒體自噬,最初可通過離子穩(wěn)態(tài)來預(yù)防細(xì)胞凋亡和壞死,但過度的線粒體自噬又會(huì)導(dǎo)致細(xì)胞的死亡[20]。線粒體通透性轉(zhuǎn)換孔( mitochondrial permeability transition pore,mPTP)是內(nèi)膜的重要的復(fù)雜通道,其開放可導(dǎo)致線粒體膜電位的耗散及線粒體的腫脹,在I/R中可能刺激自噬消除異常的線粒體[21]。有研究發(fā)現(xiàn)腦缺血的酸性后處理能通過PARK2基因激活線粒體自噬來延長缺血再灌注后的時(shí)間窗[22]。而又有些觀點(diǎn)認(rèn)為活性氮激活的線粒體自噬可能通過加速細(xì)胞內(nèi)ATP的消耗導(dǎo)致細(xì)胞死亡,縮短再灌注后的治療時(shí)間窗[15]。

      2 自噬對(duì)缺血再灌注損傷腦組織的影響

      2.1 自噬對(duì)再灌注損傷的腦組織的保護(hù)作用 CIRI引起的大腦微血管內(nèi)皮細(xì)胞( brain microvascular endothelial cells,BMEC)的損傷是血腦屏障(blood-brain barrier,BBB)被破壞的起始步驟,也是造成I/R患者預(yù)后效果不理想的主要原因,而激活后的自噬可減輕再灌注后BMEC的損傷,有益于BBB的完整性[23]。最近研究發(fā)現(xiàn)長鏈非編碼RNA(lncRNA)Malat1在OGD/R損傷后的BMEC中表達(dá)上調(diào),且這些BMEC的自噬水平和存活率均有升高;進(jìn)一步研究發(fā)現(xiàn),lncRNA Malat1只能顯著降低miR-26的表達(dá);自噬相關(guān)基因ULK2是miR-26的潛在靶標(biāo),表達(dá)與Malat1相一致與miR-26相反,而ULK2敲除后的BMEC的自噬水平和存活率均降低,因此通過激活Malat1-mir-26b-ULK2通路可提高細(xì)胞的自噬水平進(jìn)而發(fā)揮對(duì)I/R中BMEC的保護(hù)作用[24]。

      2.2 自噬對(duì)再灌注損傷的腦組織的損傷作用 OGD/R中神經(jīng)元的鈣蛋白酶的活性可被強(qiáng)烈激活,引起溶酶體發(fā)生膜透化和組織蛋白酶B釋放到胞質(zhì)溶膠,造成自噬/溶酶體的功能障礙,最終導(dǎo)致神經(jīng)元的死亡[25]。OGD/R還可通過激活自噬誘導(dǎo)谷氨酸受體的表達(dá),通過Ca+-AMPAR通道促進(jìn)Ca+內(nèi)流加重大腦缺血再灌注損傷[26]。最近研究發(fā)現(xiàn)在葉酸缺乏時(shí)I/R的皮質(zhì)神經(jīng)元中自噬體的積累增多,微管相關(guān)蛋白輕鏈及Beclin1蛋白的表達(dá)顯著增加,且作為氧化性DNA損傷的敏感標(biāo)志物即8羥基脫氧鳥苷水平亦升高,提示葉酸缺乏可加強(qiáng)I/R腦組織自噬的激活進(jìn)而加重神經(jīng)元損傷,而氧化損傷可能參與其機(jī)制[27]。

      3 調(diào)節(jié)自噬保護(hù)再灌注損傷腦組織的藥物

      NOD樣受體蛋白3( NOD-like receptor protein 3,NLRP3)是NOD樣受體家族的成員,當(dāng)被激活時(shí)會(huì)促進(jìn)炎癥因子如IL-1β、IL-18的釋放[28]。靜息信息調(diào)節(jié)器1(sirt1)可抑制NLRP3及增強(qiáng)自噬對(duì)缺血腦組織起保護(hù)作用[29],白藜蘆醇通過激活sirt-自噬通路,進(jìn)而抑制NLRP3蛋白及其下游炎癥因子的表達(dá),從而發(fā)揮腦缺血再灌注損傷的保護(hù)作用[30]。近期研究發(fā)現(xiàn)低溫可改善OGD/R損傷后的溶酶體和自噬流,促進(jìn)海馬神經(jīng)元的自噬體和溶酶體的相互融合,間接促進(jìn)自噬的發(fā)生發(fā)揮對(duì)受損神經(jīng)元作用[31]。

      體內(nèi)外實(shí)驗(yàn)證明右美托咪定( dexmedetomidine,DEX)可通過上調(diào)缺氧誘導(dǎo)因子1α( hypoxia inducible factor-1α,HIF-1α)抑制自噬,進(jìn)而減輕MACO后腦梗死灶的面積及促進(jìn)OGD后神經(jīng)元的存活[32]。作為神經(jīng)營養(yǎng)因子的神經(jīng)節(jié)苷脂可通過降低在MACO中過度激活的自噬來減少腦缺血面積并改善神經(jīng)功能[33]。

      4 總 結(jié)

      自噬與CIRI關(guān)系密切,可以被CIRI激活并通過多個(gè)方面參與其發(fā)病過程。一方面被激活的自噬可發(fā)揮對(duì)受損神經(jīng)細(xì)胞的保護(hù)作用,但另一方面又可能加重腦組織損傷,這可能與激活自噬的方式和程度有關(guān)。而對(duì)CIRI具有治療作用的不同種類的藥物對(duì)自噬的激活或抑制作用也不盡相同,通過深入研究自噬在CIRI的動(dòng)態(tài)調(diào)節(jié)機(jī)制以在適當(dāng)時(shí)間應(yīng)用適當(dāng)?shù)闹委熕幬铮蔀镃IRI的臨床治療提供新的突破。

      [參考文獻(xiàn)]

      [1]Park HR,Lee H,Lee JJ,et al. Protective Effects of Spatholobi Caulis Extract on Neuronal Damage and Focal Ischemic Stroke/Reperfusion Injury [J]. Mol Neurobiol,2017,(3):1-17.

      [2]Chumboatong W,Thummayot S,Govitrapong P,et al. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat [J]. Neurochem Int,2017,102:114-122.

      [3]Lin NY,Beyer C,Giessl A,et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis [J]. Ann Rheum Dis,2013,72(5):761-768.

      [4]Huang XP,Ding H,Lu JD,et al. Autophagy in cerebral ischemia and the effects of traditional Chinese medicine [J]. J Integr Med,2015,13(5):289-296.

      [5]Yang XW,Li YH,Zhang H,et al. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells [J]. Int J Immunopathol Pharmacol,2016,29(1):54-64.

      [6]Zhang H,Li Y,Yu J,et al. Rho kinase inhibitor fasudil regulates microglia polarization and function [J]. Neuroimmunomodulation,2013,20(6):313-322.

      [7]Xia CY,Zhang S,Chu SF,et al. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion [J]. Int Immunopharmacol,2016,39:140-148.

      [8]Zhang C,Shen W,Zhang G. N-methyl-D-aspartate receptor and L-type voltage-gated Ca(2+) channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia [J]. Neurosci Lett,2002,328(3):265-268.

      [9]Dong F,Yao R,Yu H,et al. Neuroprotection of Ro25-6981 Against Ischemia/Reperfusion-Induced Brain Injury via Inhibition of Autophagy [J]. Cell Mol Neurobiol,2017,37(4):743-752.

      [10]Liu SJ,Savtchouk I. Ca(2+) permeable AMPA receptors switch allegiances:mechanisms and consequences [J]. J Physiol,2012,590(1):13-20.

      [11]Shehata M,Matsumura H,Okubo-Suzuki R,et al. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression [J]. J Neurosci,2012,32(30):10413-10422.

      [12]Morales CR,Pedrozo Z,Lavandero S,et al. Oxidative stress and autophagy in cardiovascular homeostasis [J]. Antioxid Redox Signal,2014,20(3):507-518.

      [13]Cao Y,Zhang L,Sun S,et al. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells [J]. Int J Mol Med,2016,38(2):567-573.

      [14]Li L,Tan J,Miao Y,et al. ROS and Autophagy:Interactions and Molecular Regulatory Mechanisms [J]. Cell Mol Neurobiol,2015,35(5):615-621.

      [15]Feng J,Chen X,Shen J. Reactive nitrogen species as therapeutic targets for autophagy:implication for ischemic stroke [J]. Expert Opin Ther Targets,2017,21(3):305-317.

      [16]Stengel S,Messner B,F(xiàn)alk-Paulsen M,et al. Regulated proteolysis as an element of ER stress and autophagy:Implications for intestinal inflammation [J]. Biochim Biophys Acta,2017.

      [17]Feng D,Wang B,Wang L,et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings [J]. J Pineal Res,2017,62:3.

      [18]Tripathi M,Zhang CW,Singh BK,et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation [J]. Cell Death Dis,2016,7(12):e2513.

      [19]Fan T,Huang Z,Chen L,et al. Associations between autophagy,the ubiquitin-proteasome system and endoplasmic reticulum stress in hypoxia-deoxygenation or ischemia-reperfusion [J]. Eur J Pharmacol,2016,791:157-167.

      [20]Bakthavachalam P,Shanmugam PS. Mitochondrial dysfunction -Silent killer in cerebral ischemia [J]. J Neurol Sci,2017,375:417-423.

      [21]Fakharnia F,Khodagholi F,Dargahi L,et al. Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis,Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion [J]. J Mol Neurosci,2017,61(1):52-60.

      [22]Shen Z,Zheng Y,Wu J,et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window [J]. Autophagy,2017,13(3):473-485.

      [23]Li H,Gao A,F(xiàn)eng D,et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury [J]. Transl Stroke Res,2014,5(5):618-626.

      [24]Li Z,Li J,Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression [J]. Neuroscience,2017,354:1-10.

      [25]Gerónimo-Olvera C,Montiel T,Rincon-Heredia R,et al. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons [J]. Cell Death Dis,2017,8(6):e2911.

      [26]Bao L,Li RH,Li M,et al. Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury [J]. Brain Res,2017,1668:65-71.

      [27]Zhao Y,Huang G,Chen S,et al. Folic acid deficiency increases brain cell injury via autophagy enhancement after focal cerebral ischemia [J]. J Nutr Biochem,2016,38:41-49.

      [28]Qiu J,Wang M,Zhang J,et al. The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling [J]. Int Immunopharmacol,2016,40:492-500.

      [29]Wang WR,Li TT,Jing T,et al. SIRT1 Regulates the Inflammatory Response of Vascular Adventitial Fibroblasts through Autophagy and Related Signaling Pathway [J]. Cell Physiol Biochem,2017,41(2):569-582.

      [30]He Q,Li Z,Wang Y,et al. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction [J]. Int Immunopharmacol,2017,50:208-215.

      [31]Zhou T,Liang L,Liang Y,et al. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux [J]. Exp Cell Res,2017,358(2):147-160.

      [32]Luo C,Ouyang MW,F(xiàn)ang YY,et al. Dexmedetomidine Protects Mouse Brain from Ischemia-Reperfusion Injury via Inhibiting Neuronal Autophagy through Up-Regulating HIF-1α [J]. Front Cell Neurosci,2017,11:197.

      [33]Li L,Tian J,Long MK,et al. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy [J]. PLoS One,2016,11(1):e0144219.

      猜你喜歡
      溶酶體谷氨酸表型
      溶酶體功能及其離子通道研究進(jìn)展
      生物化工(2021年2期)2021-01-19 21:28:13
      溶酶體及其離子通道研究進(jìn)展
      生物化工(2020年1期)2020-02-17 17:17:58
      高中階段有關(guān)溶酶體的深入分析
      讀與寫(2019年35期)2019-11-05 09:40:46
      淺談溶酶體具有高度穩(wěn)定性的原因
      建蘭、寒蘭花表型分析
      基于正交設(shè)計(jì)的谷氨酸發(fā)酵條件優(yōu)化
      N-月桂?;劝彼猁}性能的pH依賴性
      問:如何鑒定谷氨酸能神經(jīng)元
      GABABR2基因遺傳變異與肥胖及代謝相關(guān)表型的關(guān)系
      氧自由基和谷氨酸在致熱原性發(fā)熱機(jī)制中的作用與退熱展望
      涞水县| 萍乡市| 瑞金市| 庆阳市| 太仆寺旗| 襄樊市| 岳普湖县| 合肥市| 阳朔县| 尼勒克县| 武川县| 淮安市| 濮阳县| 渝中区| 和政县| 黎城县| 柘城县| 莒南县| 社旗县| 江永县| 金川县| 盐源县| 南开区| 吐鲁番市| 凤冈县| 文化| 奉化市| 望谟县| 渭源县| 申扎县| 邵阳县| 麻江县| 光山县| 嘉峪关市| 天柱县| 南和县| 崇信县| 修武县| 健康| 武隆县| 锡林郭勒盟|