付治鳳,馬 浩,陳春林
(宜春學(xué)院1.化學(xué)與生物工程學(xué)院,2.美容醫(yī)學(xué)院,江西宜春 336000)
抑郁癥是以持久地情緒低落、悲觀和睡眠障礙等為主要特征的精神類疾病,嚴(yán)重者常常伴有自殺念頭或行為[1]。據(jù)世界衛(wèi)生組織統(tǒng)計,抑郁癥已成為世界第4大疾患,預(yù)計到2020年,可能成為僅次于冠心病的第二大疾?。?]。抑郁癥的發(fā)病機(jī)制涉及單胺類神經(jīng)遞質(zhì)假說、神經(jīng)內(nèi)分泌假說、神經(jīng)可塑性和腦源性神經(jīng)生長因子假說等,但其具體發(fā)病機(jī)制尚未闡明[3]。近年來,表觀遺傳學(xué)從基因環(huán)境因素的角度研究應(yīng)激對人類行為的影響發(fā)現(xiàn),環(huán)境因素可引起DNA甲基化、組蛋白乙?;蚼iRNA調(diào)控等表觀遺傳學(xué)修飾,在不改變基因組序列的情況下對基因轉(zhuǎn)錄進(jìn)行調(diào)控,從而影響人類的生理和行為[4-6]。DNA甲基化是最常見的表觀遺傳學(xué)調(diào)控方式,在DNA甲基轉(zhuǎn)移酶的催化下,CpG二核苷酸中的胞嘧啶被選擇性地添加甲基,形成5-甲基胞嘧啶[7]。目前研究較多的糖皮質(zhì)激素受體(glucocorti?coid receptor,GR)基因甲基化和腦源性神經(jīng)營養(yǎng)因子基因甲基化都在抑郁癥的發(fā)病中起著重要作用。
GR在抑郁癥的發(fā)生發(fā)展以及治療中扮演著重要的角色。多種環(huán)境因素(包括孕期感染、社會壓力和發(fā)育早期受虐等生活負(fù)性事件)都可能導(dǎo)致抑郁癥的發(fā)生,而研究發(fā)現(xiàn),這些環(huán)境因素可增加GR基因啟動子的甲基化[8-9]。近年來研究發(fā)現(xiàn),GR基因甲基化可通過調(diào)控GR的表達(dá)參與抑郁癥病理生理機(jī)制。本文就GR基因甲基化與抑郁癥關(guān)系的研究進(jìn)展進(jìn)行綜述,為深入探究抑郁癥的表觀遺傳學(xué)調(diào)控機(jī)制、提高抑郁癥的診斷和治療水平提供參考。
GR是可溶性單鏈多肽組成的磷蛋白,人GR基因(NR3C1)位于5號染色體上,通過不同剪切方式剪切生成GRα和GRβ 2種蛋白亞型[10]。GRα是經(jīng)典的糖皮質(zhì)激素(glucocorticoid,GC)的配體結(jié)合蛋白,廣泛存在于腦內(nèi)神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞,與GC結(jié)合后活化形成復(fù)合物進(jìn)入細(xì)胞核,通過與DNA上GC反應(yīng)元件結(jié)合,調(diào)節(jié)靶基因的表達(dá),在抑郁癥、糖尿病、庫欣病和心血管疾病等中發(fā)揮著不可忽視的作用[11-12]。而GRβ僅存在于下丘腦和海馬神經(jīng)元,不與任何配基結(jié)合,因此不具有激活轉(zhuǎn)錄作用,但其可通過與GRα形成二聚體抑制GRα功能,作為GC的內(nèi)源性抑制劑,對GC的生理和藥理功能起到負(fù)調(diào)節(jié)作用,與潰瘍性結(jié)腸炎、哮喘和風(fēng)濕性關(guān)節(jié)炎等GC抵抗性疾病有關(guān),是GC抵抗的可能機(jī)制之一[11,13]。
抑郁癥或慢性應(yīng)激可導(dǎo)致血及腦中GC水平持續(xù)升高,海馬等腦區(qū)的GR表達(dá)和(或)功能下調(diào),導(dǎo)致內(nèi)源性GC無法完成由其受體GR介導(dǎo)的負(fù)反饋調(diào)節(jié),這一過程被認(rèn)為是應(yīng)激所致抑郁癥最直接的生理生化基礎(chǔ)[14]。動物實(shí)驗(yàn)發(fā)現(xiàn),垂體和海馬GR基因敲除的小鼠都能引起下丘腦-垂體-腎上腺(hypo?thalamic-pituitary-adrenal,HPA)軸功能亢進(jìn),負(fù)反饋調(diào)節(jié)受抑制,最終導(dǎo)致神經(jīng)內(nèi)分泌系統(tǒng)功能異常和抑郁樣行為[15]。臨床研究發(fā)現(xiàn),50%抑郁癥患者HPA軸功能亢進(jìn)[16]。Pérez-Ortiz等[17]尸檢自殺抑郁癥患者腦部發(fā)現(xiàn),抑郁癥患者杏仁核中GR基因表達(dá)降低48%,GR蛋白表達(dá)降低42%。目前研究提示,一些抗抑郁藥物可通過調(diào)節(jié)GR功能發(fā)揮抗抑郁作用。三環(huán)類抗抑郁藥物能增加大鼠下丘腦和海馬神經(jīng)元GR親和力和GR基因表達(dá),提高機(jī)體對GC的敏感性,修復(fù)GR介導(dǎo)的HPA軸負(fù)反饋調(diào)節(jié)[18]。Young等[19]通過對比19例抑郁癥患者服用GR拮抗劑米非司酮(RU486)和安慰劑之后的效果發(fā)現(xiàn),服用RU486的抑郁癥患者空間記憶能力和語言流暢性提高,Hamilton抑郁量表評分降低。同時研究表明,RU486可能通過引起代償性GR數(shù)量上調(diào),繼而增強(qiáng)HPA軸的負(fù)反饋調(diào)節(jié)來發(fā)揮抗抑郁效應(yīng)[20]。以上研究結(jié)果提示,GR在抑郁癥的發(fā)病機(jī)制和治療中起到關(guān)鍵作用,具體機(jī)制尚未闡明,但GR基因甲基化很可能在其中起重要調(diào)控作用。
NR3C1基因包含9個外顯子和8個內(nèi)含子,在嚙齒動物體內(nèi)有同源序列存在[9]。人類第一外顯子被內(nèi)含子分割為至少13個小片段,分別是1A1,1A2,1A3,1I,1D,1J,1E,1B,1F,1C1,1C2,1C3和 1H,嚙齒動物為9個片段,分別是11,14,15,16,17,18,19,110和111,每個片段以其鄰近的內(nèi)含子為啟動子[21]。人類的外顯子1F與嚙齒動物的17是同源序列,被認(rèn)為是具有腦組織特異性的啟動子,其mRNA存在于海馬、BDCA2+外周血樹突狀細(xì)胞和CD8+T細(xì)胞[22]。而NR3C1第一外顯子及其啟動子的甲基化可以導(dǎo)致整個基因表達(dá)降低或不表達(dá)。由此可見,DNA甲基化對NR3C1基因的調(diào)控起著十分重要的作用[23]。
Weaver[24]發(fā)現(xiàn),人類NR3C1編碼序列中的 2個GC堿基對通常處于非甲基化狀態(tài),一旦被甲基化,該基因則失去結(jié)合神經(jīng)生長因子誘導(dǎo)的蛋白A(nerve growth factor inducible protein A,NGFI-A)的能力。NGFI-A作為即刻早期反應(yīng)基因家族的一員,可與靶基因啟動子上特異的結(jié)合位點(diǎn)作用而調(diào)控下游靶基因的轉(zhuǎn)錄與表達(dá)。正常情況下,NR3C1基因第一啟動子區(qū)域的GCGGGGGCGG位點(diǎn)與NGFI-A結(jié)合,調(diào)控NR3C1基因的轉(zhuǎn)錄。該結(jié)合位點(diǎn)的甲基化導(dǎo)致GR表達(dá)降低,從而影響GR-GC的功能,導(dǎo)致HPA軸功能亢進(jìn)和抑郁癥的發(fā)生[25]。動物實(shí)驗(yàn)發(fā)現(xiàn),小鼠出生后缺少撫摸和舔等愛撫行為,其成年后海馬內(nèi)NR3C1基因甲基化水平升高,阻止了NGFI-A與之結(jié)合,抑制了NR3C1基因的轉(zhuǎn)錄,從而導(dǎo)致HPA軸的負(fù)反饋抑制減弱,焦慮和抑郁樣行為增多[26]。在臨床上,Oberlander等[27]研究發(fā)現(xiàn),母親患有產(chǎn)前抑郁癥會引起新生兒NR3C1基因NGFI-A結(jié)合位點(diǎn)甲基化和皮質(zhì)醇水平增加。這些結(jié)果表明,NR3C1基因NGFI-A結(jié)合位點(diǎn)甲基化在調(diào)節(jié)基因轉(zhuǎn)錄和HPA軸功能中具有重要作用。
飲食、遺傳因素和生命早期社會應(yīng)激等,特別是早年生活負(fù)性事件,都能導(dǎo)致GR基因甲基化水平發(fā)生改變,而這種改變可進(jìn)一步調(diào)控GR基因啟動子的作用,引起焦慮、抑郁等多種精神疾病的發(fā)生。McGowan等[28]也發(fā)現(xiàn),有童年創(chuàng)傷史的自殺者NGFI-A結(jié)合位點(diǎn)1F啟動子區(qū)甲基化水平升高,GR mRNA水平降低,導(dǎo)致海馬內(nèi)GR表達(dá)降低。然而無童年創(chuàng)傷史的自殺者與無精神病史的對照組相比,GR基因甲基化水平并無明顯差異。提示促使GR基因NGFI-A結(jié)合位點(diǎn)甲基化增加、GR表達(dá)降低和HPA軸功能失調(diào)的重要因素是早年生活負(fù)性事件,而非自殺。
近年來,大量臨床研究表明,GR基因甲基化與抑郁癥之間存在相關(guān)性。王崴等[29]篩選出22名產(chǎn)后抑郁癥患者和26名健康對照產(chǎn)婦,采用酶聯(lián)免疫吸附法檢測發(fā)現(xiàn),與健康對照產(chǎn)婦相比,產(chǎn)后抑郁癥患者晨起血清基礎(chǔ)皮質(zhì)醇水平明顯升高,給予地塞米松后,下降幅度減??;采用重亞硫酸鹽測序法檢測發(fā)現(xiàn),產(chǎn)后抑郁癥患者外周血GR基因啟動子1F區(qū)甲基化水平較健康對照產(chǎn)婦顯著升高。以上結(jié)果表明,產(chǎn)后抑郁癥患者伴隨HPA軸活性增強(qiáng),其發(fā)病機(jī)制可能與GR基因1F啟動子區(qū)甲基化上調(diào)和該基因表達(dá)下調(diào)抑制HPA軸負(fù)反饋調(diào)節(jié)有關(guān)。Seewoobudul等[30]對比伴有童年創(chuàng)傷的抑郁患者、不伴有童年創(chuàng)傷的抑郁癥患者以及不伴童年創(chuàng)傷的健康對照者中淋巴細(xì)胞GR 1F啟動子區(qū)13個CpG位點(diǎn)的甲基化程度。結(jié)果發(fā)現(xiàn),與健康對照組比較,抑郁癥患者在CpG島的7位點(diǎn)甲基化水平顯著升高,8位點(diǎn)甲基化顯著降低。有童年創(chuàng)傷史的抑郁癥患者DNA甲基化水平高于無童年創(chuàng)傷史的抑郁癥患者和健康對照組。而無童年創(chuàng)傷史的抑郁癥患者和健康對照組間未發(fā)現(xiàn)明顯差異。進(jìn)一步證實(shí)童年創(chuàng)傷是影響抑郁患者NR3C1基因1F啟動子區(qū)DNA甲基化水平、導(dǎo)致抑郁發(fā)生的重要因素。Radtke等[31]也證實(shí)了兒童受虐與GR基因1F啟動子甲基化的相關(guān)性,且該位點(diǎn)的甲基化與抑郁、邊緣人格障礙等精神癥狀聯(lián)系密切。
研究者通過建立母嬰分離小鼠模型研究發(fā)現(xiàn),母嬰分離的小鼠成年后活動能力降低,糖水消耗量下降,前額葉皮質(zhì)和海馬中NR3CR1基因甲基化水平升高,且海馬NR3CR1基因CpG13,CpG14和CpG17位點(diǎn)甲基化水平升高[32-33]。提示早期母嬰分離導(dǎo)致的小鼠抑郁樣行為和NR3CR1基因甲基化水平升高有關(guān)。Witzmann等[34]建立急、慢性應(yīng)激大鼠模型發(fā)現(xiàn),急性應(yīng)激可增加大鼠下丘腦室旁核和皮質(zhì)NGFI-A表達(dá),降低下丘腦室旁核NR3CR1基因CpG4位點(diǎn)甲基化水平,升高海馬CpG7,CpG8,CpG11和CpG8位點(diǎn)的甲基化水平,對GR基因17甲基化水平和GR表達(dá)無影響。慢性社會應(yīng)激可增加血清皮質(zhì)酮的濃度,降低外周血GR的表達(dá),同時引起腎上腺和垂體總的GR基因17甲基化和下丘腦室旁核CpG7位點(diǎn)甲基化的增加。結(jié)果發(fā)現(xiàn),急慢性應(yīng)激引起GR基因甲基化發(fā)生在不同的組織,可能存在一定的組織特異性,且2種應(yīng)激組中下丘腦室旁核GR基因甲基化都發(fā)生了改變,這種改變可能在大鼠圍生期已經(jīng)形成,而非急慢性應(yīng)激的結(jié)果,其中復(fù)雜的機(jī)制尚需進(jìn)一步研究。
盡管很多研究已經(jīng)證實(shí)了GR基因啟動子甲基化在抑郁癥發(fā)病機(jī)制中的作用,特別是經(jīng)歷早年生活逆境的情況,但目前研究結(jié)果并不能得出一致結(jié)論。Alt等[35]對抑郁癥患者尸檢后發(fā)現(xiàn),健康對照組與抑郁癥患者GR基因甲基化水平無顯著差異,而抑郁癥患者的海馬、扣帶回和伏隔核NGFI-A的表達(dá)降低。Na等[36]采用焦磷酸測序的方法比較了45例重度抑郁癥患者與72例健康對照者的外周血GR基因啟動子區(qū)5個CpG位點(diǎn)的甲基化程度,發(fā)現(xiàn)抑郁癥患者CpG3和CpG4位點(diǎn)甲基化程度顯著降低。此外,在創(chuàng)傷后應(yīng)激障礙患者中也發(fā)現(xiàn)GR基因啟動子1F區(qū)甲基化水平降低[37-39]。在抑郁癥和創(chuàng)傷后應(yīng)激障礙等精神類疾病中,經(jīng)歷早期創(chuàng)傷后,NR3C1基因甲基化增加或減少都可能發(fā)生,而目前研究尚不能解釋這種具有對立生物特性的神經(jīng)病理學(xué)變化[40]。
目前對GR基因甲基化與抑郁癥關(guān)系的研究還存在一些問題。第一,臨床研究的材料多采用外周血,缺少腦組織材料,盡管研究已經(jīng)表明外周血GR基因甲基化修飾與腦內(nèi)GR基因甲基化修飾相似,但用血清樣本反映大腦結(jié)構(gòu)功能尚有一定局限性[41-42]。第二,目前對于抑郁癥患者GR基因啟動子甲基化升高或降低的文獻(xiàn)報道不一[43-45]??赡芤?yàn)橛行┡R床研究無法排除精神藥物對抑郁癥患者GR基因甲基化的影響[46]。第三,缺乏GR基因甲基轉(zhuǎn)移酶特異性抑制劑,使GR基因甲基化在抑郁癥中的研究受到一定限制。
GR基因甲基化是來自于機(jī)體內(nèi)外環(huán)境、隨機(jī)因素的表觀遺傳變化,這種變化增加了抑郁癥易感性,其調(diào)控機(jī)制的揭示有助于解釋抑郁癥中經(jīng)典遺傳學(xué)研究中所面臨的困難,為抑郁癥發(fā)病機(jī)制研究提供新思路。
[1] Murray CJ,Lopez AD.Global mortality,disability,and the contribution of risk factors:Global Burden of Disease Study[J].Lancet,1997,349(9063):1436-1442.
[2] Liu JL,Yuan YH,Chen NH.Research progress in treatment of depression[J].Chin Pharmacol Bull(中國藥理學(xué)通報),2011,27(9):1193-1196.
[3] Mu L,Sun JX.Regulation mechanism of depres?sion and antidepressant drug targets[J].J Int Pharm Res(國際藥學(xué)研究雜志),2015,42(4):463-466.
[4] Farrell C,O′Keane V.Epigenetics and the gluco?corticoid receptor:a review of the implications in depression[J].Psychiatry Res,2016,242:349-356.
[5] Klengel T,Pape J,Binder EB,Mehta D.The role of DNA methylation in stress-related psychiatric disorders[J].Neuropharmacology,2014,80:115-232.
[6] Januar V,Saffery R,Ryan J.Epigenetics and depressive disorders:a review of current prog?ress and future directions[J].Int J Epidemiol,2015,44(4):1364-1387.
[7] Liu XZ,Zhao JN,Wu SJ.Research progress of DNA methylation in osteosarcoma[J].J Med Post?grad(醫(yī)學(xué)研究生學(xué)報),2014,27(10):1107-1110.
[8] Pe?a CJ,Bagot RC,Labonté B,Nestler EJ.Epi?genetic signaling in psychiatric disorders[J].J Mol Biol,2014,426(20):3389-3412.
[9] Turecki G,Meaney MJ.Effects of the social envi?ronment and stress on glucocorticoid receptor gene methylation:a systematic review[J].Biol Psychiatry,2016,79(2):87-96.
[10] Pujols L,Mullol J,Torrego A,Picado C.Glucocor?ticoid receptors in human airways[J].Allergy,2004,59(10):1042-1052.
[11] De Kloet ER,Vreugdenhil E,Oitzl MS,Jo?ls M.Brain corticosteroid receptor balance in health and disease[J].Endocr Rev,1998,19(3):269-301.
[12] Charmandari E,Kino T,Ichijo T,Zachman K,Alatsatianos A,Chrousos GP.Functional charac?terization of the natural human glucocorticoid receptor(hGR) mutantshGRalphaR477H andhGRal?phaG679S associated with generalized glucocorti?coid resistance[J].J Clin Endocrinol Metab,2006,91(4):1535-1543.
[13] Oakley RH,Sar M,Cidlowski JA.The human gluco?corticoid receptor beta isoform.Expression,biochem?ical properties,and putative function[J].J Biol Chem,1996,271(16):9550-9559.
[14] An L, Li J, Zhang YZ, Li YF.Glucocorticoid receptor:a potential target for depression treat?ment[J].Mil Med Sci(軍事醫(yī)學(xué)),2014,38(11):908-911,917.
[15] Schmidt MV, Sterlemann V, Wagner K,Niederleitner B,Ganea K,Liebl C,et al.Postna?tal glucocorticoid excess due to pituitary glucocor?ticoid receptor deficiency:differential short-and long-term consequences[J].Endocrinology,2009,150(6):2709-2716.
[16] Pariante CM,Kim RB,Makoff A,Kerwin RW.Antidepressant fluoxetine enhances glucocorticoid receptor functionin vitroby modulating membrane steroid transporters[J].Br J Pharmacol,2003,139(6):1111-1118.
[17] Pérez-Ortiz JM,García-Gutiérrez MS,Navarrete F,Giner S,Manzanares J.Gene and protein altera?tions of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims[J].Psychoneuroendo?crinology,2013,38(8):1251-1258.
[18] Okugawa G,Omori K,Suzukawa J,F(xiàn)ujiseki Y,Kinoshita T,Inagaki C.Long-term treatment with antidepressants increases glucocorticoid receptor binding and gene expression in cultured rat hippo?campal neurons[J].J Neuroendocrinol,1999,11(11):887-895.
[19] Young AH,Gallagher P,Watson S,Del-Estal D,Owen BM,F(xiàn)errier IN.Improvements in neurocog?nitive function and mood following adjunctive treatment with mifepristone(RU-486)in bipolar disorder[J].Neuropsychopharmacology,2004,29(8):1538-1545.
[20] Howland RH.Mifepristone as a therapeutic agent in psychiatry[J].J Psychosoc Nurs Ment Health Serv,2013,51(6):11-14.
[21] Weaver IC.Epigenetic effects of glucocorticoids[J].Semin Fetal Neonatal Med,2009,14(3):143-150.
[22] Turner JD,Muller CP.Structure of the glucocorticoid receptor(NR3C1) gene 5′untranslated region:identification,and tissue distribution of multiple new human exon 1[J].J Mol Endocrinol,2005,35(2):283-292.
[23] Bird AP,Wolffe AP.Methylation-induced repres?sion—belts, braces, andchromatin[J].Cell,1999,99(5):451-454.
[24] Weaver IC.Shaping adult phenotypes through early life environments[J].Birth Defects Res C Embryo Today,2009,87(4):314-326.
[25] Swirnoff AH,Milbrandt J.DNA-binding specificity of NGFI-A and related zinc finger transcription factors[J].Mol Cell Biol,1995,15(4):2275-2287.
[26] Weaver IC,Champagne FA,Brown SE,Dymov S,Sharma S,Meaney MJ,et al.Reversal of maternal programming of stress responses in adult offspring through methyl supplementation:altering epigenetic marking later in life[J].J Neurosci,2005,25(47):11045-11054.
[27] Oberlander TF,Weinberg J,Papsdorf M,Grunau R,Misri S,Devlin AM.Prenatal exposure to maternal depression,neonatal methylation of human gluco?corticoid receptor gene(NR3C1)and infant cortisol stress responses[J].Epigenetics,2008,3(2):97-106.
[28] McGowan PO,Sasaki A,D′Alessio AC,Dymov S,Labonté B,Szyf M,et al.Epigenetic regulation of the glucocorticoid receptor in human brain associ?ates with childhood abuse[J].Nat Neurosci,2009,12(3):342-348.
[29] Wang W,Mu X,Wang YM,Chen C,Ma QY,Jia M,et al.Association of postpartum depression with serum cortisol and promoter methylation of gluco?corticoid receptor gene[J].J Shanxi Med Univ(山西醫(yī)科大學(xué)學(xué)報),2016,47(11):1032-1037.
[30] Seewoobudul V,Lu SJ,Wang M,Li LJ.Childhood trauma involving glucocorticoid receptorgene exon 1Fon CpG islands undergoing DNA methylation in depression[C/OL]//Chinese Medical Association,2013:85-86.Asian Institute of Nerve and Pharma?cology,Chinese Medical Association(中華醫(yī)學(xué)會亞洲神經(jīng)精神藥理學(xué)術(shù)會議),[2017-06-08].http://kns.cnki.net/KCMS/detail/detail.aspx?acbcode=IPFDdbname
[31] Radtke KM,Schauer M,Gunter HM,Ruf-Leuschner M,Sill J,Meyer A,et al.Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in child?hood maltreatment[J].Transl Psychiatry,2015,5:e571.
[32] Kundakovic M,Lim S,Gudsnuk K,Champagne FA.Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes[J].Front Psychiatry,2013,4:78.
[33] Kember RL,Dempster EL,Lee TH,Schalkwyk LC,Mill J,F(xiàn)ernandes C.Maternal separation is associ?ated with strain-specific responses to stress and epigenetic alterations to Nr3c1,Avp,and Nr4a1 in mouse[J].Brain Behav,2012,2(4):455-467.
[34] Witzmann SR,Turner JD,Mériaux SB,Meijer OC,Muller CP.Epigenetic regulation of the glucocorti?coid receptor promoter17in adultrats [J].Epigenetics,2012,7(11):1290-1301.
[35] Alt SR,Turner JD,Klok MD,Meijer OC,Lakke EA,Derijk RH,et al.Differential expression of glucocor?ticoid receptor transcripts in major depressive disor?der is not epigenetically programmed[J].Psycho?neuroendocrinology,2010,35(4):544-556.
[36] Na KS,Chang HS,Won E,Han KM,Choi S,Tae WS,et al.Association between glucocorticoid receptor methylation and hippocampal subfields in major depressive disorder[J].PLoS One,2014,9(1):e85425.
[37] Vukojevic V,Kolassa IT,F(xiàn)astenrath M,Gschwind L,Spalek K,Milnik A,et al.Epigenetic modification of the glucocorticoid receptor gene is linked to trau?matic memory and post-traumatic stress disorder risk in genocide survivors[J].J Neurosci,2014,34(31):10274-10284.
[38] Yehuda R,F(xiàn)lory JD,Bierer LM,Henn-Haase C,Lehrner A,Desarnaud F,et al.Lower methylation of glucocorticoid receptor gene promoter 1Fin periph?eral blood of veterans with posttraumatic stress disorder[J].Biol Psychiatry,2015,77(4):356-364.
[39] Labonté B,Azoulay N,Yerko V,Turecki G,Brunet A.Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder[J].Transl Psychiatry,2014,4(3):e368.
[40] BremnerJD, SouthwickSM, Johnson DR,Yehuda R,Charney DS.Childhood physical abuse and combat-related posttraumatic stress disorder in Vietnam veterans[J].Am J Psychiatry,1993,150(2):235-239.
[41] Cao-Lei L,Suwansirikul S,Jutavijittum P,Mériaux SB,Turner JD,Muller CP.Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain[J].J Psychiatr Res,2013,47(11):1597-1607.
[42] Conradt E,Lester BM,Appleton AA,Armstrong DA,Marsit CJ.The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorderin uteroon newborn neurobehavior[J].Epigenetics,2013,8(12):1321-1329.
[43] Hompes T,Izzi B, Gellens E, Morreels M,F(xiàn)ieuws S,Pexsters A,et al.Investigating the influ?ence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene(NR3C1)promoter region in cord blood[J].J Psychiatr Res,2013,47(7):880-891.
[44] van der Knaap LJ,Riese H,Hudziak JJ,Verbiest MM,Verhulst FC,Oldehinkel AJ,et al.Glucocorticoid receptor gene(NR3C1)methylation following stressful events between birth and adolescence.The TRAILS study[J].Transl Psychiatry,2014,4(4):e381.
[45] Tyrka AR,Price LH,Marsit C,Walters OC,Carpenter LL.Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor:preliminary findings in healthy adults[J].PLoS One,2012,7(1):e30148.
[46] L?tsch J,Schneider G,Reker D,Parnham MJ,Schneider P, Geisslinger G,etal.Common non-epigenetic drugs as epigenetic modulators[J].Trends Mol Med,2013,19(12):742-753.