• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      骨髓間充質(zhì)干細(xì)胞向肝細(xì)胞分化的相關(guān)細(xì)胞因子及信號(hào)通路的研究進(jìn)展

      2018-01-17 02:24:15
      關(guān)鍵詞:充質(zhì)肝細(xì)胞骨髓

      肝硬化失代償期肝細(xì)胞被大量破壞、肝功能損害是臨床治療的難題,那么如何解決肝細(xì)胞被大量破壞肝功能下降?近年來(lái)對(duì)干細(xì)胞的研究為解決這個(gè)難題帶來(lái)了新的希望。骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)來(lái)源于發(fā)育早期的中胚層,具有多向分化潛能[1-2],可分化為成骨細(xì)胞、軟骨細(xì)胞、肌細(xì)胞、心肌細(xì)胞、脂肪細(xì)胞,甚至是神經(jīng)細(xì)胞等成熟細(xì)胞[3-4]。目前亦有大量研究表明,已有一系列的特殊誘導(dǎo)機(jī)制保證了BMSCs分化為肝細(xì)胞,進(jìn)而改善肝硬化失代償期的肝功能[5-7],并通過(guò)檢測(cè)白蛋白、甲胎蛋白、凝血酶原時(shí)間及肝細(xì)胞相關(guān)標(biāo)志物檢測(cè)肝細(xì)胞的表達(dá)及其功能。

      誘導(dǎo)BMSCs向肝細(xì)胞分化過(guò)程中的具體機(jī)制至今仍不明確,其主要涉及細(xì)胞融合學(xué)說(shuō)、轉(zhuǎn)分化機(jī)制及潛能干細(xì)胞學(xué)說(shuō)等等。近年來(lái)實(shí)驗(yàn)研究主要涉及轉(zhuǎn)分化機(jī)制中的分子生物學(xué)和生物化學(xué),研究涉及復(fù)雜的信號(hào)通路,文章主要就BMSCs向肝細(xì)胞分化過(guò)程中相關(guān)信號(hào)通路進(jìn)行綜述。

      一、相關(guān)細(xì)胞因子

      肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)是一類可以調(diào)節(jié)干細(xì)胞增殖、分化、形態(tài)學(xué)變化、位置變化的細(xì)胞因子,是誘導(dǎo)BMSCs向肝細(xì)胞分化的關(guān)鍵性細(xì)胞因子[8]。

      堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor,bFGF),是成纖維細(xì)胞中的一種,廣泛分布于垂體、心、肝、腎、腎上腺、胸腺、黃體等組織中[9],是一類毛細(xì)血管增殖刺激劑,在細(xì)胞的增殖和分化中起重要作用,在血管增生、炎癥、腫瘤生長(zhǎng)亦發(fā)揮作用[10],對(duì)HGF誘導(dǎo)BMSCs向肝細(xì)胞的分化具有協(xié)同作用。

      二、相關(guān)信號(hào)通路

      (一)NF-kB信號(hào)通路

      核因子-kB(nuclear factor-kappa B,NF-kB)是一個(gè)由P50、P60、IkBa亞單位組成的胞質(zhì)三聚物[11],它是支配細(xì)胞增殖、分化和凋亡的主要因素之一。以往已經(jīng)有大量實(shí)驗(yàn)證明,細(xì)胞核內(nèi)的NF-kB信號(hào)通路參與BMSCs向神經(jīng)細(xì)胞及骨骼肌細(xì)胞的分化[12],抑制NF-kB信號(hào)通路的激活可促進(jìn)BMSCs向神經(jīng)細(xì)胞的分化[13];促進(jìn)NF-kB信號(hào)通路的激活可以增強(qiáng)BMSCs向骨骼肌細(xì)胞的分化[14],當(dāng)然,NF-kB信號(hào)通路對(duì)BMSCs向肝細(xì)胞分化也是不可缺少的信號(hào)通路。

      NF-kB在靜息狀態(tài)下大部分位于細(xì)胞質(zhì)中,當(dāng)向BMSCs中加入HGF后,IkBa磷酸化使得NF-kB被大量激活后,NF-kB二聚體進(jìn)入細(xì)胞核中從而發(fā)揮作用[15]。通過(guò)上游磷酸化級(jí)聯(lián)反應(yīng),IkBa亞單位從NF-kB三聚物中分離,剩下的P50/P60二聚物進(jìn)入細(xì)胞核并在kB的反應(yīng)增強(qiáng)區(qū)域與kB序列結(jié)合,因而增強(qiáng)下游基因的表達(dá)[16]。靛氰綠(indocyanine green,ICG)攝取試驗(yàn)(用于檢測(cè)肝功能)及Western blot數(shù)據(jù)表明HGF可誘導(dǎo)BMSCs向肝樣細(xì)胞的分化,當(dāng)加入NF-kB信號(hào)通路抑制劑時(shí),HGF所誘導(dǎo)的BMSCs向肝樣細(xì)胞分化被阻止,進(jìn)而證明HGF通過(guò)激活NF-kB信號(hào)通路促進(jìn)BMSCs的肝樣分化[15]。

      (二)Notch信號(hào)通路

      在哺乳動(dòng)物中,Notch信號(hào)通路是最基本的信號(hào)通路之一,是一個(gè)高度保守的信號(hào)通路,涉及細(xì)胞及組織分化,Notch家族是由四個(gè)Notch受體(Notch1-4)和五個(gè)配體,即兩個(gè) Serrate基因(Jagged1-2)和三個(gè) Delta(Delta1,3和 4)基因組成[17-18]。在人體中,Notch信號(hào)通路經(jīng)常涉及到?jīng)Q定干細(xì)胞分化為不同組織和細(xì)胞的分化狀態(tài)和命運(yùn)的早期發(fā)展。Jagged1的增加會(huì)激活Notch信號(hào)通路,Notch介導(dǎo)分化抑制信號(hào),當(dāng)Notch信號(hào)通路被抑制時(shí),BMSCs進(jìn)入分化程序,發(fā)育為功能細(xì)胞。Notch信號(hào)通路在肝、心、腎臟、脈管系統(tǒng)、骨骼和其他臟器系統(tǒng)的發(fā)育過(guò)程中起著非常重要的作用,與細(xì)胞生長(zhǎng)增殖、分化、生長(zhǎng)、凋亡也有著密切關(guān)聯(lián)[19-20]。年老細(xì)胞的Notch信號(hào)通路表達(dá)水平比年輕細(xì)胞的表達(dá)水平要高很多,阻止Notch信號(hào)通路可以促進(jìn)BMSCs分化為成骨細(xì)胞[21]。

      柯尊富等[22]的實(shí)驗(yàn)通過(guò)體外誘導(dǎo)BMSCs向肝細(xì)胞分化,在BMSCs向肝細(xì)胞分化之前,利用RT-PCR及Westernblot檢測(cè)發(fā)現(xiàn) Jagged1-2、Delta1,3、Notch1-3和 Presenilin的mRNA水平很高,然而在分化的第11天,其含量降至最低,并在第21天時(shí)其含量明顯較0,7,11 d下降,這些就表明了BMSCs肝向分化過(guò)程中Notch 信號(hào)通路的表達(dá)下降,說(shuō)明Notch 信號(hào)通路可能對(duì)BMSCs向肝細(xì)胞的分化過(guò)程是必要的,并對(duì)此過(guò)程起到抑制作用,即Notch信號(hào)通路的下調(diào)促進(jìn)BMSCs向肝細(xì)胞分化。

      (三)MAPK信號(hào)通路

      絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一組存在于哺乳動(dòng)物細(xì)胞內(nèi)的絲氨酸-蘇氨酸蛋白激酶,是受體激活和細(xì)胞功能的關(guān)鍵連接點(diǎn)[23-24],能被不同的細(xì)胞外刺激激活,在調(diào)節(jié)細(xì)胞的生長(zhǎng)、分化、凋亡、對(duì)環(huán)境的應(yīng)激適應(yīng)、炎癥反應(yīng)的過(guò)程中起重要作用,是神經(jīng)系統(tǒng)疾病和心血管系統(tǒng)疾病的重要靶點(diǎn)[25]。MAPKs家族包括:p38激酶、癌基因N端激酶(c-Jun N-terminal kinases,JNK)、細(xì)胞外信號(hào)調(diào)節(jié)蛋白激酶(extracellular signal regulated kinase,ERK)、ERK3、ERK8、ERK27、大 MAPK 通路、NLK等8個(gè)亞家族[23,26]。

      MAPK(P38,JNK,ERK)信號(hào)通路構(gòu)成一個(gè)巨大的激酶系統(tǒng),可以調(diào)節(jié)一系列的生物學(xué)過(guò)程,例如細(xì)胞生長(zhǎng)、分化和凋亡,以及應(yīng)對(duì)各種應(yīng)激反應(yīng),以往實(shí)驗(yàn)都證明了MAPK信號(hào)通路科誘導(dǎo)骨髓干細(xì)胞向神經(jīng)細(xì)胞分化。P38和ERK在調(diào)節(jié)細(xì)胞增殖和分化起著重要作用[27-28],尤其是P38信號(hào)通路對(duì)促進(jìn)骨髓干細(xì)胞向肝細(xì)胞的分化起著非常重要的作用,F(xiàn)GF4和HGF可以促進(jìn)BMSCs向肝細(xì)胞分化[8]。當(dāng)在加入FGF4和HGF的培養(yǎng)基中加入P38抑制劑(SB203580)和ERK1/2抑制劑(U0126)時(shí),AFP和FOXa2的表達(dá)在所有的MAPK抑制劑組均下降,在P38抑制劑組下降更為明顯,說(shuō)明肝向分化受到了抑制[29]。由此證明FGF4和HGF體外誘導(dǎo)骨髓干細(xì)胞向肝細(xì)胞的分化需要MAPK信號(hào)通路的參與。

      (四)Wnt信號(hào)通路

      有研究報(bào)道在果蠅胚胎發(fā)育研究中發(fā)現(xiàn)了無(wú)翅基因(wingless),在小鼠乳腺腫瘤研究時(shí)發(fā)現(xiàn)的Int癌基因,該基因的激活需要依賴小鼠乳腺癌相關(guān)病毒(mouse breast cancer related virus,MMTV)基因的插入(insertion)[30-31]。wingless基因與Int基因?yàn)橥椿?,因此,合稱為Wnt基因[32-33]。Wnt蛋白是一類富含半胱氨酸殘基的分泌信號(hào)糖蛋白家族,是由19種高度保守的糖蛋白作為配體的橫跨膜受體,在神經(jīng)系統(tǒng)胚胎發(fā)育及BMSCs向神經(jīng)細(xì)胞的發(fā)育過(guò)程中起著重要的作用[34-35]。Wnt信號(hào)通路包括典型的Wnt信號(hào)通路(β-catenin依賴型的)和非經(jīng)典的Wnt信號(hào)通路(β-catenin非依賴型的)[36],經(jīng)典的Wnt/β-catenin信號(hào)通路的核心是β-catenin,此通路與肝纖維化存在一定關(guān)聯(lián)[37]。Wnt信號(hào)通路在干細(xì)胞的增殖、分化、遷移的過(guò)程中發(fā)揮重要作用,與腫瘤、肥胖、糖尿病及骨相關(guān)疾病亦相關(guān)聯(lián)[32]。

      在BMSCs的肝向分化過(guò)程中,β-catenin在連續(xù)地降低,而Wnt/β-catenin的表達(dá)變化提示W(wǎng)nt信號(hào)通路在這一過(guò)程中也是下降的[38],分化過(guò)程中β-catenin呈下降趨勢(shì),提示W(wǎng)nt信號(hào)通路是被抑制的。當(dāng)Wnt-1被加入到BMSCs培養(yǎng)基中的時(shí)候,BMSCs在這個(gè)過(guò)程中僅僅表達(dá)Bst1,這就證明了下調(diào)Wnt信號(hào)通路可以促進(jìn)BMSCs的肝向分化[39]。而β-catenin是一類多功能胞質(zhì)蛋白,廣泛分布于細(xì)胞內(nèi),位于Wnt信號(hào)途徑的中心位置,它在Wnt信號(hào)通路中起重要作用,它在細(xì)胞內(nèi)的數(shù)量和狀態(tài)對(duì)該途徑發(fā)揮作用有決定性的影響[32, 40]。

      (五)STAT3信號(hào)通路

      人類的轉(zhuǎn)錄因子(signal transducer and activators of transcription signaling,STAT)家族由七種不同的蛋白組成,即STAT1-4、STAT5A、STAT5B、STAT6,而它都被不同的基因所編碼,STAT1和STAT3是STAT家族中最具典型的代表,STAT1能夠促進(jìn)細(xì)胞凋亡和炎癥發(fā)展,STAT3與癌癥進(jìn)展相關(guān)聯(lián),也是腫瘤及肝細(xì)胞腫瘤藥物治療的靶點(diǎn)[41-42],在多種造血系統(tǒng)腫瘤及實(shí)體腫瘤中均有異常表達(dá)[43-45]。

      STAT3即信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(signal transducer and activators of transcription signaling 3),是 一 類 由 750 ~800個(gè)氨基酸組成的DNA結(jié)合蛋白,是存在于細(xì)胞漿與絡(luò)氨酸磷酸化信號(hào)通道偶聯(lián)的一種雙功能蛋白[42],它參與了胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路、多種腫瘤的致癌信號(hào)通路,可以被生長(zhǎng)因子、細(xì)胞因子和多個(gè)促炎因子活化[46],也可被JAK激酶、白介素6、表皮生長(zhǎng)因子受體等多種細(xì)胞因子、生長(zhǎng)因子受體或癌蛋白激活,在細(xì)胞的分化、增殖、轉(zhuǎn)化、轉(zhuǎn)移、凋亡、存活、細(xì)胞免疫等過(guò)程中起重要作用[47],它在早期胚胎發(fā)育和BMSCs分化過(guò)程中是必不可少的,可以促進(jìn)創(chuàng)傷愈合、細(xì)胞遷移和細(xì)胞增殖。在BMSCs肝向分化的過(guò)程中,STAT3和MAPK/ERK信號(hào)通路是被激活的,而β-catenin的mRNA及其蛋白的表達(dá)量卻是下降的,激活I(lǐng)L-6/gp130所介導(dǎo)的STAT3信號(hào)通路可促進(jìn)骨髓干細(xì)胞的肝向分化[48]。在BMSCs肝向分化過(guò)程中,由IL-6/gp130所介導(dǎo)的信號(hào)通路包括STAT3信號(hào)通路和MAPK信號(hào)通路均是被激活的,而Wnt信號(hào)通路則是被抑制的[48]。

      三、討論

      BMSCs的肝向分化潛能的發(fā)現(xiàn)成為肝功能受損疾病、組織修復(fù)、基因治療的重要研究點(diǎn);利用骨髓干細(xì)胞移植技術(shù)還不存在醫(yī)學(xué)倫理學(xué)和免疫排斥等相關(guān)問(wèn)題,是干細(xì)胞移植和組織工程研究的理想種子細(xì)胞,但是其確切的分化機(jī)制尚不明確,關(guān)于BMSCs的研究目前還處于探索中,還有很多問(wèn)題有待解決,例如:(1) BMSCs分化而來(lái)的肝細(xì)胞,是否能正常表達(dá)肝細(xì)胞標(biāo)志物及具備成熟的肝功能,是否會(huì)對(duì)機(jī)體原先的肝細(xì)胞造成影響;(2)如何有效的控制誘導(dǎo)分化的條件(包括各細(xì)胞因子及相關(guān)信號(hào)通路),如何按預(yù)定的途徑進(jìn)行分化,是否會(huì)對(duì)機(jī)體造成不可預(yù)見的損傷與危險(xiǎn);(3)骨髓干細(xì)胞移植治療肝功能損害疾病的負(fù)反應(yīng)是否會(huì)加快肝纖維化的進(jìn)展。

      四、展望

      BMSCs是一類具有自我更新、多向分化的細(xì)胞,可以分化為肝細(xì)胞,且來(lái)源較廣泛,取材容易,損傷及消耗小,增殖能力強(qiáng),自體骨髓干細(xì)胞移植具有避免肝臟移植、創(chuàng)傷小、且免疫排斥反應(yīng)小、效果顯著、避免長(zhǎng)期服用免疫抑制藥物帶來(lái)的副反應(yīng)等優(yōu)點(diǎn),無(wú)倫理學(xué)爭(zhēng)議,是組織修復(fù)、細(xì)胞移植、基因治療的最佳候選者,有強(qiáng)大的臨床應(yīng)用前景,可廣泛應(yīng)用于臨床,相信不遠(yuǎn)的將來(lái)利用骨髓干細(xì)胞治療肝臟疾病可以得到明顯改善,而且最終也將戰(zhàn)勝肝臟疾病。

      1 李睿, 董紅麗, 劉汝斌, 等. 骨髓間充質(zhì)干細(xì)胞移植可促進(jìn)移植胰島周圍新生血管形成 [J]. 器官移植, 2017, 8(2):149-153, 160.

      2 Kang JG, Park SB, Seo MS, et al. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood [J]. J Vet Sci, 2013, 14(3):367-371.

      3 李喬喬, 吳振強(qiáng), 張麗君. 骨髓間充質(zhì)干細(xì)胞的定向分化潛能[J]. 中國(guó)組織工程研究, 2017, 21(25):4085-4090.

      4 尉大為, 葛鋅雨, 劉奕含, 等. 松果菊苷誘導(dǎo)骨髓間充質(zhì)干細(xì)胞向成骨細(xì)胞分化的研究 [J]. 中藥藥理與臨床, 2017, 33(02):48-52.

      5 Asama H, Suzuki T, Kita E, et al. [Nonalcoholic steatohepatitis after pancreatoduodenectomy with rapid progression of hepatic fibrosis: a case report] [J]. Nihon Shokakibyo Gakkai Zasshi, 2015, 112(5):905-913.

      6 Bihari C, Anand L, Rooge S, et al. Bone marrow stem cells and their niche components are adversely affected in advanced cirrhosis of the liver[J]. Hepatology, 2016, 64(4):1273-1288.

      7 鄭盛, 楊涓, 劉瓊, 等. 經(jīng)肝固有動(dòng)脈自體骨髓間充質(zhì)干細(xì)胞移植治療失代償期肝硬化的療效及安全性[J]. 肝臟, 2016, 21(02):95-99.

      8 謝樹才, 張劍權(quán), 蔣錫麗, 等. 骨髓間充質(zhì)干細(xì)胞誘導(dǎo)分化為肝細(xì)胞的方法及機(jī)制研究與進(jìn)展[J]. 中國(guó)組織工程研究[J], 2016, 20(50):7586-7593.

      9 Wang X, Zhen L, Miao H, et al. Concomitant retrograde coronary venous infusion of basic fibroblast growth factor enhances engraftment and differentiation of bone marrow mesenchymal stem cells for cardiac repair after myocardial infarction [J]. Theranostics, 2015, 5(9):995-1006.

      10 Presta M, Chiodelli P, Giacomini A, et al. Fibroblast growth factors(FGFs) in cancer: FGF traps as a new therapeutic approach[J].Pharmacol Ther, 2017, 179:171-187.

      11 Obaid R, Wani SE, Azfer A, et al. Optineurin negatively regulates osteoclast differentiation by modulating NF-κB and interferon signaling:implications for paget's disease [J]. Cell Rep, 2015, 13(6):1096-1102.

      12 Hess K, Ushmorov A, Fiedler J, et al. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway[J]. Bone, 2009, 45(2):367-376.

      13 Valente MM, Allen M, Bortolotto V,et al. The MMP-1/PAR-1 axis enhances proliferation and neuronal differentiation of adult hippocampal neural progenitor cells[J]. Neural Plast, 2015, 2015:646595.

      14 Cho HH, Shin KK, Kim YJ,et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression [J]. J Cell Physiol,2010, 223(1):168-177.

      15 Yang T, Wang Y, Jiang S, et al. Hepatocyte growth factor-induced differentiation of bone mesenchymal stem cells toward hepatocyte-like cells occurs through nuclear factor-kappa B signaling in vitro[J]. Cell Biol Int, 2016, 40(9):1017-1023.

      16 Han D,Wu G,Chang C,et al. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway[J]. Oncotarget, 2015, 6(38):40907-40919.

      17 Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2):97-106.

      18 Lampreia FP, Carmelo JG, Anjos-Afonso F. Notch Signaling in the Regulation of Hematopoietic Stem Cell[J]. Curr Stem Cell Rep, 2017,3(3):202-209.

      19 Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease[J]. Semin Cell Dev Biol, 2012, 23(4):450-457.

      20 Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by Notch[J]. Nat Rev Immunol, 2013, 13(6):427-437.

      21 Tang Z, Wei J, Yu Y, et al. γ-Secretase inhibitor reverts the Notch signaling attenuation of osteogenic differentiation in aged bone marrow mesenchymal stem cells[J]. Cell Biol Int, 2016, 40(4):439-447.

      22 Ke Z, Mao X, Li S, et al. Dynamic expression characteristics of Notch signal in bone marrow-derived mesenchymal stem cells during the process of differentiation into hepatocytes[J]. Tissue Cell, 2013, 45(2):95-100.

      23 Zhen Y, Zhang W, Liu C, et al. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2-COX-2 pathways[J]. Oncol Rep, 2015, 34(5):2413-2422.

      24 Im NK, Jang WJ, Jeong CH, et al. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells[J].J Med Food, 2014, 17(8):855-861.

      25 Haspula D, Clark MA. MAPK activation patterns of AT1R and CB1R in SHR versus Wistar astrocytes: Evidence of CB1R hypofunction and crosstalk between AT1R and CB1R[J]. Cell Signal, 2017, 40:81-90.

      26 Zhang B, Wu T, Wang Z, et al. p38MAPK activation mediates tumor necrosis factor-α-induced apoptosis in glioma cells[J]. Mol Med Rep,2015, 11(4):3101-3107.

      27 Zhang A, Wang Y, Ye Z, et al. Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells[J]. J Cell Biochem, 2010, 111(2):469-475.

      28 Li J, Zhao Z, Liu J, et al. MEK/ERK and p38 MAPK regulate chondrogenesis of rat bone marrow mesenchymal stem cells through delicate interaction with TGF-beta1/Smads pathway[J]. Cell Prolif,2010, 43(4):333-343.

      29 Lu T, Yang C, Sun H, et al. FGF4 and HGF promote differentiation of mouse bone marrow mesenchymal stem cells into hepatocytes via the MAPK pathway[J]. Genet Mol Res, 2014, 13(1):415-424.

      30 Mohammed MK, Shao C, Wang J, et al. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 2016. 3(1): 11-40.

      31 Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012.149(6): 1192-205.

      32 張遙, 任秀智, 韓金祥, 等. Wnt信號(hào)通路與人類疾病相關(guān)性的研究進(jìn)展[J]. 中國(guó)生物制品學(xué)雜志, 2018, (1):81-86.

      33 Zhang H, Chen J, Shen Z, et al. Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling[J]. Toxicol Lett, 2017, 284:29-36.

      34 Lin CM, Yuan YP, Chen XC, et al. Expression of Wnt/β-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles[J]. J Mol Histol, 2015, 46(3): 233-240.

      35 李云矗, 徐剛, 徐成福. Wnt/β-catenin信號(hào)通路及其對(duì)骨髓間充質(zhì)干細(xì)胞多向分化調(diào)節(jié)研究進(jìn)展[J]. 牡丹江醫(yī)學(xué)院學(xué)報(bào), 2016, 37(1): 99-102.

      36 Rao TP, Kühl M. An updated overview on Wnt signaling pathways:a prelude for more [J]. Circ Res, 2010, 106(12):1798-1806.

      37 Hino M, Kamo M, Saito D, et al. Transforming growth factor-β1 induces invasion ability of HSC-4 human oral squamous cell carcinoma cells through the Slug/Wnt-5b/MMP-10 signalling axis[J]. J Biochem,2016, 159(6):631-640.

      38 Yoshida Y, Shimomura T, Sakabe T, et al. A role of Wnt/beta-catenin signals in hepatic fate specification of human umbilical cord bloodderived mesenchymal stem cells[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(5):G1089-1098.

      39 Ke Z, Zhou F, Wang L, et al. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes[J]. Biochem Biophys Res Commun, 2008, 367(2):342-348.

      40 吳志方, 羅輝, 羅毅文. 骨髓間充質(zhì)干細(xì)胞遷移的信號(hào)通路的研究進(jìn)展[J]. 醫(yī)學(xué)綜述, 2016, 22(22):4377-4380.

      41 Lai SY, Johnson FM. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches[J]. Drug Resist Updat, 2010, 13(3):67-78.

      42 He G, Karin M. NF-κB and STAT3-key players in liver inflammation and cancer[J]. Cell Res, 2011, 21(1):159-168.

      43 Geletu M, Guy S, Raptis L. Effects of SRC and STAT3 upon gap junctional, intercellular communication in lung cancer lines[J].Anticancer Res, 2013, 33(10):4401-4410.

      44 Ramakrishna G, Rastogi A, Trehanpati N, et al. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence[J]. Liver Cancer, 2013, 2(3-4):367-383.

      45 Ishida F, Matsuda K, Sekiguchi N, et al. STAT3 gene mutations and their association with pure red cell aplasia in large granular lymphocyte leukemia[J]. Cancer Sci, 2014, 105(3):342-346.

      46 Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors[J]. Biochim Biophys Acta, 2014, 1845(2):136-154.

      47 Stepkowski SM, Chen WH, Ross JA, et al. STAT3: an important regulator of multiple cytokine functions[J]. Transplantation, 2008,85(10):1372-1377.

      48 Lam SP, Luk JM, Man K, et al. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation,proliferation, and liver regeneration[J]. Liver Transpl, 2010, 16(10):1195-1206.

      猜你喜歡
      充質(zhì)肝細(xì)胞骨髓
      Ancient stone tools were found
      外泌體miRNA在肝細(xì)胞癌中的研究進(jìn)展
      miR-490-3p調(diào)控SW1990胰腺癌細(xì)胞上皮間充質(zhì)轉(zhuǎn)化
      間充質(zhì)干細(xì)胞外泌體在口腔組織再生中的研究進(jìn)展
      間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
      三七總皂苷對(duì)A549細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化的影響
      宮頸癌術(shù)后調(diào)強(qiáng)放療中骨髓抑制與骨髓照射劑量體積的關(guān)系
      贊美骨髓
      文苑(2018年18期)2018-11-08 11:12:42
      骨髓穿刺涂片聯(lián)合骨髓活檢切片在骨髓增生異常綜合征診斷中的應(yīng)用
      肝細(xì)胞程序性壞死的研究進(jìn)展
      诸城市| 浏阳市| 兴业县| 通江县| 大同市| 金湖县| 平罗县| 灵川县| 金沙县| 武胜县| 霸州市| 华安县| 临沧市| 辛集市| 株洲县| 芜湖市| 十堰市| 芦溪县| 通道| 溆浦县| 泰兴市| 偏关县| 长春市| 湖南省| 滦平县| 宜兰市| 聂荣县| 秭归县| 奉化市| 瑞昌市| 宁波市| 滕州市| 昭苏县| 温州市| 磐石市| 邵武市| 固安县| 曲靖市| 尚志市| 凤山县| 乌恰县|