郭 娟 劉 瑋 李勝光
(解放軍總醫(yī)院第一附屬醫(yī)院風濕科,北京 100048)
α- 硫辛酸(α- Lipoic Acid,ALA)是由線粒體生成的二硫酚化合物,廣泛存在于動植物體內。在生理狀態(tài)下,人體內的ALA作為線粒體丙酮酸脫氫酶和α- 酮戊二酸脫氫酶復合物的輔酶,保護線粒體免受氧化攻擊。ALA是硫辛酸的氧化態(tài),雙氫硫辛酸是硫辛酸的還原態(tài),兩者組成一對強力的氧化還原對。它們能夠直接清除眾多活性氧自由基(Reactive oxygen species ,ROS),作為金屬螯合劑減輕重金屬離子對機體的氧化損傷;還能參與體內其他抗氧化劑的再生,因而被譽為“萬能抗氧化劑”,且ALA及雙氫硫酸較好的水溶性和脂溶性使其在細胞內外發(fā)揮抗氧化作用[1,2]。
基于其強有力的抗氧化功能和良好的安全性,ALA被廣泛應用于糖尿病及其并發(fā)癥、神經性疾病和心血管疾病。隨著相關研究的不斷深入,我們對ALA的作用機制有了更多的認識,包括保護胰島細胞,增加胰島素敏感性,加快神經傳導及改善血管內皮功能[3]。除此之外,越來越多的實驗數(shù)據提示ALA可能具有免疫調節(jié)作用。
近年來,氧化應激在某些自身免疫疾病發(fā)生發(fā)展中的作用獲得普遍認可。研究已證實ROS與免疫系統(tǒng)交互影響:一方面,ROS幾乎在每一種免疫細胞的信號傳導中發(fā)揮著生理作用。如巨噬細胞分泌ROS發(fā)揮抗菌作用;調節(jié)性T細胞(Treg)通過釋放ROS抑制其他T細胞的功能等[4]。另一方面,免疫細胞發(fā)生病理性改變時產生過量的ROS,加劇炎癥和免疫系統(tǒng)進一步失衡。如氧化應激是系統(tǒng)性紅斑狼瘡(Systemic lupus erythematosus,SLE)普遍存在的病理狀態(tài)[5],促進免疫紊亂的發(fā)生;而免疫紊亂則進一步加劇氧化應激水平,兩者共同參與了SLE的發(fā)生和發(fā)展。體外實驗發(fā)現(xiàn)系統(tǒng)性硬化癥皮膚成纖維細胞硫辛酸及硫辛酸合成酶含量減低[6],DHLA可逆轉皮膚纖維化發(fā)生。由此可以推測,抗氧化劑可用于治療某些自身免疫性疾病,前者在清除ROS的基礎上,極可能發(fā)揮免疫調節(jié)作用。通過文獻復習,筆者對ALA的免疫調節(jié)的證據和可能機制進行綜述。
1.1T細胞 多發(fā)性硬化(Multiple sclerosis,MS)是中樞神經系統(tǒng)(Central nervous system,CNS)的自身免疫病,以機體出現(xiàn)髓鞘特異性T細胞并通過血腦屏障進入CNS長期生存為特征。實驗性自身免疫性腦脊髓炎(EAE)是MS最常用的動物模型。多項研究發(fā)現(xiàn)使用ALA干預EAE建模過程,能夠減少病變部位炎癥細胞浸潤,減輕疾病的嚴重程度[7- 9]。最近,Wang等[8]證實ALA減少EAE病變組織的Th17和Th1細胞數(shù)量,增加脾臟Treg細胞數(shù)量,提示ALA對T細胞分化和增殖的免疫調節(jié)作用。另有實驗證實ALA上調高脂飲食小鼠空腸T細胞分化相關基因的表達,并使其恢復到正常水平(syk、CD86、CD28、CD2和CD25),充分提示ALA參與調控T細胞的分化過程[10]。研究報道ALA能夠通過激活人外周血T細胞前列腺素受體EP2和EP4增加cAMP合成[11],導致IL- 2及IL- 2Rα(CD25)表達的減少,繼而影響T細胞的增殖及激活[12]。
更多的研究提示ALA從多種途徑調節(jié)T細胞的功能:ALA能夠改善AIDS患者CD4+T細胞受損的線粒體功能[13];下調人外周血T細胞表面CD4表達[14];抑制CD4+T細胞分泌IFN- γ和IL- 4從而減輕特應性皮炎小鼠皮損的嚴重程度[15]。
除影響T細胞的增殖、分化和分泌功能,ALA還能夠抑制T細胞的遷移功能。Ying等[16]的研究發(fā)現(xiàn)在渡邊兔動脈粥樣硬化模型中,ALA干預后T細胞對趨化因子的反應下降,進而減少了動脈粥樣硬化斑塊中的T細胞浸潤。另有研究提示ALA抑制以下免疫細胞的遷移活動:EAE小鼠T細胞、EAE大鼠淋巴細胞和單核細胞、Jurkat細胞[9,17,18]。相關的機制研究提示遷移功能的抑制與ALA下調T細胞表面的極遲反應抗原4表達,并抑制微環(huán)境中的基質金屬蛋白酶9活性[18]。
1.2B細胞 高脂飲食小鼠表現(xiàn)為免疫細胞數(shù)量減少和功能下降?;虮磉_譜研究提示:(1)高脂飲食可下調小鼠空腸B細胞受體(B cell receptor,BCR)的信號通路基因(CD19、Cr2、Ighg和Igh- 6)的表達,ALA干預后這些基因明顯上調,其中Ighg甚至恢復正常水平[10];(2)高脂飲食促進脾臟細胞凋亡,在ALA干預后獲明顯改善[19]。高脂飲食可同時減少外周血B細胞數(shù)量,ALA的治療作用可能與上調脾臟 BCR信號通路相關基因的表達水平(Fos、Akt3、Pi3k、Rac1、Igh- 6、Ighg)有關[20]。這一系列實驗證實ALA參與B細胞的增殖、凋亡及功能的調控。
1.3固有免疫細胞(NK細胞、巨噬細胞和單核細胞) 天然殺傷細胞(NK cell)的功能主要由細胞毒作用和細胞因子的分泌組成:前者與溶酶體酶的釋放有關;后者以IFN- γ分泌為代表,IFN- γ是巨噬細胞的強力激活劑。ALA能夠抑制IL- 12/IL- 18介導的人NK細胞的IFN- γ分泌和細胞毒性,通過依賴或者不依賴G蛋白偶聯(lián)受體(GPCRs)的方式增加細胞內cAMP的生成[21,22]℃AMP誘導生成的PGE2能夠抑制IL- 15介導的NK細胞的細胞毒性和IFN- γ分泌[23]。因此,ALA能夠從多個方面抑制NK細胞的功能。
研究者發(fā)現(xiàn)ALA通過直接和間接的方式調控巨噬細胞的活化、吞噬和遷移功能:ALA抑制EAE小鼠巨噬細胞吞噬髓磷脂[24],減少自身抗原的遞呈;減少肥胖胰島素抵抗小鼠內臟脂肪組織的巨噬細胞浸潤和激活,抑制巨噬細胞分泌TNF- α和MCP- 1[25],減輕內臟脂肪組織炎癥。ALA通過Nrf2信號通路上調單核細胞的血紅色氧合酶- 1(HO- 1)表達,繼而抑制細胞因子的分泌[26]。還能夠通過抑制單核細胞的遷移功能并穩(wěn)定血腦屏障內皮的功能而減輕EAE大鼠的中樞神經炎癥細胞浸潤[9]。
ALA已經廣泛運用于臨床數(shù)十年,積累了大量的實驗數(shù)據,根據相關的實驗結果分析,筆者提出下列ALA免疫調節(jié)的潛在靶點。
2.1線粒體跨膜電位(mitochondrial membrane potential,ΔΨm) 線粒體是細胞的能量站,為三羧酸循環(huán)和氧化磷酸化提供場所,并參與細胞分化、調控細胞生長周期和細胞死亡。ΔΨm的穩(wěn)定有利于維持細胞的正常生理功能。電子傳遞鏈和ATP合酶維持的線粒體內膜兩側的電化學梯度產生ΔΨm,因此ΔΨm、ATP和ROS三者的水平密切相關[27]。線粒體通透性轉變孔(mPTP)是位于線粒體內外膜上的一組蛋白復合體,為非特異性通道,能維持ΔΨm及細胞內外的離子平衡:mPTP過度開放,ΔΨm出現(xiàn)不可逆地降低直至耗盡,誘導細胞凋亡或壞死[28]。生理狀態(tài)下,T細胞的激活或凋亡早期出現(xiàn)一過性可逆轉的ΔΨm升高即線粒體過級化(MHP)[29];但SLE患者T細胞中MHP持續(xù)存在,導致ROS升高和ATP耗竭:一方面,MHP和ATP耗竭促進T細胞壞死,繼而激活巨噬細胞和樹突狀細胞加劇炎癥[30];另一方面,ROS水平升高促進T細胞自發(fā)凋亡及IL- 10的釋放[31]。T細胞凋亡的增加導致自身抗原的釋放和疾病活動;而IL- 10水平上升進一步誘導T細胞凋亡并促進B細胞過度活化[32- 35]。研究證明在一定的濃度范圍內,ALA和DHLA促進大鼠肝細胞線粒體mPTP開放[3,36]。因此,推測 ALA可能從多個方面改善SLE的線粒體功能失調,開放mPTP降低ΔΨm,改善SLE患者T細胞病理性的MHP;直接中和ROS,進而糾正T、B細胞的功能失調。
2.2哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號通路 mTOR是一種絲氨酸/蘇氨酸激酶,和不同蛋白質結合,可形成2種不同復合物,即mTOR復合物1(mTOR complex 1,mTORCl)和mTORC2。mTORC1廣泛存在于各種生物細胞,在調節(jié)細胞生長和代謝的過程中起到非常重要的作用[37]。
在細胞質中,mTORC1是許多信號級聯(lián)反應共同的中間環(huán)節(jié),生長因子、ATP/ADP水平、血糖、氧含量、TNF- α、基因毒應激和Wnt等信號轉導通路通過多種途徑調控mTORC1活性:其中激酶Ras/Erk、PI3K/Akt和IKKβ為正向調控,而Dsh/GSK3和LKBl/AMPK為負向調控。mTORC1激活后抑制細胞自噬功能;通過磷酸化真核細胞翻譯起始因子4E結合蛋白1和核糖體S6蛋白激酶1促進蛋白質合成;通過活化轉錄因子固醇調節(jié)元件結合蛋白1(SREBP1)和過氧化物酶體增殖物激活受體γ(PPARγ)促進脂質合成;通過活化過氧化物酶體增殖物激活受體γ 輔助活化因子- 1α(PGC1- α)調控線粒體的氧化代謝和生物合成[38]。研究發(fā)現(xiàn),位于線粒體外膜mTORC1與mPTP蛋白相連,通過感受ΔΨm的變化,單獨發(fā)揮調控線粒體代謝的功能;抑制mTORC1活性可以降低線粒體氧耗、ATP合成和ΔΨm[39,40]。
生理狀態(tài)下,mTORC1信號通路在免疫系統(tǒng)中發(fā)揮重要調節(jié)作用,影響大部分固有免疫細胞和適應性免疫細胞的細胞發(fā)育和功能[41]。激活的mTORC1信號通路保證樹突狀細胞、巨噬細胞和中性粒細胞TLR的病原體識別功能;阻斷mTORC1信號通路損害固有免疫細胞功能,如樹突狀細胞的分化、抗原攝取、成熟和遷移,巨噬細胞的吞噬和趨化性,NK細胞的增殖和細胞毒性。在適應性免疫應答中,激活的mTORC1分子對于維持T細胞和B細胞的穩(wěn)定和活化意義重大,并促進初始CD4+T細胞向Th1和Th17分化;抑制mTORC1活性則促進初始CD4+T細胞向Treg分化[42,43],也促使初始CD8+T細胞向記憶性CD8+T細胞分化。
研究表明多種自身免疫病的發(fā)病可能與免疫系統(tǒng)的mTORC1信號通路過度激活相關:1型糖尿病、MS、SLE和類風濕關節(jié)炎(RA)[44- 48]。 mTORC1特異性抑制劑雷帕霉素改善1型糖尿病病情,與增加Treg數(shù)量并增強其抑制功能有關[49,50]。SLE患者T細胞的mTORC1過度激活,阻斷CD4+CD25+T細胞的FOXP3表達,導致SLE患者Treg細胞數(shù)量和功能的下降[51- 54]。mTORC1過度激活也引起CD3+CD4-CD8-T cells雙陰性T細胞壞死和IL- 4分泌增加,IL- 4導致SLE患者CD25+CD19+B細胞(Breg)幾乎消失殆盡[52],而Breg抑制CD4+效應性T細胞增殖,上調Treg細胞FOXP3和CTLA- 4的表達[55]。雷帕霉素治療SLE初顯成效[5,47],除改善上述異常外,它還降低SLE患者T細胞基線和TCR激活后的胞內鈣離子的水平[56]。但雷帕霉素不能改善SLE患者T細胞MHP狀態(tài),反映了其對T細胞線粒體功能失調治療的局限性。IL- 22刺激RA患者的滑膜細胞增殖,與 PI3K/Akt/mTORC1信號通路激活相關[57];抑制該通路減輕滑膜細胞的侵襲性[58]。在人TNF轉基因小鼠的關節(jié)炎中,mTORC1信號通路促進滑膜破骨細胞的形成和活化,導致骨侵蝕和軟骨破壞;RA患者破骨細胞mTORC1信號通路處于活化狀態(tài)[48],mTORC1抑制劑聯(lián)合甲氨蝶呤治療能夠改善RA患者病情[59]。雖然雷帕霉素能夠特異抑制mTORC1改善上述自身免疫病病情,但是它與FK506相似的副作用可能成為臨床應用的障礙。
研究表明,ALA能夠在不同的病理狀態(tài)下,干預多種組織細胞mTORC1上游激酶的活性[1]。
2.2.1IKKβ、Ras/Erk1/2和PI3K/Akt和正向調控mTORC1 在RA患者成纖維樣滑膜細胞和人臍靜脈內皮細胞,ALA能夠阻斷TNF- α誘導IKKβ/NF- κB信號通路[60,61]。研究表明在腫瘤細胞和胰島素抵抗小鼠, TNF- α通過激活IKKβ正向調控mTORC1通路[62,63]。因此,推測ALA可能通過阻斷IKKβ激酶活性對mTORC1的活性產生負向調節(jié)作用。
研究表明ALA阻斷Erk通路,改善動脈粥樣硬化損傷并抑制血管平滑肌細胞增殖[64];改善血管緊張素Ⅱ對血管平滑肌細胞的氧化應激損傷[65];下調糖化血紅蛋白介導的小鼠巨噬細胞NF- κB和TGF- β1的表達[66]。ALA抑制小鼠系膜細胞5羥色胺(5- HT)和生長因子對Erk1/2的激活;減少腎小球腎炎小鼠腎臟促纖維因子TGF- β1表達,并阻斷系膜細胞向肌成纖維細胞轉化[67,68]。ALA通過抑制Akt/S6K1和Erk活性減少促纖維化細胞因子(PDGF和TGF- β)對肝星狀細胞的激活和氧化應激損傷,改善硫代乙酰胺誘導的大鼠肝硬化病情[69]。
ALA對于小鼠成纖維細胞的Erk1/2激酶具有雙向調節(jié)作用,取決于細胞培養(yǎng)液中是否含有血清[70,71],這在一定程度上可以解釋ALA在不同的病理狀態(tài)下對同一激酶出現(xiàn)不同調控方向。
ALA通過激活大鼠胰島素細胞的Akt激酶減少過氧化氫介導的細胞凋亡[72]。ALA可以通過激活Akt并抑制Erk,起到減少TNF- α和游離脂肪酸對大鼠骨骼肌細胞造成氧化應激損傷[73]。近期臨床研究觀察到,2型糖尿病患者長期補充ALA可改善胰島素刺激的葡萄糖氧化和糖原合成,發(fā)揮降低胰島素水平及游離脂肪酸的作用[74]。
ALA抑制PI3K/Akt通路發(fā)揮抗腫瘤作用:抑制人乳腺癌細胞生長、促進腫瘤細胞凋亡;誘導人肝癌細胞凋亡[75,76]。ALA也通過抑制PI3K/Akt通路改善糖脂代謝失衡:下調小鼠脂肪細胞瘦素表達、抑制轉錄因子Sp1活性[77];改善糖尿病大鼠的胰島素抵抗[78]。
然而,ALA激活Akt通路也介導多種細胞保護作用,如阻斷內質網應激介導的大鼠甲狀腺細胞凋亡[79],改善布比卡因、β- 淀粉樣肽和過氧化氫對大鼠神經元的損害,改善缺血再灌注、TNF- α和游離脂肪酸對大鼠骨骼肌細胞造成氧化應激等,改善過氧化氫介導的大鼠胰島素細胞凋亡,改善內毒素血癥導致的心功能不全、血管內皮功能不全,單核細胞活化和急性炎癥反應[72,73,79- 84]。
2.2.2AMPK(負向調控mTORC1) ALA激活AMPK,上調白色脂肪組織分泌脂聯(lián)素改善高脂飲食大鼠的胰島素抵抗[85];下調促纖維化細胞因子表達、減少膠原沉積改善糖尿病大鼠心肌病變[86];促進自發(fā)性高血壓大鼠血管舒張[87];上調人肝細胞的脂肪組織甘油三酯水解酶(ATGL)表達,減少胞內脂肪堆積[88];下調肝組織固醇調節(jié)元件結合蛋白- 1C(SREBP- 1c)、和肝X受體表達,減少肝細胞脂肪生成[89];上調糖尿病小鼠ATGL表達,減少內臟脂肪含量[90]。
高糖和亮氨酸通過AMPK/mTORC1/S6K1通路誘導大鼠骨骼肌胰島素抵抗[91,92]。ALA增強骨骼肌細胞mTORC1上游抑制因子TSC2的磷酸化,同時激活AMPK改善胰島素抵抗:增強骨骼肌細胞的胰島素敏感性[93];下調胰島素β細胞S6K1表達,抑制分泌胰島素[94]。
盡管在下丘腦細胞,ALA表現(xiàn)為抑制AMPK活性[95- 97],但其結果是抑制食欲,協(xié)同ALA在外周組織激活AMPK活性改善胰島素抵抗和減少脂肪生成、堆積,最終表現(xiàn)對治療肥胖和糖尿病的益處。
綜上所述,因疾病狀態(tài)和靶細胞的不同,ALA對某些激酶活性的調節(jié)方向并不一致;但是,仍然提示ALA極有可能具有調節(jié)mTORC1信號通路的功能。因此,對于復發(fā)率高、療效較差的自身免疫病患者來說,ALA在免疫細胞mTORC1信號通路中的調節(jié)作用更加值得進一步研究。
2.3中性粒細胞胞外誘捕網(Neutrophil extra- cellular traps,NETs) 中性粒細胞作為固有免疫系統(tǒng)重要成員,對病原體發(fā)揮重要的一線防御作用。除外吞噬和分泌炎癥介質的防御方式,中性粒細胞還能釋放NETs來捕獲病原體。NETs是一種由核酸、組蛋白和顆粒蛋白組成的結構,它的形成過程伴或不伴有中性粒細胞的死亡,稱之為NETosis[98]。研究表明NETs不僅能夠抵御病原體的入侵,而且與某些自身免疫病的發(fā)病和血栓的形成有關[99]。NETs形成后在細胞外暴露多種自身抗原[100],促進自身抗體的生成;NETs上調促炎因子、趨化因子和黏附分子的表達從而促進炎癥反應;自身抗體延緩NETs降解,導致NETs持續(xù)存在,加劇炎癥。NETs的形成過程必須依賴于ROS的生成和細胞自噬[101,102],接受mTOR信號通路調節(jié)[103,104];因此,可以推測ALA肯定的ROS清除能力和可能的mTOR信號通路調節(jié)功能將影響NETs的形成,進而減少自身抗原的形成,并且能夠保護血管內皮。
2.4NLRP3炎癥復合體 固有免疫細胞的NLRP3炎癥復合體是一種多蛋白復合體,由NOD樣受體3(NLRP3)、凋亡相關微粒蛋白(ASC)和半胱天冬酶- 1(caspase- 1)組成的,可活化caspase- 1,調控IL- 1β和IL- 18的加工和成熟,進而參與機體的固有免疫反應。線粒體源性的ROS是調控NLRP3炎性復合體活化的關鍵信號,線粒體外膜的電壓依賴的陰離子通道(VDAC,是mPTP的組成部分)參與調節(jié)NLRP3活性[105];線粒體受損積累產生過量ROS激活NLRP3炎癥復合體[106]。NLRP3炎癥復合體活化的IL- 1β上調炎癥細胞Th17分化的關鍵性轉錄因子RORγt 和IRF4的表達[107,108];Th17可分泌IL- 17和IL- 23,趨化中性粒細胞浸潤炎癥部位[109,110],中性粒細胞的NLRP3炎癥體進一步激活,加劇炎癥,形成正反饋。多項研究表明NLRP3炎癥復合體的激活與1型糖尿病[111]及某些自身免疫病發(fā)病相關。自身抗原U1核內小核糖核蛋白(U1- snRNP)在抗U1- snRNP抗體存在的情況下,激活人單核細胞內的NLRP3炎癥復合體,刺激IL- 1β的分泌[112]。原發(fā)性干燥綜合征患者唾液腺中NLRP3、ASC和caspase- 1表達上調,與患者唇腺活檢的灶性指數(shù)(Focus score)呈正相關[113]。SLE患者NETs形成增多與巨噬細胞的NLRP3炎性復合體激活密切相關,兩者組成正反饋網絡,加劇炎癥發(fā)生[114];SLE患者內皮祖細胞功能失調與NLRP3炎癥復合體激活相關[115]。因此,ALA可能通過調節(jié)線粒體功能和直接清除ROS這兩個途徑減少NLRP3炎癥復合體激活,從而調節(jié)固有免疫細胞的功能。
2.5Nrf2信號通路 Nrf2是細胞抗氧化還原的中樞調節(jié)者。通過與ARE的相互作用,Nrf2可誘導編碼抗氧化蛋白和Ⅱ型解毒酶的表達,在細胞的防御氧化應激保護中發(fā)揮重要作用[116]。有研究提示Nrf2缺陷小鼠會出現(xiàn)狼瘡樣改變[117];Nrf2基因多態(tài)性與幼年起病的狼瘡腎炎相關[118];Nrf2(- /- )小鼠出現(xiàn)自身免疫性溶血性貧血[119];此外,Nrf2缺陷可加重EAE病情[120],而激活Nrf2信號通路則可改善EAE的神經系統(tǒng)炎癥[121]。因此,作為Nrf2的激活劑[1],ALA可以通過該信號通路發(fā)揮免疫調節(jié)功能。
ALA是人體的自然成分,作為藥物在德國使用超過50年。在多項臨床研究中, ALA每日口服劑量從600~2 400 mg不等,與安慰劑相比未發(fā)現(xiàn)副作用;或者靜脈劑量600 mg/d連續(xù)使用3周沒有發(fā)現(xiàn)嚴重不良反應[1,2]。Sen等[122]通過對比證實ALA促進Fas介導的Jurkat細胞凋亡,對健康人外周血淋巴細胞的凋亡卻沒有影響[122]。這一實驗結果也提示ALA免疫調節(jié)的安全性。
綜上所述,機體自然成分ALA不僅具有強大的抗氧化能力,而且可通過直接或間接的方式廣泛地對固有免疫及適應性免疫系統(tǒng)進行調節(jié)。諸多實驗結果提示ALA可能用于自身免疫疾病的治療。目前免疫抑制劑是自身免疫性疾病治療的主要手段,雖能在一定程度上緩解疾病,但較高的復發(fā)率及較大的藥物副作用是臨床面臨的嚴峻問題。如果ALA的免疫調節(jié)作用能夠獲得進一步證實,那么對改善相關自身免疫性疾病的治療效果意義重大,因此非常值得進一步研究。
[1] Shay KP,Moreau RF,Smith EJ,etal.Alpha- lipoic acid as a dietary supplement:molecular mechanisms and therapeutic potential[J].Biochem Biophys Acta,2009,1790(10):1149- 1160.
[2] Goraca A,Huk- Kolega H,Piechota A,etal.Lipoic acid- biological activity and therapeutic potential[J].Pharmacol Rep,2011,63(4):849- 858.
[3] Rochette L,Ghibu S,Richard C,etal.Direct and indirect antioxidant properties of alpha- lipoic acid and therapeutic potential[J].Mol Nutr Food Res,2013,57(1):114- 125.
[4] Nathan C,Cunningham- Bussel A.Beyond oxidative stress:an immunologist′s guide to reactive oxygen species[J].Nat Rev Immunol,2013,13(5):349- 361.
[5] Perl A.Oxidative stress in the pathology and treatment of systemic lupus erythematosus[J].Nat Rev Rheumatol,2013,9(11):674- 686.
[6] Tsou PS,Balogh B,Pinney AJ,etal.Lipoic acid plays a role in sclerodema:insights obtained from scleroderma dermal fibroblasts[J].Arthritis Res Ther,2014,16(5):411- 424.
[7] Morini M,Roccatagliata L,Dell′Eva R,etal.Alpha- lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2004,148(1- 2):146- 153.
[8] Wang KC,Tsai CP,Lee CL,etal.alpha- Lipoic acid enhances endogenous peroxisome- proliferator- activated receptor- gamma to ameliorate experimental autoimmune encephalomyelitis in mice[J].Clin Sci(Lond),2013,125(7):329- 340.
[9] Schreibelt G,Musters RJ,Reijerkerk A,etal.Lipoic acid affects cellular migration into the central nervous system and stabilizes blood- brain barrier integrity[J].J Immunol,2006,177(4):2630- 2637.
[10] Cui J,Le G,Yang R,etal.Lipoic acid attenuates high fat diet- induced chronic oxidative stress and immunosuppression in mice jejunum:a microarray analysis[J].Cell Immunol,2009,260(1):44- 50.
[11] Schillace RV,Pisenti N,Pattamanuch N,etal.Lipoic acid stimulates cAMP production in T lymphocytes and NK cells[J].Biochem Biophys Res Commun,2007,354(1):259- 264.
[12] Kuklina EM,Shirshev SV.Role of cAMP- dependent signal transduction in the control of T lymphocyte activation[J].Biochemistry(Mosc),2000,65(6):629- 639.
[13] Milazzo L,Menzaghi B,Caramma I,etal.Effect of antioxidants on mitochondrial function in HIV- 1- related lipoatrophy:a pilot study[J].AIDS Res Hum Retroviruses,2010,26(11):1207- 1214.
[14] Marracci GH,Marquardt WE,Strehlow A,etal.Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56(Lck)[J].Biochem Biophys Res Commun,2006,344(3):963- 971.
[15] Kim GD,Kim TH,Jang AH,etal.alpha- Lipoic acid suppresses the development of DNFB- induced atopic dermatitis- like symptoms in NC/Nga mice[J].Exp Dermatol,2011,20(2):97- 101.
[16] Ying Z,Kherada N,Farrar B,etal.Lipoic acid effects on established atherosclerosis[J].Life Sci,2010,86(3- 4):95- 102.
[17] Chaudhary P,Marracci GH,Bourdette DN.Lipoic acid inhibits expression of ICAM- 1 and VCAM- 1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2006,175(1- 2):87- 96.
[18] Marracci GH,McKeon GP,Marquardt WE,etal.Alpha lipoic acid inhibits human T- cell migration:implications for multiple sclerosis[J].J Neurosci Res,2004,78(3):362- 370.
[19] Cui J,Xiao Y,Shi Y,etal.Comparative proteome analysis of splenic lymphocytes in long- term high- fat diet and dietary supplement with lipoic acid mice[J].Cell Immunol,2010,264(2):156- 162.
[20] Cui J,Xiao Y,Shi YH,etal.Lipoic acid attenuates high- fat- diet- induced oxidative stress and B- cell- related immune depression[J].Nutrition,2012,28(3):275- 280.
[21] Salinthone S,Schillace RV,Marracci GH,etal.Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells[J].J Neuroimmunol,2008,199(1- 2):46- 55.
[22] Salinthone S,Schillace RV,Tsang C,etal.Lipoic acid stimulates cAMP production via G protein- coupled receptor- dependent and- independent mechanisms[J].J Nutr Biochem,2011,22(7):681- 690.
[23] Joshi PC,Zhou X,Cuchens M,etal.Prostaglandin E2 suppressed IL- 15- mediated human NK cell function through down- regulation of common gamma- chain[J].J Immunol,2001,166(2):885- 891.
[24] van der Goes A,Brouwer J,Hoekstra K,etal.Reactive oxygen species are required for the phagocytosis of myelin by macrophages[J].J Neuroimmunol,1998,92(1- 2):67- 75.
[25] Deiuliis JA,Kampfrath T,Ying Z,etal.Lipoic acid attenuates innate immune infiltration and activation in the visceral adipose tissue of obese insulin resistant mice[J].Lipids,2011,46(11):1021- 1032.
[26] Ogborne RM,Rushworth SA,O′Connell MA.Alpha- lipoic acid- induced heme oxygenase- 1 expression is mediated by nuclear factor erythroid 2- related factor 2 and p38 mitogen- activated protein kinase in human monocytic cells[J].Arterioscler Thromb Vasc Biol,2005,25(10):2100- 2105.
[27] Perl A,Gergely P Jr,Nagy G,etal.Mitochondrial hyperpolarization:a checkpoint of T- cell life,death and autoimmunity[J].Trends Immunol,2004,25(7):360- 367.
[28] Siemen D,Ziemer M.What is the nature of the mitochondrial permeability transition pore and what is it not?[J].IUBMB Life,2013,65(3):255- 262.
[29] Nagy G,Koncz A,Fernandez D,etal.Nitric oxide,mitochondrial hyperpolarization,and T cell activation[J].Free Radic Biol Med,2007,42(11):1625- 1631.
[30] Sauter B,Albert ML,Francisco L,etal.Consequences of cell death:exposure to necrotic tumor cells,but not primary tissue cells or apoptotic cells,induces the maturation of immunostimulatory dendritic cells[J].J Exp Med,2000,191(3):423- 434.
[31] Gergely P Jr,Niland B,Gonchoroff N,etal.Persistent mitochondrial hyperpolarization,increased reactive oxygen intermediate production,and cytoplasmic alkalinization characterize altered IL- 10 signaling in patients with systemic lupus erythematosus[J].J Immunol,2002,169(2):1092- 1101.
[32] Emlen W,Niebur J,Kadera R.Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus[J].J Immunol,1994,152(7):3685- 3692.
[33] Casciola- Rosen LA,Anhalt G,Rosen A.Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes[J].J Exp Med,1994,179(4):1317- 1330.
[34] Georgescu L,Vakkalanka RK,Elkon KB,etal.Interleukin- 10 promotes activation- induced cell death of SLE lymphocytes mediated by Fas ligand[J].J Clin Invest,1997,100(10):2622- 2633.
[35] Peng H,Wang W,Zhou M,etal.Role of interleukin- 10 and interleukin- 10 receptor in systemic lupus erythematosus[J].Clin Rheumatol,2013,32(9):1255- 1266.
[36] Moini H,Packer L,Saris NE.Antioxidant and prooxidant activities of alpha- lipoic acid and dihydrolipoic acid[J].Toxicol Appl Pharmacol,2002,182(1):84- 90.
[37] Laplante M,Sabatini DM.mTOR signaling at a glance[J].J Cell Sci,2009,122(Pt 20):3589- 3594.
[38] Cunningham JT,Rodgers JT,Arlow DH,etal.mTOR controls mitochondrial oxidative function through a YY1- PGC- 1alpha transcriptional complex[J].Nature,2007,450(7170):736- 740.
[39] Desai BN,Myers BR,Schreiber SL.FKBP12- rapamycin- associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction[J].Proc Natl Acad Sci U S A,2002,99(7):4319- 4324.
[40] Schieke SM,Phillips D,McCoy JP Jr,etal.The mammalian target of rapamycin(mTOR)pathway regulates mitochondrial oxygen consumption and oxidative capacity[J].J Biol Chem,2006,281(37):27643- 27652.
[41] Yang H,Wang X,Zhang Y,etal.Modulation of TSC- mTOR signaling on immune cells in immunity and autoimmunity[J].J Cell Physiol,2014,229(1):17- 26.
[42] Battaglia M,Stabilini A,Roncarolo MG.Rapamycin selectively expands CD4+CD25+FoxP3+regulatory T cells[J].Blood,2005,105(12):4743- 4748.
[43] Kopf H,de la Rosa GM,Howard OM,etal.Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+T regulatory cells[J].Int Immunopharmacol,2007,7(13):1819- 1824.
[44] Monti P,Scirpoli M,Maffi P,etal.Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+regulatory T- cells[J].Diabetes,2008,57(9):2341- 2347.
[45] Long SA,Rieck M,Sanda S,etal.Rapamycin/IL- 2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta- cell function[J].Diabetes,2012,61(9):2340- 2348.
[46] Dello Russo C,Lisi L,Feinstein DL,etal.mTOR kinase,a key player in the regulation of glial functions:relevance for the therapy of multiple sclerosis[J].Glia,2013,61(3):301- 311.
[47] Fernandez D,Perl A.mTOR signaling:a central pathway to pathogenesis in systemic lupus erythematosus?[J].Discov Med,2010,9(46):173- 178.
[48] Cejka D,Hayer S,Niederreiter B,etal.Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis[J].Arthritis Rheum,2010,62(8):2294- 2302.
[49] Battaglia M,Stabilini A,Draghici E,etal.Induction of tolerance in type 1 diabetes via both CD4+CD25+T regulatory cells and T regulatory type 1 cells[J].Diabetes,2006,55(6):1571- 1580.
[50] Battaglia M,Stabilini A,Migliavacca B,etal.Rapamycin promotes expansion of functional CD4+CD25+FOXP3+regulatory T cells of both healthy subjects and type 1 diabetic patients[J].J Immunol,2006,177(12):8338- 8347.
[51] Fernandez DR,Telarico T,Bonilla E,etal.Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES- 1/Rab4- regulated lysosomal degradation[J].J Immunol,2009,182(4):2063- 2073.
[52] Lai ZW,Borsuk R,Shadakshari A,etal.Mechanistic target of rapamycin activation triggers IL- 4 production and necrotic death of double- negative T cells in patients with systemic lupus erythematosus[J].J Immunol,2013,191(5):2236- 2246.
[53] Crispin JC,Martinez A,Alcocer- Varela J.Quantification of regulatory T cells in patients with systemic lupus erythematosus[J].J Autoimmun,2003,21(3):273- 276.
[54] Valencia X,Yarboro C,Illei G,etal.Deficient CD4+CD25highT regulatory cell function in patients with active systemic lupus erythematosus[J].J Immunol,2007,178(4):2579- 2588.
[55] Kessel A,Haj T,Peri R,etal.Human CD19(+)CD25(high)B regulatory cells suppress proliferation of CD4(+)T cells and enhance Foxp3 and CTLA- 4 expression in T- regulatory cells[J].Autoimmun Rev,2012,11(9):670- 677.
[56] Fernandez D,Bonilla E,Mirza N,etal.Rapamycin reduces disease activity and normalizes T cell activation- induced calcium fluxing in patients with systemic lupus erythematosus[J].Arthritis Rheum,2006,54(9):2983- 2988.
[57] Mitra A,Raychaudhuri SK,Raychaudhuri SP.IL- 22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade[J].Cytokine,2012,60(1):38- 42.
[58] Laragione T,Gulko PS.mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis[J].Mol Med,2010,16(9- 10):352- 358.
[59] Bruyn GA,Tate G,Caeiro F,etal.Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate:a 3- month,double- blind,randomised,placebo- controlled,parallel- group,proof- of- concept study[J].Ann Rheum Dis,2008,67(8):1090- 1095.
[60] Lee CK,Lee EY,Kim YG,etal.Alpha- lipoic acid inhibits TNF- α induced NF- kappa B activation through blocking of MEKK1- MKK4- IKK signaling cascades[J].Int Immunopharmacol,2008,8(2):362- 370.
[61] Ying Z,Kampfrath T,Sun Q,etal.Evidence that alpha- lipoic acid inhibits NF- kappaB activation independent of its antioxidant function[J].Inflamm Res,2011,60(3):219- 225.
[62] Lee DF,Kuo HP,Chen CT,etal.IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance[J].Int J Mol Med,2008,22(5):633- 638.
[63] Lee DF,Kuo HP,Chen CT,etal.IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway[J].Cell,2007,130(3):440- 455.
[64] Lee WR,Kim A,Kim KS,etal.Alpha- lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway[J].Mol Biol Rep,2012,39(6):6857- 6866.
[65] Laplante MA,Wu R,El Midaoui A,etal.NAD(P)H oxidase activation by angiotensin II is dependent on p42/44 ERK- MAPK pathway activation in rat′s vascular smooth muscle cells[J].J Hypertens,2003,21(5):927- 936.
[66] Cohen MP,Shea E,Chen S,etal.Glycated albumin increases oxidative stress,activates NF- kappa B and extracellular signal- regulated kinase(ERK),and stimulates ERK- dependent transforming growth factor- beta 1 production in macrophage RAW cells[J].J Lab Clin Med,2003,141(4):242- 249.
[67] Grewal JS,Mukhin YV,Garnovskaya MN,etal.Serotonin 5- HT2A receptor induces TGF- beta1 expression in mesangial cells via ERK:proliferative and fibrotic signals[J].Am J Physiol,1999,276(6 Pt 2):F922- 930.
[68] Budisavljevic MN,Hodge L,Barber K,etal.Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis[J].Am J Physiol Renal Physiol,2003,285(6):F1138- 1148.
[69] Foo NP,Lin SH,Lee YH,etal.alpha- Lipoic acid inhibits liver fibrosis through the attenuation of ROS- triggered signaling in hepatic stellate cells activated by PDGF and TGF- beta[J].Toxicology,2011,282(1- 2):39- 46.
[70] Shi SS,Day RM,Halpner AD,etal.Homocysteine and alpha- lipoic acid regulate p44/42 MAP kinase phosphorylation in NIH/3T3 cells[J].Antioxid Redox Signal,1999,1(1):123- 128.
[71] Suzuki YJ,Shi SS,Day RM,etal.Differential regulation of MAP kinase signaling by pro- and antioxidant biothiols[J].Ann N Y Acad Sci,2000,899:159- 167.
[72] Lee BW,Kwon SJ,Chae HY,etal.Dose- related cytoprotective effect of alpha- lipoic acid on hydrogen peroxide- induced oxidative stress to pancreatic beta cells[J].Free Radic Res,2009,43(1):68- 77.
[73] Ishiki M,Nishida Y,Ishibashi H,etal.Impact of divergent effects of astaxanthin on insulin signaling in L6 cells[J].Endocrinology,2013,154(8):2600- 2612.
[74] Derosa G,D′Angelo A,Romano D,etal.A clinical trial about a food supplement containing α- lipoic acid on oxidative stress markers in type 2 diabetic patients[J].Int J Mol Sci,2016,17(11):1802.
[75] Dozio E,Ruscica M,Passafaro L,etal.The natural antioxidant alpha- lipoic acid induces p27(Kip1)- dependent cell cycle arrest and apoptosis in MCF- 7 human breast cancer cells[J].Eur J Pharmacol,2010,641(1):29- 34.
[76] Shi DY,Liu HL,Stern JS,etal.Alpha- lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway[J].FEBS Lett,2008,582(12):1667- 1671.
[77] Prieto- Hontoria PL,Perez- Matute P,Fernandez- Galilea M,etal.Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes[J].Mol Nutr Food Res,2011,55(7):1059- 1069.
[78] Bitar MS,Wahid S,Pilcher CW,etal.Alpha- lipoic acid mitigates insulin resistance in Goto- Kakizaki rats[J].Horm Metab Res,2004,36(8):542- 549.
[79] Lee SJ,Kim SH,Kang JG,etal.Alpha- lipoic acid inhibits endoplasmic reticulum stress- induced cell death through PI3K/Akt signaling pathway in FRTL5 thyroid cells[J].Horm Metab Res,2011,43(7):445- 451.
[80] Wang X,Zhang X,Cheng Y,etal.Alpha- lipoic acid prevents bupivacaine- induced neuron injury in vitro through a PI3K/Akt- dependent mechanism[J].Neurotoxicology,2010,31(1):101- 112.
[81] Deng C,Sun Z,Tong G,etal.alpha- Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway[J].PLoS One,2013,8(3):e58371.
[82] Jiang S,Zhu W,Li C,etal.alpha- Lipoic acid attenuates LPS- induced cardiac dysfunction through a PI3K/Akt- dependent mechanism[J].Int Immunopharmacol,2013,16(1):100- 107.
[83] Zhang WJ,Wei H,Hagen T,etal.Alpha- lipoic acid attenuates LPS- induced inflammatory responses by activating the phosphoinositide 3- kinase/Akt signaling pathway[J].Proc Natl Acad Sci U S A,2007,104(10):4077- 4082.
[84] Bitar MS,Ayed AK,Abdel- Halim SM,etal.Inflammation and apoptosis in aortic tissues of aged type II diabetes:amelioration with alpha- lipoic acid through phosphatidylinositol 3- kinase/Akt- dependent mechanism[J].Life Sci,2010,86(23- 24):844- 853.
[85] Prieto- Hontoria PL,Perez- Matute P,Fernandez- Galilea M,etal.Effects of lipoic acid on AMPK and adiponectin in adipose tissue of low- and high- fat- fed rats[J].Eur J Nutr,2013,52(2):779- 787.
[86] Lee JE,Yi CO,Jeon BT,etal.alpha- Lipoic acid attenuates cardiac fibrosis in Otsuka Long- Evans Tokushima Fatty rats[J].Cardiovasc Diabetol,2012,11:111.
[87] Cheng PY,Lee YM,Chung MT,etal.Role of AMP- activated protein kinase in alpha- lipoic acid- induced vasodilatation in spontaneously hypertensive rats[J].Am J Hypertens,2012,25(2):152- 158.
[88] Kuo YT,Lin TH,Chen WL,etal.Alpha- lipoic acid induces adipose triglyceride lipase expression and decreases intracellular lipid accumulation in HepG2 cells[J].Eur J Pharmacol,2012,692(1- 3):10- 18.
[89] Park KG,Min AK,Koh EH,etal.Alpha- lipoic acid decreases hepatic lipogenesis through adenosine monophosphate- activated protein kinase(AMPK)- dependent and AMPK- independent pathways[J].Hepatology,2008,48(5):1477- 1486.
[90] Chen WL,Kang CH,Wang SG,etal.alpha- Lipoic acid regulates lipid metabolism through induction of sirtuin 1(SIRT1)and activation of AMP- activated protein kinase[J].Diabetologia,2012,55(6):1824- 1835.
[91] Saha AK,Xu XJ,Lawson E,etal.Downregulation of AMPK accompanies leucine- and glucose- induced increases in protein synthesis and insulin resistance in rat skeletal muscle[J].Diabetes,2010,59(10):2426- 2434.
[92] Saha AK,Xu XJ,Balon TW,etal.Insulin resistance due to nutrient excess:is it a consequence of AMPK downregulation?[J].Cell Cycle,2011,10(20):3447- 3451.
[93] Lee WJ,Song KH,Koh EH,etal.Alpha- lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle[J].Biochem Biophys Res Commun,2005,332(3):885- 891.
[94] Targonsky ED,Dai F,Koshkin V,etal.alpha- lipoic acid regulates AMP- activated protein kinase and inhibits insulin secretion from beta cells[J].Diabetologia,2006,49(7):1587- 1598.
[95] Kim MS,Park JY,Namkoong C,etal.Anti- obesity effects of alpha- lipoic acid mediated by suppression of hypothalamic AMP- activated protein kinase[J].Nat Med,2004,10(7):727- 733.
[96] Lee WJ,Koh EH,Won JC,etal.Obesity:the role of hypothalamic AMP- activated protein kinase in body weight regulation[J].Int J Biochem Cell Biol,2005,37(11):2254- 2259.
[97] Kim MS,Lee KU.Role of hypothalamic 5′- AMP- activated protein kinase in the regulation of food intake and energy homeostasis[J].J Mol Med(Berl),2005,83(7):514- 520.
[98] Yipp BG,Kubes P.NETosis:how vital is it?[J].Blood,2013,122(16):2784- 2794.
[99] Fuchs TA,Brill A,Duerschmied D,etal.Extracellular DNA traps promote thrombosis[J].Proc Natl Acad Sci U S A,2010,107(36):15880- 15885.
[100] Darrah E,Andrade F.NETs:the missing link between cell death and systemic autoimmune diseases?[J].Front Immunol,2013,3:428.
[101] Hahn S,Giaglis S,Chowdhury CS,etal.Modulation of neutrophil NETosis:interplay between infectious agents and underlying host physiology[J].Semin Immunopathol,2013,35(4):439- 453.
[102] Remijsen Q,Vanden Berghe T,Wirawan E,etal.Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J].Cell Res,2011,21(2):290- 304.
[103] Itakura A,McCarty OJ.Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J].Am J Physiol Cell Physiol,2013,305(3):C348- 354.
[104] McInturff AM,Cody MJ,Elliott EA,etal.Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia- inducible factor 1 alpha[J].Blood,2012,120(15):3118- 3125.
[105] Tschopp J,Schroder K.NLRP3 inflammasome activation:The convergence of multiple signalling pathways on ROS production?[J].Nat Rev Immunol,2010,10(3):210- 215.
[106] Zhou R,Yazdi AS,Menu P,etal.A role for mitochondria in NLRP3 inflammasome activation[J].Nature,2011,469(7329):221- 225.
[107] Chung Y,Chang SH,Martinez GJ,etal.Critical regulation of early Th17 cell differentiation by interleukin- 1 signaling[J].Immunity,2009,30(4):576- 587.
[108] Brustle A,Heink S,Huber M,etal.The development of inflammatory T(H)- 17 cells requires interferon- regulatory factor 4[J].Nat Immunol,2007,8(9):958- 966.
[109] Steinman L.A rush to judgment on Th17[J].J Exp Med,2008,205(7):1517- 1522.
[110] Kroenke MA,Carlson TJ,Andjelkovic AV,etal.IL- 12- and IL- 23- modulated T cells induce distinct types of EAE based on histology,CNS chemokine profile,and response to cytokine inhibition[J].J Exp Med,2008,205(7):1535- 1541.
[111] Grishman EK,White PC,Savani RC.Toll- like receptors,the NLRP3 inflammasome,and interleukin- 1beta in the development and progression of type 1 diabetes[J].Pediatr Res,2012,71(6):626- 632.
[112] Shin MS,Kang Y,Lee N,etal.U1- small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes[J].J Immunol,2012,188(10):4769- 4775.
[113] Baldini C,Rossi C,Ferro F,etal.The P2X7 receptor- inflammasome complex has a role in modulating the inflammatory response in primary Sjogren′s syndrome[J].J Intern Med,2013,274(5):480- 489.
[114] Kahlenberg JM,Carmona- Rivera C,Smith CK,etal.Neutrophil extracellular trap- associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages[J].J Immunol,2013,190(3):1217- 1226.
[115] Kahlenberg JM,Thacker SG,Berthier CC,etal.Inflammasome activation of IL- 18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus[J].J Immunol,2011,187(11):6143- 6156.
[116] Ma Q.Role of nrf2 in oxidative stress and toxicity[J].Annu Rev Pharmacol Toxicol,2013,53:401- 426.
[117] Yoh K,Itoh K,Enomoto A,etal.Nrf2- deficient female mice develop lupus- like autoimmune nephritis[J].Kidney Int,2001,60(4):1343- 1353.
[118] Cordova EJ,Velazquez- Cruz R,Centeno F,etal.The NRF2 gene variant,- 653G/A,is associated with nephritis in childhood- onset systemic lupus erythematosus[J].Lupus,2010,19(10):1237- 1242.
[119] Lee JM,Chan K,Kan YW,etal.Targeted disruption of Nrf2 causes regenerative immune- mediated hemolytic anemia[J].Proc Natl Acad Sci U S A,2004,101(26):9751- 9756.
[120] Johnson DA,Amirahmadi S,Ward C,etal.The absence of the pro- antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis[J].Toxicol Sci,2010,114(2):237- 246.
[121] Pareek TK,Belkadi A,Kesavapany S,etal.Triterpenoid modulation of IL- 17 and Nrf- 2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis[J].Sci Rep,2011,1:201.
[122] Sen CK,Sashwati R,Packer L.Fas mediated apoptosis of human Jurkat T- cells:intracellular events and potentiation by redox- active alpha- lipoic acid[J].Cell Death Differ,1999,6(5):481- 491.