• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      PARP-1在肺部炎癥性疾病中的作用研究進展

      2018-06-01 07:12:19喻鵬久
      關(guān)鍵詞:炎癥性活化肺部

      羅 超,喻鵬久

      (1.紹興文理學(xué)院元培學(xué)院,浙江紹興 312000;2.廣州醫(yī)科大學(xué)附屬第一醫(yī)院藥學(xué)部,廣東廣州 510120)

      多腺苷二磷酸核糖聚合酶[poly(ADP-ribose)polymerase,PARP],是一種與DNA損傷修復(fù)密切相關(guān)的核酶,由Chambon等[1]于1963年首次報道。迄今為止,已發(fā)現(xiàn)的PARP家族成員多達18個亞型,具有高度同源性,結(jié)構(gòu)相似且能以煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)為底物參與多聚二磷酸腺苷核糖〔poly(ADP-ribose),PAR〕的代謝,主要參與染色質(zhì)重塑、轉(zhuǎn)錄和調(diào)控細胞周期等基本細胞過程[2]。其中PARP-1在真核細胞內(nèi)含量最高,對其結(jié)構(gòu)和功能的研究也最為深入。在生物體內(nèi),PARP-1主要參與DNA損傷修復(fù),介導(dǎo)細胞凋亡,調(diào)控基因轉(zhuǎn)錄;與腫瘤、炎癥損傷、糖尿病和神經(jīng)系統(tǒng)疾病等發(fā)病機制密切相關(guān)。

      研究顯示,在許多感染[3-4]、組織損傷[5-6]和免疫異常[7-9]等因素引起的炎癥性疾病中存在炎癥反應(yīng)和PARP-1同時激活的現(xiàn)象,通過基因敲除、siRNA干擾或藥物抑制等方法抑制PARP-1能有效緩解炎癥反應(yīng)和疾病發(fā)展的進程。近年來,不斷有臨床和實驗室研究表明,PARP-1在哮喘、慢性阻塞性肺?。╟hronic obstructive pulmonary disease,COPD)和急性肺損傷(acute lung injury,ALI)等肺部炎癥性疾病的發(fā)生發(fā)展過程中起了重要的調(diào)控作用,通過藥物抑制或基因敲除的方法抑制PARP-1活性,有助于肺部炎癥性疾病的控制和恢復(fù),也預(yù)示著PARP-1及其信號通路有望成為哮喘、ALI等肺部炎癥疾病治療的潛在新靶點。本文從PARP-1的結(jié)構(gòu)與功能、炎癥信號通路調(diào)節(jié)、肺部炎癥性疾病及治療藥物等方面對其與肺部炎癥性疾病的研究進展做一綜述。

      1 PARP-1的結(jié)構(gòu)與功能

      PARP-1是由1014個氨基酸組成的大分子蛋白,分子量為116 ku。主要包括3個結(jié)構(gòu)域,自N端到C端分別為DNA結(jié)合域(DNA binding domain,DBD)、自身修飾域(automodification domain,AMD)和C端催化域(catalytic domain,CAT)[10]。

      N端46 ku的DBD含大量堿性氨基酸,是與DNA結(jié)合的部分,包含3個鋅指結(jié)構(gòu)域(zinc finger motif,Zn)及核定位信號。Zn1和Zn2發(fā)現(xiàn)較早,主要識別DNA缺口,介導(dǎo)PARP-1與DNA單鏈斷裂或雙鏈斷裂的結(jié)合,使其酶活性提高≥500倍[11]。Zn3在2010年被報道,起到促進PARP-1的域間聯(lián)系和組裝DNA活化構(gòu)象的作用,被認為是DNA依賴的PARP-1激活的關(guān)鍵結(jié)構(gòu)[12]。

      中間約22 ku的AMD區(qū)段,主要包含一個乳腺癌易感蛋白C端基序(breast cancer susceptibility protein C-terminus motif,BRCT),介導(dǎo)PARP-1與多種蛋白之間的相互作用。該域含數(shù)個谷氨酸殘基,被認為是PARP-1活化時PAR共價結(jié)合的位點[13]。但也有研究認為,ADP核糖基化作用的接受位點是個別的賴氨酸殘基,而非谷氨酸[14]。除了結(jié)合位點的爭議外,AMD區(qū)域是公認的調(diào)節(jié)PARP-1活性和控制PAR合成的關(guān)鍵[13],然而,AMD區(qū)域?qū)ARP-1催化功能的影響及其機制仍需進一步研究。

      54 ku的CAT是整個分子中最保守的序列,主要包含NAD+結(jié)合區(qū)域,執(zhí)行PARP-1的催化功能,以 NAD+為基底合成PARs[15]。迄今為止,在 PARP家族的所有成員中都發(fā)現(xiàn)存在這段高度保守的氨基酸序列,被稱作“PARP signature”[16]。此外,該區(qū)域還包含一段WRG(Trp-Gly-Arg)序列,可能與PARP-1的核酸結(jié)合功能相關(guān)[15]。

      PARP-1主要參與細胞內(nèi)PAR的代謝,包括PAR多聚體的生成和降解。DNA損傷出現(xiàn)是PARP-1活化的關(guān)鍵,PARP-1通過DBD與DNA缺口結(jié)合,活化CAT水解NAD+為腺苷二磷酸核糖和煙酸[17],并催化腺苷二磷酸核糖轉(zhuǎn)移并聚合生成大分子同源聚合物PAR[18]。隨著PARP-1分子上PAR的積聚,導(dǎo)致其排斥DNA,并從DNA鏈上分離[19],有利于DNA修復(fù)酶修復(fù)DNA的損傷。PAR水解酶回收在PARP-1上生成的PAR,允許PARP-1進入下一個活性循環(huán)[20]。

      2 PARP-1的炎癥調(diào)節(jié)效應(yīng)

      2.1 PARP-1與免疫細胞

      PARP-1在胸腺皮質(zhì)和被膜下區(qū)域高表達,通過PAR化(PARylation)調(diào)控T細胞的發(fā)育和功能化[21]。在外周T細胞內(nèi),PARP-1通過調(diào)節(jié)活化T細胞核因子(nuclear factor of activated T cells,NF-AT)的活化與功能,參與T細胞活化和部分轉(zhuǎn)錄因子的激活[22]。在T細胞中,PARP-1可調(diào)控眾多基因的表達,包括趨化因子和細胞因子的編碼基因[23],研究發(fā)現(xiàn),在PARP-1敲除的T細胞,γ干擾素(interferon-γ,IFN-γ)和趨化因子(Xcl1,Ccl4和Ccl9)表達上調(diào),但白細胞介素-4(interleukin-4,IL-4)表達下降。ADP核糖基轉(zhuǎn)移酶可通過細胞外NAD+水平調(diào)控調(diào)節(jié)性T細胞的體內(nèi)平衡,證明了NAD+和ADP核糖基化作用在炎癥和免疫反應(yīng)中扮演了重要的角色[24]。此外,PARP-1還與CD8+T細胞的體內(nèi)平衡有關(guān),氧化應(yīng)激可通過PARP-1活化誘導(dǎo)CD8+T細胞凋亡,此機制也被腫瘤細胞用于逃避免疫殺傷[25]。

      研究顯示,PARP-1與B細胞的分化和功能化有關(guān)。PARP-1與B細胞和T細胞成熟過程中的V(D)J重組密切相關(guān),主要表現(xiàn)為抗重組功能[26]。在B細胞中,PARP-1參與活化誘導(dǎo)胞嘧啶核苷脫氨酶(activation-induced cytidine deaminase,AID)介導(dǎo)的DNA損傷,繼發(fā)體細胞超突變和基因轉(zhuǎn)換,促進B細胞親和力成熟[27]。PARP-1還參與AID介導(dǎo)的其他過程,如類別轉(zhuǎn)換重組,PARP-1抑制可提高B細胞刺激依賴的免疫球蛋白向IgA和IgG1轉(zhuǎn)化[28]。PARP-1作為轉(zhuǎn)錄抑制子以序列特異性方式結(jié)合到BCL6基因影響成熟B細胞分化和增殖,而且PARP-1結(jié)合并活化是B細胞離開生發(fā)中心的必須條件[29]。

      2.2 PARP-1與炎癥分子

      PARP-1與許多調(diào)控炎癥基因表達的轉(zhuǎn)錄因子密切相關(guān),如 NF-κB[30],NF-AT[22],活化蛋白 1(acti?vator protein-1,AP-1)[31],沉默信息調(diào)節(jié)因子1(sirtuin 1,SIRT1)[32],核呼吸因子-1(nuclear respiration factor-1,NRF-1)[33]等。NF-κB是第一個被闡述與PARP-1調(diào)控炎癥相關(guān)的轉(zhuǎn)錄因子,NF-κB激活也是PARP-1調(diào)控炎癥的中心途徑,活化的PARP-1可觸發(fā)I-κB激酶γ(I-kappaB kinase γ,IKKγ)SUMO化修飾和泛素化,繼而激活I(lǐng)KK,IKK的激活使I-κB被磷酸化,并從NF-κB上脫落,使得NF-κB由抑制狀態(tài)被激活,并進入細胞核與DNA上特異性位點結(jié)合,調(diào)節(jié)免疫、炎癥等多種靶基因的表達[30,34]。SIRT1是NAD+依賴性蛋白質(zhì)脫乙酰酶,其生理功能主要為調(diào)節(jié)組蛋白、轉(zhuǎn)錄因子、p53、叉頭蛋白O(fork?head box O,F(xiàn)oxO)、NF-κB和過氧化物酶增殖物激活受體共激活因子1α(peroxisome proliferator-acti?vated receptor coactivator-1α,PGC-1α)等的脫乙?;饔茫琒IRT1還可與NF-κB RelA/p65亞基相互作用,誘導(dǎo)p65蛋白Lys310去乙?;?,抑制NF-κB的轉(zhuǎn)錄活性,PARP-1通過與SIRT1競爭底物NAD+而抑制其活性,使其功能喪失,進而介導(dǎo)炎癥反應(yīng)[32,35]。此外,PARP-1還可通過調(diào)控細胞氧化還原狀態(tài)來控制炎癥基因的表達。NRF-1是一個重要的轉(zhuǎn)錄激活因子,主要參與線粒體生物合成和功能的核基因編碼,NRF-1通過增加細胞色素c表達和線粒體呼吸能力參與細胞炎癥反應(yīng)的氧化還原信號,PARP-1與NRF-1相互作用,通過PARP-1自修飾調(diào)控NRF-1的活化[33]。

      炎癥細胞因子,如腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)、IL-1β、IL-6和IL-12等,是Th1細胞調(diào)控炎癥進程的主要物質(zhì)。它們促進其他細胞因子、趨化因子、黏附分子、基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)、誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和環(huán)氧化酶-2(cyclooxygenase-2,COX-2)等的表達[30]。多種炎癥的動物模型研究顯示[36-38],抑制或敲除PARP-1可抑制炎癥因子的表達,也可下調(diào)許多化學(xué)誘導(dǎo)趨化因子,如IL-8,巨噬細胞炎癥蛋白-1(macrophage inflammatory proteins-1,MIP-1)、MIP-2和單核細胞趨化蛋白-1(monocyte chemo?tactic protein 1,MCP-1)的表達。這些改變印證了許多關(guān)于Th1介導(dǎo)炎癥反應(yīng)的報道中關(guān)于抑制炎癥細胞遷移的潛在機制[39]。

      黏附分子是炎癥的另一類重要的調(diào)控蛋白,如細胞間黏附分子-1(intercellular adhesion mole?cule 1,ICAM-1)、血管細胞黏附分子、P-選擇素、E-選擇素和黏膜地址素細胞黏附分子-1。在內(nèi)皮細胞和免疫細胞表面抑制黏附分子表達,可抑制炎癥細胞向炎癥位點遷移,從而抑制炎癥。通過藥物抑制或基因敲除的方法下調(diào)PARP-1,可抑制黏附分子的表達[31]。該作用受到2條通路的調(diào)控,一方面NF-κB直接調(diào)節(jié)相關(guān)黏附分子基因的表達,另一方面,NF-κB調(diào)控的細胞因子繼發(fā)調(diào)控黏附分子的表達[40]。

      2.3 PARP-1與炎癥信號通路

      PARP-1通過促進炎癥相關(guān)基因的表達而影響各類炎癥的發(fā)生發(fā)展。PARP-1對炎癥基因表達的影響主要通過控制染色質(zhì)重組裝、控制轉(zhuǎn)錄活性、影響mRNA轉(zhuǎn)錄后的穩(wěn)定性這3個層面實現(xiàn)[41]。相對于PARP-1調(diào)控炎癥進程的下游信號機制,關(guān)于PARP-1活化和調(diào)控的上游信號轉(zhuǎn)導(dǎo)機制的研究尚不成熟,在不同類型細胞中,許多細胞內(nèi)外刺激已被稱作信號“觸發(fā)器”,包括氧化劑(如H2O2和過氧亞硝酸鹽)、DNA烷化劑、興奮性損傷、乙醇和脂多糖,以及IL-1、Ca2+、血管緊張素Ⅱ、細胞外葡萄糖濃度過高、維生素A消耗和寄生蟲感染等[41]。此外,PARP-1的磷酸化作用可能導(dǎo)致其最大激活,Kauppinen等[42]用 PARP-1突變種(Ser372Ala和Thr373Ala)轉(zhuǎn)染PARP-1缺陷的大鼠胚胎成纖維細胞,發(fā)現(xiàn)在Ser372和Thr373位點無法磷酸化,影響PARP-1激活,然而,突變成谷氨酸(S372E和T373E)后,可實現(xiàn)基本的磷酸化作用,可增強PARP-1活性,并在PARP-1激活過程中消除細胞外信號調(diào)節(jié)激酶1/2的抑制作用。

      炎癥過程同時伴隨著氧化應(yīng)激水平的提高。iNOS、NADPH氧化酶、COX-2、MMP及線粒體呼吸鏈產(chǎn)生的氧化劑導(dǎo)致DNA過度損傷[39]。研究認為,嚴重的DNA損傷可導(dǎo)致PARP-1過度激活,使細胞NAD+耗盡并影響細胞新陳代謝[43]。NAD+消耗導(dǎo)致細胞激活煙酰胺單核苷酸腺苷轉(zhuǎn)移酶(nicotin?amide mononucleotide adenylyltransferase,NMNAT)和磷酸核糖焦磷酸合成酶(phosphoribosyl pyro?phosphate synthetase,PPS),以消耗ATP的方式促進NAD+再合成,以消耗ATP為代價促進NAD+再合成。長期過度消耗NAD+可導(dǎo)致細胞ATP消耗,在低ATP和低NAD+條件下,線粒體的F1/F0腺苷三磷酸酶轉(zhuǎn)向功能化,使細胞能量消耗進一步惡化[44]。細胞能量的過度消耗還可啟動細胞凋亡,進而影響炎癥疾病的預(yù)后[45]。

      3 PARP-1與肺部炎癥性疾病

      3.1 PARP-1與哮喘

      哮喘是一種慢性炎癥性呼吸道疾病,以嚴重的咳嗽、氣喘和呼吸困難為主要臨床表現(xiàn)。哮喘屬于過敏性炎癥疾病,其發(fā)生機制與其他由Th1介導(dǎo)的炎癥不同,主要由Th2細胞介導(dǎo),產(chǎn)生IL-4,IL-5,IL-9和IL-13,并且由于細胞因子生成的差異,過敏性炎癥的細胞滲出含大量的嗜酸性粒細胞。

      PARP-1活化與哮喘及哮喘相關(guān)的炎癥過程密切相關(guān),PARP-1通過活化調(diào)節(jié)CD4+T細胞[46],誘導(dǎo)嗜酸性粒細胞募集[47],促進單核細胞向樹突狀細胞分化而參與哮喘的炎癥過程[48]。其分子機制主要為PARP-1激活NF-κB,促進IL-4,IL-5,GATA3和ICAM-1表達[49],維持STAT-6的完整性[50]及誘導(dǎo)AP-1活化,繼而引發(fā)一系列炎癥反應(yīng)。此外,PARP-1活化可促進氣道炎癥和氣道高反應(yīng)性[49],還可通過影響上皮細胞纖維化、杯狀細胞增生轉(zhuǎn)化、氣道平滑肌增厚、血管生成及上皮間充質(zhì)轉(zhuǎn)化等組織變化,在哮喘發(fā)展過程中誘導(dǎo)氣道重構(gòu)[51-52]。

      3.2 PARP-1與COPD

      COPD是一種以氣流阻塞為特征的慢性氣道炎癥性疾病,與有害氣體及有害顆粒的異常炎癥反應(yīng)有關(guān),是一種高發(fā)病率、高致死率的肺部慢性炎癥性疾病,其發(fā)生發(fā)展與肺部的系統(tǒng)性炎癥和慢性氧化應(yīng)激密切相關(guān)。

      臨床研究顯示,系統(tǒng)性氧化應(yīng)激引起DNA損傷和PARP-1活化在COPD發(fā)病機制中起關(guān)鍵作用[53]。細胞模型研究發(fā)現(xiàn),PARP-1活化與SIRT1競爭共同底物NAD+,促使SIRT1失活,引發(fā)細胞自噬[54]。PARP-1活化可直接影響上述促炎因子(IL-6,TNF-α,IL-8,ICAM-1,MIP-1α和 MIP-2)的表達,也可通過調(diào)節(jié)NF-κB活化,影響上述促炎因子表達,從而影響COPD的炎癥發(fā)展[55]。此外,抑制PARP-1還可下調(diào)iNOS表達,預(yù)防及逆轉(zhuǎn)吸煙引起的肺血管和肺泡結(jié)構(gòu)、功能的改變[56]。

      3.3 PARP-1與ALI

      ALI是心源性以外的各種肺內(nèi)外致病因素引起的急性進行性缺氧性呼吸衰竭,是肺部炎癥和通透性增加的綜合征,其嚴重惡化階段為急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)[57]。

      研究發(fā)現(xiàn),PARP-1在生物或機械因素引起的ALI發(fā)病中扮演重要角色。在脂多糖誘導(dǎo)的感染性ALI動物模型中,脂多糖刺激細胞促進PARP-1與p65結(jié)合,導(dǎo)致PARP-1核糖基化,最終上調(diào)NF-κB的轉(zhuǎn)錄活性,此外,DNA損傷和細胞外信號調(diào)節(jié)激酶通路同樣在PARP-1活化過程中扮演了重要角色[58],通過藥物或基因水平抑制PARP-1,可減少中性粒細胞和巨噬細胞聚集,下調(diào)NF-κB依賴的細胞因子和趨化因子(mKC,MCP-1,MIP-1α及MIP-2)表達,抑制一氧化氮生成和脂質(zhì)過氧化[59]。機械通氣(mechanical ventilation,MV)是ALI急性發(fā)作的急救措施之一,但也可繼發(fā)引起呼吸機相關(guān)性肺損傷(ventilator-induced lung injury,VILI),造成內(nèi)皮和上皮細胞層通透性增加,肺和全身的炎癥介質(zhì)升高[60]。研究表明,MV可激活PARP-1,在VILI中也存在著PARP-1依賴的NF-κB活化、過氧化物酶(myeloperoxidase,MPO)活化和活性氧(reactive oxygen species,ROS)升高[61-62]。

      3 .4 PARP-1與肺缺血再灌注(ischemia/reperfu?sion,I/R)損傷

      肺I/R損傷是肺移植和外循環(huán)手術(shù)等臨床事件中常見的引起不良后果的病理生理過程,其主要表現(xiàn)為肺間充質(zhì)水腫、炎癥細胞浸潤、呼吸膜斷裂和氣體交換障礙[63]。其主要機制為I/R導(dǎo)致組織ROS表達升高,過量的ROS誘導(dǎo)DNA損傷,引發(fā)PARP-1過表達,繼而引發(fā)一系列的炎癥反應(yīng)。研究顯示[64],靜脈或氣管內(nèi)給予PARP-1抑制劑,可有效預(yù)防I/R引起的肺部血管通透性增加和肺泡白細胞積聚,減弱NF-κB和AP-1的核轉(zhuǎn)移,并抑制中性粒細胞細胞因子(cytokine-induced neutrophil chemoat?tractant,CINC)和 MCP-1進入肺泡。

      4 PARP-1的抑制劑

      20世紀70年代,PARP-1抑制劑的研究就已開始(表1),主要針對腫瘤、卒中、心臟缺血、炎癥和糖尿病等疾病。PARP-1的內(nèi)源性底物為NAD+,早期的PARP-1抑制劑均是NAD+煙酰胺部分結(jié)構(gòu)類似物,與CAT中的煙酰胺結(jié)合位點或腺苷位點結(jié)合,競爭性抑制PARP-1活性。雖然PARP-1抑制劑的結(jié)構(gòu)各異,種類繁多,但它們的先導(dǎo)化合物主要可分為取代苯甲酰胺、多環(huán)內(nèi)酰胺和苯并咪唑甲酰胺3類。

      Tab.1 PARP-1抑制劑在肺部炎癥性疾病中的作用

      PARP-1抑制劑用于肺部炎癥疾病治療的研究歷史并不長,大部分尚處于實驗室研究階段。通過各種體內(nèi)外哮喘模型的研究發(fā)現(xiàn),3-AB[65]、5AIQ[66]、TIQ-A[67]、PJ34[68]、HYDAMTIQ[47]和奧拉帕利(olaparib)[49]等均可緩解哮喘的炎癥進程,其藥理作用機制主要表現(xiàn)為抑制PARP-1活化,繼而抑制NF-κB激活,下調(diào)ROS的生成和相關(guān)細胞因子、趨化因子和黏附分子等的表達。此外,研究顯示,PJ34[61],3-AB[69]和DPQ[70]還可用于ALI的炎癥治療。

      近來,一些天然產(chǎn)物的PARP-1抑制活性也備受關(guān)注。和厚樸酚可有效保護運動性肌肉炎癥損傷,可能與其抑制PARP-1上調(diào)和細胞破碎及減少脂質(zhì)過氧化和白細胞浸潤有關(guān)[71]。葛根素[72]、苯丙素[73]和新木脂素[73]等也都被發(fā)現(xiàn)具有顯著抑制PARP-1的活性。一些植物提取黃酮成分(楊梅酮、五羥黃酮、棉黃素、花翠素、槲皮素和桑色素等)[74]也被發(fā)現(xiàn)具有PARP-1抑制活性和抗炎作用,通過對脂多糖誘導(dǎo)的ALI模型大鼠的治療研究發(fā)現(xiàn),非瑟酮等一些黃酮類化合物具有顯著的降低肺部炎癥損傷的活性[75]。此外,維生素D的活性代謝物也被發(fā)現(xiàn)有PARP-1抑制活性,維生素D、7-脫氫膽甾醇和1α,25-二羥維生素D3可抑制人角質(zhì)細胞紫外線介導(dǎo)的PARP-1活化,提示維生素D具有抗炎的藥理學(xué)活性[76]。

      5 結(jié)語

      PARP-1作為自身活性物質(zhì)參與DNA修復(fù),轉(zhuǎn)錄調(diào)節(jié)及細胞凋亡。PARP-1活化致使促炎基因表達上調(diào),繼而引發(fā)炎癥因子轉(zhuǎn)錄增加,促進炎癥滲出,介導(dǎo)炎癥部位細胞凋亡,在炎癥疾病的發(fā)展過程中扮演了重要的角色。PARP-1與肺部炎癥的研究顯示,眾多PARP-1抑制劑對COPD、ALI、哮喘等肺部疾病的炎癥反應(yīng)能起到有效的保護作用,因而通過藥物或其他手段抑制PARP-1有望成為肺部炎癥疾病防治的新策略。然而,PARP-1參與炎癥的信號通路,及其調(diào)節(jié)炎癥進程的分子機制仍有待進一步闡明?,F(xiàn)有的PARP-1抑制劑也僅限于實驗研究階段,尚未有療效確切且毒副作用可控的上市藥品,這些都有待進一步研究和開發(fā)。

      [1] Chambon P,Weill JD,Mandel P.Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme[J].Biochem Biophys Res Commun,1963,11:39-43.

      [2] Muthurajan UM,Hepler MR,Hieb AR,Clark NJ,Kramer M,Yao T,et al.Automodification switches PARP-1 function from chromatin architectural pro?tein to histone chaperone[J].Proc Natl Acad Sci USA,2014,111(35):12752-12757.

      [3] Sriram CS,Jangra A,Gurjar SS,Mohan P,Bezbaruah BK.Edaravone abrogates LPS-induced behavioral anomalies,neuroinflammation and PARP-1[J].Physiol Behav,2016,154:135-144.

      [4] Lee WP,Hou MC,Lan KH,Li CP,Chao Y,Lin HC,et al.Helicobacter pylori-induced chronic inflammation causes telomere shortening of gastric mucosa by promoting PARP-1-mediated non-homolo?gous end joining of DNA[J].Arch Biochem Biophys,2016,606:90-98.

      [5] Kuenzler MB,Nuss K,Karol A,Sch?r MO,Hottiger M,Raniga S,et al.Neer Award 2016:reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose)polymerase 1(PARP-1)knock-out mouse model[J].J Shoulder Elbow Surg,2017,26(5):733-744.

      [6] Zhang Y,Wang C,Tian Y,Zhang F,Xu W,Li X,et al.Inhibition of poly(ADP-Ribose)polymerase-1 protects chronic alcoholic liver injury[J].Am J Pathol,2016,186(12):3117-3130.

      [7] Ahmad SF,Zoheir KM,Bakheet SA,Ashour AE,Attia SM.Poly(ADP-ribose)polymerase-1 inhibitor modulates T regulatory and IL-17 cells in the preven?tion of adjuvant induced arthritis in mice mode[lJ].Cytokine,2014,68(2):76-85.

      [8] Mishra M,Kowluru RA.Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic reti?nopathy[J].Biochim Biophys Acta,2017,1863(7):1761-1769.

      [9] Niyazoglu M,Baykara O,Koc A,Aydodu P,Onaran I,Dellal FD,et al.Association of PARP-1,NF-κB,NF-κBIA and IL-6,IL-1β and TNF-α with Graves disease and Graves ophthalmopathy[J].Gene,2014,547(2):226-232.

      [10] Sodhi RK,Singh N,Jaggi AS.Poly(ADP-ribose)polymerase-1(PARP-1)and its therapeutic impli?cations[J].Vasc Pharmacol,2010,53(3-4):77-87.

      [11] Drew Y.The development of PARP inhibitors in ovarian cancer:from bench to bedside[J].Br J Cancer,2015,113(Suppl 1):S3-S9.

      [12] Langelier MF,Ruhl DD,Planck JL,Kraus WL,Pascal JM.The Zn3 domain of human poly(ADP-ribose) polymerase-1(PARP-1)functions in both DNA-dependent poly(ADP-ribose)synthesis activity and chromatin compaction[J].J Biol Chem,2010,285(24):18877-18887.

      [13] Tao Z,Gao P,Liu HW.Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications[J].JAm Chem Soc,2009,131(40):14258-14260.

      [14] Altmeyer M, Messner S,Hassa PO,F(xiàn)ey M,Hottiger MO.Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites[J].Nucleic Acids Res,2009,37(11):3723-3738.

      [15] Kraus WL,Hottiger MO.PARP-1 and gene regula?tion:progress and puzzles[J].Mol Aspects Med,2013,34(6):1109-1123.

      [16] Langelier MF,Pascal JM.PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose)synthesis[J].Curr Opin Struct Biol,2013,23(1):134-143.

      [17] Feng FY,de Bono JS,Rubin MA,Knudsen KE.Chromatin to clinic:the molecular rationale for PARP1 inhibitor function[J].Mol Cell,2015,58(6):925-934.

      [18] Kim MY,Mauro S,Gévry N,Lis JT,Kraus WL.NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1[J].Cell,2004,119(6):803-814.

      [19] Wacker DA,Ruhl DD,Balagamwala EH,Hope KM,Zhang T,Kraus WL.The DNA binding and catalytic domains of poly(ADP-ribose)polymerase 1 cooperate in the regulation of chromatin structure and tran?scription[J].Mol Cell Biol,2007,27(21):7475-7485.

      [20] Ciccarone F, Zampieri M, Caiafa P.PARP1 orchestrates epigenetic events setting up chroma?tin domains[J].Semin Cell Dev Biol,2017,63:123-134.

      [21] Nicolás L,Martínez C,Baró C,Rodríguez M,Baroja-Mazo A,Sole F,et al.Loss of poly(ADP-ribose)polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice[J].Oncogene,2010,29(19):2877-2883.

      [22] Olabisi OA,Soto-Nieves N,Nieves E,Yang TT,Yang X,Yu RY,et al.Regulation of transcription factor NFAT by ADP-ribosylation[J].Mol Cell Biol,2008,28(9):2860-2871.

      [23] Saenz L,Lozano JJ,Valdor R,Baroja-Mazo A,Ramirez P,Parrilla P,et al.Transcriptional regula?tion by poly(ADP-ribose)polymerase-1 during T cell activation[J/OL].BMC Genomics,2008,9:171(2008-04-16).https://www.ncbi.nlm.nih.gov/pmc/arti?cles/PMC2375913/

      [24] Grahnert A,Grahnert A,Klein C,Schilling E,Wehrhahn J,Hauschildt S.Review:NAD+:a modu?lator of immune functions[J].Innate Immun,2011,17(2):212-233.

      [25] Aurelius J,Thorén FB,Akhiani AA,Brune M,Palmqvist L,Hansson M,et al.Monocytic AML cells inactivate antileukemic lymphocytes:role of NADPH oxidase/gp91(phox)expression and the PARP-1/PAR pathway of apoptosis[J].Blood,2012,119(24):5832-5837.

      [26] Ambrose HE,Willimott S,Beswick RW,Dantzer F,de Murcia JM,Yelamos J,et al.Poly(ADP-ribose)polymerase-1(Parp-1)-deficient mice demonstrate abnormal antibody responses[J].Immunology,2009,127(2):178-186.

      [27] Paddock MN,Buelow BD,Takeda S,Scharenberg AM.The BRCT domain of PARP-1 is required for immunoglobulin gene conversion[J/OL].PLoS Biol,2010,8(7):e1000428(2010-07-20).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907289/

      [28] Robert I,Dantzer F,Reina-San-Martin B.Parp1 facilitates alternative NHEJ,whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination[J].J Exp Med,2009,206(5):1047-1056.

      [29] Ambrose HE,Papadopoulou V,Beswick RW,Wagner SD.Poly(ADP-ribose) polymerase-1(Parp-1)binds in a sequence-specific manner at the Bcl-6 locus and contributes to the regulation of Bcl-6 transcription[J].Oncogene,2007,26(42):6244-6252.

      [30] Rosado MM, BenniciE, NovelliF, PioliC.Beyond DNA repair,the immunological role of PARP-1 and its siblings[J].Immunology,2013,139(4):428-437.

      [31] Brunyánszki A,Hegedus C,Szántó M,Erdélyi K,Kovács K,Schreiber V,et al.Genetic ablation of PARP-1 protects against oxazolone-induced contact hypersensitivity by modulating oxidative stress[J].J Invest Dermatol,2010,130(11):2629-2637.

      [32] Chung HT,Joe Y.Antagonistic crosstalk between SIRT1,PARP-1,and-2 in the regulation of chronic inflammation associated with aging and metabolic diseases[J].Integr Med Res,2014,3(4):198-203.

      [33] Hossain MB, Ji P, Anish R, Jacobson RH,Takada S.Poly(ADP-ribose)polymerase 1 inter?acts with nuclear respiratory factor 1(NRF-1)and plays a role in NRF-1 transcriptional regulation[J].J Biol Chem,2009,284(13):8621-8632.

      [34] Stilmann M, Hinz M, Arslan SC,Zimmer A,Schreiber V,Scheidereit C.A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damageinduced IkappaB kinase activation[J].Mol Cell,2009,36(3):365-378.

      [35] Hwang JW,Yao H,Caito S,Sundar IK,Rahman I2.Redox regulation of SIRT1 in inflammation and cellular senescence[J].Free Radic Biol Med,2013,61:95-110.

      [36] Phulwani NK,Kielian T.Poly(ADP-ribose)poly?merases(PARPs)1-3 regulate astrocyte activa?tion[J].J Neurochem,2008,106(2):578-590.

      [37] Farez MF,Quintana FJ,Gandhi R,Izquierdo G,Lucas M,Weiner HL.Toll-like receptor 2 and poly(ADP-ribose)polymerase 1 promote central nervous system neuroinflammation in progressive EAE[J].Nat Immunol,2009,10(9):958-964.

      [38] Farrés J,Martín-Caballero J,Martínez C,Lozano JJ,Llacuna L,Ampurdanés C,et al.Parp-2 is required to maintain hematopoiesis following sublethal γ-irradi?ation in mice[J].Blood,2013,122(1):44-54.

      [39] Bai P,Virág L.Role of poly(ADP-ribose)polymer?ases in the regulation of inflammatory processes[J].FEBS Lett,2012,586(21):3771-3777.

      [40] Espinoza LA,Smulson ME,Chen Z.Prolonged poly(ADP-ribose)polymerase-1 activity regulates JP-8-induced sustained cytokine expression in alveolar macrophages[J].Free Radic Biol Med,2007,42(9):1430-1440.

      [41] Ba X,Garg NJ.Signaling mechanism of poly(ADP-ribose)polymerase-1(PARP-1)in inflammatory diseases[J].Am J Pathol,2011,178(3):946-955.

      [42] Kauppinen TM,Chan WY,Suh SW,Wiggins AK,Huang EJ,Swanson RA.Direct phosphorylation and regulation of poly(ADP-ribose)polymerase-1 by extracellular signal-regulated kinases 1/2[J].Proc Natl Acad Sci USA,2006,103(18):7136-7141.

      [43] Robaszkiewicz A,Valkó Z,Kovács K,Hegedu"s C,Bakondi E,Bai P,et al.The role of p38 signaling and poly(ADP-ribosyl)ation-induced metabolic collapse in the osteogenic differentiation-coupled cell death pathway[J].Free Radic Biol Med,2014,76:69-79.

      [44] Fatokun AA,Dawson VL,Dawson TM.Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities[J].Br J Pharmacol,2014,171(8):2000-2016.

      [45] Virág L,Robaszkiewicz A,Rodriguez-Vargas JM,Oliver FJ.Poly(ADP-ribose)signaling in cell death[J].Mol Aspects Med,2013,34(6):1153-1167.

      [46] Ghonim MA, Pyakurel K, Ibba SV, Wang J,Rodriguez P,Al-Khami AA,et al.PARP is activated in human asthma and its inhibition by olaparib blocks house dust mite-induced disease in mice[J].Clin Sci(Lond),2015,129(11):951-962.

      [47] Lucarini L,Pini A,Gerace E,Pellicciari R,Masini E,Moroni F.Poly(ADP-ribose)polymerase inhibition with HYDAMTIQ reduces allergen-induced asthmalike reaction,bronchial hyper-reactivity and airway remodeling[J].J Cell Mol Med,2014,18(3):468-479.

      [48] Gaurav R,Agrawal DK.Clinical view on the impor?tance of dendritic cells in asthma[J].Expert Rev Clin Immunol,2013,9(10):899-919.

      [49] Ghonim MA,Pyakurel K,Ibba SV,Al-Khami AA,Wang J7,Rodriguez P,et al.PARP inhibition by olaparib or gene knockout blocks asthma-like mani?festation in mice by modulating CD4+T cell function[J/OL].J Transl Med,2015,13:225(2015-07-14).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501284/

      [50] Goenka S,Kaplan MH.Transcriptional regulation by STAT6[J].Immunol Res,2011,50(1):87-96.

      [51] Halwani R,Al-Muhsen S,Al-Jahdali H,Hamid Q.Role of transforming growth factor-β in airway remod?eling in asthma[J].Am J Respir Cell Mol Biol,2011,44(2):127-133.

      [52] Pain M,Bermudez O,Lacoste P,Royer PJ,Botturi K,Tissot A,et al.Tissue remodelling in chronic bronchial diseases:from the epithelial to mesenchymal phenotype[J].Eur Respir Rev,2014,23(131):118-130.

      [53] Oit-Wiscombe I,Virag L,Soomets U,Altraja A.Increased DNA damage in progression of COPD:a response by poly(ADP-ribose)polymerase-1[J/OL].PLoS One,2013,8(7):e70333(2013-07-24).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722143/

      [54] Hwang JW, Chung S, Sundar IK, Yao H,Arunachalam G,McBurney MW,et al.Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism:implication in patho?genesis of COPD[J].Arch Biochem Biophys,2010,500(2):203-209.

      [55] Geraets L,Haegens A,Weseler AR,Brauers K,Vernooy JH,Wouters EF,et al.Inhibition of acute pulmonary and systemic inflammation by 1,7-dimeth?ylxanthine[J].Eur J Pharmacol,2010,629(1-3):132-139.

      [56] Seimetz M,Parajuli N,Pichl A,Veit F,Kwapiszewska G,Weisel FC,et al.Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice[J].Cell,2011,147(2):293-305.

      [57] Herridge MS,Angus DC.Acute lung injury-affecting many lives[J].N Engl J Med,2005,353(16):1736-1738.

      [58] Liu L,Ke Y,Jiang X,He F,Pan L,Xu L,et al.Lipopolysaccharide activates ERK-PARP-1-Rel A pathway and promotes nuclear factor-κB transcrip?tion in murine macrophages[J].Hum Immunol,2012,73(5):439-447.

      [59] Kapoor K,Singla E,Sahu B,Naura AS.PARP inhibitor,olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice[J].Mol Cell Biochem,2015,400(1-2):153-162.

      [60] Silva PL,Negrini D,Rocco PR.Mechanisms of ventilator-induced lung injury in healthy lungs[J].Best Pract Res Clin Anaesthesiol,2015,29(3):301-313.

      [61] Kim JH,Suk MH,Yoon DW,Kim HY,Jung KH,Kang EH,et al.Inflammatory and transcriptional roles of poly(ADP-ribose)polymerase in ventilatorinduced lung injury[J/OL].Crit Care,2008,12(4):R108(2008-08-22).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575597/

      [62] Davidovich N,DiPaolo BC,Lawrence GG,Chhour P,Yehya N,Margulies SS.Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability[J].Am J Respir Cell Mol Biol,2013,49(1):156-164.

      [63] Cao QF,Qu MJ,Yang WQ,Wang DP,Zhang MH,Di SB.Ischemia postconditioning preventing lung ischemia-reperfusion injury[J].Gene,2015,554(1):120-124.

      [64] Bai P.Biology of poly(ADP-ribose)polymerases:the factotums of cell maintenance[J].Mol Cell,2015,58(6):947-958.

      [65] Boulares AH, Zoltoski AJ, Sherif ZA, Jolly P,Massaro D,Smulson ME.Gene knockout or pharmacological inhibition of poly(ADP-ribose)polymerase-1 prevents lung inflammation in a murine model of asthma[J].Am J Respir Cell Mol Biol,2003,28(3):322-329.

      [66] Suzuki Y,Masini E,Mazzocca C,Cuzzocrea S,Ciampa A,Suzuki H,et al.Inhibition of poly(ADP-ribose)polymerase prevents allergen-induced asthmalike reaction in sensitized guinea pigs[J].J Phar?macol Exp Ther,2004,311(3):1241-1248.

      [67] Naura AS,Hans CP,Zerfaoui M,You D,Cormier SA,Oumouna M,et al.Post-allergen challenge inhibition of poly(ADP-ribose)polymerase harbors therapeutic potential for treatment of allergic airway inflamma?tion[J].Clin Exp Allergy,2008,38(5):839-846.

      [68] Mehrotra P,Hollenbeck A,Riley JP,Li F,Patel RJ,Akhtar N,et al.Poly(ADP-ribose)polymerase 14 and its enzyme activity regulates Th2 differentia?tion and allergic airway disease[J].J Allergy Clin Immunol,2013,131(2):521-531.e1-e12.

      [69] Si MK,Mitaka C,Tulafu M,Abe S,Kitagawa M,Ikeda S,et al.Inhibition of poly(adenosine diphos?phate-ribose)polymerase attenuates lung-kidney crosstalk induced by intratracheal lipopolysaccharide instillation in rats[J/OL].Respir Res,2013,14:126(2013-11-15).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833186/

      [70] Wang G,Huang X,Li Y,Guo K,Ning P,Zhang Y.PARP-1 inhibitor,DPQ,attenuates LPS-induced acute lung injury through inhibiting NF-κB-mediated inflammatory response[J/OL].PLoS One,2013,8(11):e79757(2013-11-21).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836796/

      [71] Chiang J,Shen YC,Wang YH,Hou YC,Chen CC,Liao JF,et al.Honokiol protects rats against eccentric exercise-induced skeletal muscle damage by inhibiting NF-kappaB induced oxidative stress and inflammation[J].Eur J Pharmacol,2009,610(1-3):119-127.

      [72] Wang S,Shi XL,F(xiàn)eng M,Wang X,Zhang ZH,Zhao X,et al.Puerarin protects against CCl4-induced liver fibrosis in mice:possible role of PARP-1 inhibition[J].Int Immunopharmacol,2016,38:238-245.

      [73] Mu?oz Acu?a U, Carcache PJ, Matthew S,Carcache de Blanco EJ.New acyclic bis phenyl?propanoid and neolignans,fromMyristica fragransHoutt.,exhibiting PARP-1 and NF-κB inhibitory effects[J].Food Chem,2016,202:269-275.

      [74]Geraets L,Moonen HJ,Brauers K,Gottschalk RW,Wouters EF,Bast A,et al.Flavone as PARP-1 inhibitor:its effect on lipopolysaccharide induced gene-expression[J].Eur J Pharmacol,2007,573(1-3):241-248.

      [75] Geraets L,Moonen HJ,Brauers K,Wouters EF,Bast A,Hageman GJ.Dietary flavones and flavo?noles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells[J].J Nutr,2007,137(10):2190-2195.

      [76] Mabley JG,Wallace R,Pacher P,Murphy K,Szabó C.Inhibition of poly(adenosine diphosphateribose)polymerase by the active form of vitamin D[J].Int J Mol Med,2007,19(6):947-952.

      猜你喜歡
      炎癥性活化肺部
      無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
      高鹽飲食或可誘發(fā)炎癥性疾病
      中老年保健(2021年8期)2021-08-24 06:22:06
      小學(xué)生活化寫作教學(xué)思考
      炎癥性腸病與肝膽胰病變
      MDT在炎癥性腸病診斷和治療中的重要性
      《結(jié)締組織疾病肺部表現(xiàn)》已出版
      《結(jié)締組織疾病肺部表現(xiàn)》已出版
      《結(jié)締組織疾病肺部表現(xiàn)》已出版
      《結(jié)締組織疾病肺部表現(xiàn)》已出版
      基于B-H鍵的活化對含B-C、B-Cl、B-P鍵的碳硼烷硼端衍生物的合成與表征
      志丹县| 英德市| 淳化县| 喀什市| 信宜市| 灵宝市| 尚志市| 万安县| 柳江县| 瑞金市| 新和县| 吉木萨尔县| 宁南县| 玉屏| 瓦房店市| 绥德县| 抚远县| 杭锦旗| 乳源| 本溪| 康马县| 山丹县| 建昌县| 石景山区| 无为县| 潼关县| 克东县| 易门县| 哈巴河县| 涡阳县| 合川市| 河津市| 承德市| 天水市| 萝北县| 尼木县| 成都市| 海淀区| 凉城县| 从江县| 开平市|