• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      持續(xù)性低氧對(duì)糖代謝的調(diào)節(jié)機(jī)制的研究進(jìn)展

      2018-01-24 07:09:06龔俊艷趙成玉
      中國全科醫(yī)學(xué) 2018年12期
      關(guān)鍵詞:糖酵解低氧激酶

      龔俊艷,趙成玉

      低氧是指動(dòng)脈血中可利用氧減少,低于細(xì)胞或組織需要,可見于各種生理情況(適應(yīng)高海拔﹑胚胎發(fā)育﹑傷口愈合)和病理情況〔慢性阻塞性肺疾?。–OPD)﹑阻塞性睡眠呼吸暫停低通氣綜合征(OSAHS)﹑貧血﹑癌癥﹑慢性心力衰竭〕[1-4]。相較于相同量的氧分子,葡萄糖﹑脂類等經(jīng)過代謝后產(chǎn)生三磷酸腺苷(ATP)的量和速度存在較大差異,而且葡萄糖還可通過無氧糖酵解產(chǎn)能,因此,低氧時(shí)葡萄糖是十分理想的能源物質(zhì)。在低氧條件下,為了適應(yīng)環(huán)境,葡萄糖的有氧代謝通路受阻,無氧代謝途徑增強(qiáng),進(jìn)而影響機(jī)體的血糖水平。根據(jù)低氧發(fā)生的形式和低氧連續(xù)與否,可分為間歇性低氧和持續(xù)性低氧。本文對(duì)國內(nèi)外關(guān)于持續(xù)性低氧對(duì)于糖代謝調(diào)節(jié)機(jī)制的研究進(jìn)展做一綜述,以期為高原糖代謝異?;颊叩闹委熖峁┧悸贰?/p>

      1 持續(xù)性低氧對(duì)葡萄糖的影響

      多項(xiàng)研究顯示,與海平面地區(qū)居民比較,高海拔地區(qū)居民的血糖﹑胰島素水平相對(duì)較低,且2型糖尿病的發(fā)病率較低[5-9]。對(duì)于這種變化發(fā)生的機(jī)制目前尚未完全闡明,低氧對(duì)葡萄糖攝取﹑糖酵解及糖異生的影響可能參與其中,包括低氧增加細(xì)胞內(nèi)葡萄糖攝取﹑糖酵解﹑與糖元生成相關(guān)的低氧誘導(dǎo)因子(HIF)-1表達(dá)[10-12],減少與HIF-2表達(dá)增加有關(guān)的肝臟糖異生[13-14]。

      1.1 持續(xù)性低氧對(duì)葡萄糖轉(zhuǎn)移的影響 葡萄糖是水溶性物質(zhì),在通過細(xì)胞脂質(zhì)雙分子層時(shí)需要借助葡萄糖轉(zhuǎn)運(yùn)體(GLUT)介導(dǎo)進(jìn)入細(xì)胞內(nèi),因此GLUT的量直接影響葡萄糖的跨膜轉(zhuǎn)運(yùn)。目前已知的GLUT有13個(gè),其中GLUT-1和GLUT-4最具代表性[15],GLUT-1廣泛分布于全身各組織中,是葡萄糖穿過細(xì)胞膜進(jìn)入細(xì)胞最重要的載體,GLUT-4主要分布于胰島素敏感的組織中,如骨骼肌﹑心肌和脂肪組織中[16]。近年來研究發(fā)現(xiàn)GLUT-2在糖代謝過程中也發(fā)揮著重要作用,其主要分布于肝臟和胰腺β細(xì)胞[9],在肝細(xì)胞中GLUT-2將血糖轉(zhuǎn)運(yùn)至細(xì)胞內(nèi)進(jìn)行糖酵解及糖元合成,其表達(dá)增強(qiáng)能改善肝臟對(duì)葡萄糖的攝取和利用[17],在胰腺β細(xì)胞中GLUT-2可使細(xì)胞內(nèi)外血糖快速達(dá)到平衡,使胰腺β細(xì)胞感受血糖的變化,進(jìn)而調(diào)節(jié)β細(xì)胞胰島素的分泌。與常氧組相比,脂肪細(xì)胞暴露于低氧環(huán)境(1% O2)24 h后會(huì)導(dǎo)致GLUT-1﹑GLUT-3﹑GLUT-5的mRNA水平增加,而GLUT-4﹑GLUT-10﹑GLUT-12 mRNA水平?jīng)]有變化;GLUT-1 mRNA水平增加的同時(shí)GLUT-1水平也增加,而GLUT-3﹑GLUT-5水平?jīng)]有變化[18]。L6肌細(xì)胞低氧環(huán)境下(3% O2)培養(yǎng)48 h后發(fā)現(xiàn)葡萄糖攝取量增加,但GLUT-4水平?jīng)]有發(fā)生變化[19]。低氧環(huán)境下(1% O2)培養(yǎng)正常大鼠肝細(xì)胞,發(fā)現(xiàn)GLUT-1水平增加,并隨缺氧時(shí)間的延長而愈加明顯,8 h達(dá)到高峰,16 h仍保持較高水平[15]。分別將小鼠和大鼠暴露在低壓氧艙(模擬海拔4 000 m 和5 000 m) 2 周和30 d后,GLUT-4 水平與常氧對(duì)照組相比顯著增加[20-21]。大鼠暴露在高原環(huán)境后,肝臟和胰腺中GLUT-2 mRNA水平明顯升高,30 d升至最高點(diǎn),隨著低氧時(shí)間延長其水平逐漸下降,而90 d再次升高[9]。黑鱸魚在急性(4 h)及慢性(15 d)低氧條件下肝臟中GLUT-2 mRNA水平明顯增加[22]??梢?,在急性低氧條件下(16﹑24﹑48 h)GLUT-1水平明顯增加,在慢性低氧條件下(2周﹑30 d)GLUT-4水平明顯升高,而無論在急性(4 h)或慢性(15 d﹑30 d)低氧條件下,GLUT-2水平均增加。GLUT水平增加可加速將血糖轉(zhuǎn)運(yùn)入細(xì)胞內(nèi)。

      1.2 持續(xù)性低氧對(duì)胰島素-胰島素信號(hào)的影響 胰島素在血糖調(diào)節(jié)過程中起到了不可或缺的作用,其可促進(jìn)葡萄糖的吸收和外周組織對(duì)葡萄糖的利用。胰島素主要通過胰島素-胰島素受體(IR)-胰島素受體底物(IRS)-磷脂酰肌醇3-激酶(PI3K)-蛋白激酶B(AKT)信號(hào)途徑發(fā)揮其調(diào)控血糖的功能。胰島素與骨骼肌細(xì)胞表面的IR結(jié)合,引起IRS-1磷酸化和PI3K激活,然后激活A(yù)KT,后者可促進(jìn)GLUT-4易位到細(xì)胞膜進(jìn)而使葡萄糖轉(zhuǎn)運(yùn)能力增強(qiáng)[9,23]。此外,肝臟中的胰島素刺激IRS聚集到IR,隨后激活A(yù)KT﹑糖元合成酶激酶3β(GSK3β)和mTOR,協(xié)同抑制肝臟糖異生,誘導(dǎo)糖元生成和脂肪生成[24-25]。因此胰島素及IR的量既可影響GLUT-4的易位,又可影響糖元合成而影響糖代謝。LINDG?RDE等[5]﹑BARACCO等[6]對(duì)當(dāng)?shù)孛佤斎说恼{(diào)查發(fā)現(xiàn),高原慢性缺氧與胰島素水平降低有關(guān)。相比于常氧對(duì)照組,暴露于低氧4周的大鼠,不僅血糖降低,而且胰島素水平也降低,同時(shí)胰島素敏感性增加[8]。

      2 持續(xù)性低氧對(duì)糖代謝的調(diào)節(jié)機(jī)制

      人類對(duì)于高原低氧環(huán)境的適應(yīng)均有一定的遺傳基礎(chǔ)[26-27],其中低氧誘導(dǎo)因子(HIFs)是多細(xì)胞動(dòng)物對(duì)低氧應(yīng)激的主要轉(zhuǎn)錄調(diào)節(jié)因子[28-30]。HIFs包括HIF-1﹑HIF-2和HIF-3,均有一個(gè)不同的α亞單位和相同的β亞單位構(gòu)成的異源二聚體[31]。這兩個(gè)亞單位均屬于PAS家族(PER﹑AHR﹑ARNT和SIM家族)中的堿性螺旋-環(huán)-螺旋(bHLH)蛋白;然而,其對(duì)氧氣的反應(yīng)卻不同:α亞單位嚴(yán)格受到氧氣濃度調(diào)控,是HIFs的調(diào)節(jié)亞基也是功能亞基,而β亞單位則持續(xù)性表達(dá),是HIFs的結(jié)構(gòu)亞基[32]。目前對(duì)HIF-1和HIF-2的研究較多,各自調(diào)節(jié)不同的靶基因[33]。HIF-3α由于缺乏C-末端的反式激活區(qū)域和一些HIF-3α的剪接體變異而使其沒有HIF-1α和HIF-2α的功能[34]。作為“能量感受器”的腺苷酸活化蛋白激酶(AMPK)被激活后能夠減少肝糖元的輸出,增加肌糖元攝?。?5]。

      2.1 HIF-1α通路 HIF-1是 1992年 SEMENZA等[36]在研究缺氧誘導(dǎo)的促紅細(xì)胞生成素(EPO)基因表達(dá)時(shí)發(fā)現(xiàn)的,并于1995年克隆成功,其是介導(dǎo)細(xì)胞對(duì)缺氧微環(huán)境進(jìn)行適應(yīng)性反應(yīng)的主要轉(zhuǎn)導(dǎo)調(diào)控因子[37]。在常氧條件下,HIF-1α可以被持續(xù)地合成和降解,t1/2<5 min[38]。在缺氧條件下細(xì)胞核內(nèi)HIF-1α聚集,并與HIF-1β發(fā)生二聚化,形成穩(wěn)定的HIF-1α,因此HIF-1α在多數(shù)的缺氧組織中高表達(dá)。目前已發(fā)現(xiàn)100多種HIF-1α下游的靶基因,包括GLUT(如GLUT-1和GLUT-3)[39-42]和許多糖酵解酶,如己糖激酶Ⅱ(HK Ⅱ)﹑6-磷酸果糖激酶﹑丙酮酸脫氫酶激酶Ⅰ(PDK1)﹑乳酸脫氫酶(LDHA)和丙酮酸激酶(PK)M2[39,43-44]。PKM1和 PKM2均是HIF-1的靶基因,同時(shí)PKM2也可作為HIF-1的輔助激活劑激活HIF-1α,通過正反饋?zhàn)饔眉訌?qiáng)葡萄糖攝取和糖酵解進(jìn)而降低血糖[45]。HIF-1可直接與磷酸烯醇式丙酮酸羧激酶(PEPCK)基因的啟動(dòng)子結(jié)合激活PEPCK進(jìn)而促進(jìn)肝糖元產(chǎn)生[46]。PDK使丙酮酸脫氫酶(PDH)失活,使丙酮酸轉(zhuǎn)化為乳酸而不是進(jìn)入到三羧酸循環(huán)中。HIF-1也可通過誘導(dǎo)糖元合成酶-1(GYS-1)[47-48]和蛋白質(zhì)磷酸酶1調(diào)節(jié)亞單位3c(PPP1RsC)[49]促進(jìn)糖元生成,或增加肝臟和其他組織中糖元的產(chǎn)量,這樣可降低血糖[50]。

      2.2 HIF-2α通路 HIF-2與HIF-1在結(jié)構(gòu)上有48%的相似性[51-53],但是其功能并不完全相同。TIAN等[52]在1997年克隆出 HIF-2。YI等[54]和 BEALL等[55]指出 HIF-2α 為藏族人受到低氧正選擇的基因,HIF-2α基因也是HIF通路中的重要基因。HIF-1α可能主要參與急性低氧反應(yīng)的應(yīng)答,而HIF-2α主要在慢性低氧中發(fā)揮作用[56-57]。HIF-1α在能量調(diào)節(jié)和葡萄糖穩(wěn)態(tài)中的作用已得到深入研究,然而,對(duì)于HIF-2α的功能目前知道的卻很少。同HIF-1α一樣,HIF-2α也會(huì)增加低氧反應(yīng)基因的表達(dá)[51,58]。雖然其有共同的靶基因(如GLUT-1和血管內(nèi)皮生長因子),但HIF-2也有自己獨(dú)特的靶基因[56,59]。過去認(rèn)為,HIF-2α的活性僅限于內(nèi)皮細(xì)胞,但是近年來的研究發(fā)現(xiàn)肝細(xì)胞﹑胰腺間質(zhì)細(xì)胞﹑腎成纖維細(xì)胞及心肌細(xì)胞中均有HIF-2α的表達(dá)[31,60]。肝臟特異性激活HIF-2α,而非HIF-1α,通過直接和間接作用誘導(dǎo)IRS2,足以放大肝臟胰島素信號(hào)通路[61-63]。肝臟缺氧時(shí),會(huì)觸發(fā)HIF-2α/IRS2軸,依次激活A(yù)KT﹑GSK3β和mTOR[64]。HIF-2α → IRS2→ AKT→ GSK3β 信號(hào)通路可促進(jìn)糖元合成﹑葡萄糖的吸收及糖酵解[64-66]。AKT是一種絲氨酸/酪氨酸激酶,被激活的AKT從質(zhì)膜上釋放出來,轉(zhuǎn)移到細(xì)胞質(zhì)﹑線粒體和細(xì)胞核內(nèi),磷酸化各種底物,包括:GSK3β﹑叉頭框蛋白O1(FOXO1)和蛋白激酶B底物160(AS160),其分別調(diào)節(jié)糖元合成﹑糖異生和葡萄糖吸收。同時(shí),活化的AKT抑制FOXO1﹑PEPCK和G6pc的表達(dá)及糖異生和肝糖元輸出[64]。AKT主要通過調(diào)節(jié)HK Ⅱ[67-68]﹑6-磷酸果糖激酶 -2(PFK2)[69]和 GLUT-1 而發(fā)揮作用[68,70]。此外,肝臟中的胰島素刺激使IRS聚集到IR,隨后激活A(yù)KT﹑GSK3β和mTOR,協(xié)同抑制肝臟糖異生,誘導(dǎo)糖元生成和脂肪生成[24-25]。綜上所述,HIF-1α促進(jìn)糖酵解,而HIF-2α抑制糖異生,從而降低血糖。

      2.3 AMPK通路 AMPK是一種保守的絲氨酸/蘇氨酸蛋白激酶,其通過感受細(xì)胞能量狀態(tài)來維持細(xì)胞內(nèi)ATP生成和消耗平衡,即能量穩(wěn)態(tài)[71]。當(dāng)AMP/ATP或ADP/ATP或Ca2+增加時(shí)AMPK即可被激活[72],活化的AMPK將使代謝過程從合成代謝轉(zhuǎn)變?yōu)榉纸獯x[72-73]。AMPK由催化亞基α和調(diào)節(jié)亞基β﹑γ組成,因?yàn)槊糠N亞基均存在2~3種亞型使得AMPK的活性調(diào)節(jié)在不同組織及細(xì)胞中呈現(xiàn)出多樣性。在脂肪組織和骨骼肌,AMPK可促進(jìn)GLUT-4易位到細(xì)胞膜加快葡萄糖的跨膜轉(zhuǎn)運(yùn)[74]。但是,AMPK促進(jìn)GLUT-4易位到胞膜上的信號(hào)機(jī)制不同于胰島素信號(hào)通路[75],可能與AS160以及其同系物TBC1D1有關(guān),AMPK磷酸化激活A(yù)S160,促進(jìn)GLUT-4從胞質(zhì)囊泡向細(xì)胞膜的轉(zhuǎn)運(yùn)[76-78],TBC1D1的作用機(jī)制與此類似[79-80]。在肝臟,AMPK通過減少糖異生的關(guān)鍵酶(PEPCK和葡萄糖-6-磷酸酶)來維持血糖穩(wěn)定[81-82]。此外,AMPK活化劑AICAR可以加強(qiáng)空腸內(nèi)依賴GLUT-2的葡萄糖攝?。?3-84]。AMPK通過激活PFK-2,使2,6-二磷酸果糖合成增加,進(jìn)而激活6-磷酸果糖激酶-1(PFK-1),促進(jìn)糖酵解[85]?;罨腁MPK也可通過磷酸化抑制糖元合成酶,減少糖元合成[86]??偟膩碚f,在缺氧條件下,在肝臟中AMPK通過磷酸化作用抑制糖元合成酶,減少肝糖元合成;在骨骼肌收縮過程中AMPK被激活,導(dǎo)致GLUT-4從細(xì)胞內(nèi)轉(zhuǎn)運(yùn)到細(xì)胞膜上,從而增強(qiáng)了對(duì)葡萄糖的轉(zhuǎn)運(yùn)能力,增加骨骼肌中糖元含量[87],最終降低血糖。

      綜上所述,在高原慢性持續(xù)性低氧環(huán)境下,機(jī)體血糖和胰島素水平均是降低的,持續(xù)性低氧對(duì)血糖的影響是復(fù)雜的﹑多因素的,HIF-1α通過影響GLUT和糖酵解酶從而促進(jìn)葡萄糖轉(zhuǎn)運(yùn)和糖酵解,HIF-2α通過IRS2/AKT軸抑制糖異生,AMPK通過GLUT-4促進(jìn)肌糖元攝取,通過抑制糖元合成酶減少肝糖元輸出,三者協(xié)同作用降低血糖。本文就慢性持續(xù)性低氧對(duì)血糖的影響,以及低氧環(huán)境下機(jī)體通過HIF﹑AMPK通路對(duì)血糖的調(diào)節(jié)進(jìn)行了闡述,但機(jī)體對(duì)血糖的調(diào)節(jié)是復(fù)雜的過程,其中肝糖元和肌糖元的合成﹑糖元分解和糖酵解對(duì)血糖的調(diào)節(jié)具有重要的意義,需要進(jìn)一步明確低氧環(huán)境下機(jī)體對(duì)葡萄糖的調(diào)節(jié)方式,對(duì)機(jī)體參與低氧適應(yīng)﹑胚胎發(fā)育和傷口愈合等生理情況及OSAHS和癌癥等病理環(huán)境有重要的臨床意義。

      作者貢獻(xiàn):龔俊艷進(jìn)行文章構(gòu)思、文獻(xiàn)收集與整理,撰寫論文,進(jìn)行文章的修訂,對(duì)文章整體負(fù)責(zé),監(jiān)督管理;趙成玉確定文章研究方向,進(jìn)行文章的修訂,負(fù)責(zé)文章的質(zhì)量控制及審校。

      本文無利益沖突。

      [1]吳天一.高原低氧環(huán)境對(duì)人類的挑戰(zhàn)[J].醫(yī)學(xué)研究雜 志,2006,35(10):1-3.DOI:10.3969/j.issn.1673-548X.2006.10.001.WU T Y.Challenges to human being under hypoxia environment on plateau[J].Journal of Medical Research,2006,35(10):1-3.DOI:10.3969/j.issn.1673-548X.2006.10.001.

      [2]邢英琦,徐靜,李琳,等.缺氧誘導(dǎo)因子(HIF-1)的結(jié)構(gòu)﹑調(diào)節(jié)與靶基因研究進(jìn)展[J].中國實(shí)驗(yàn)診斷學(xué),2011,15(1):177-179.DOI:10.3969/j.issn.1007-4287.2011.01.071.XING Y Q,XU J,LI L,et al.Study on the structure,regulation and target gene of hypoxia inducible factor-1[J].Chinese Journal of Laboratory Diagnosis,2011,15(1):177-179.DOI:10.3969/j.issn.1007-4287.2011.01.071.

      [3]ANAND I S.Pathophysiology of anemia in heart failure[J].Heart Fail Clin,2010,6(3):279-288.DOI:10.1016/j.hfc.2010.03.002.

      [4]BALDI S,AQUILANI R,PINNA G D,et al.Fat-free mass change after nutritional rehabilitation in weight losing COPD:role of insulin,C-reactive protein and tissue hypoxia[J].Int J Chron Obstruct Pulmon Dis,2010,5(1):29-39.

      [5]LINDG?RDE F,ERCILLA M B,CORREA L R,et al.Body adiposity,insulin,and leptin in subgroups of Peruvian Amerindians[J].High Alt Med Biol,2004,5(1):27-31.DOI:10.1089/152702904322963663.

      [6]BARACCO R,MOHANNA S,SECLéN S.A comparison of the prevalence of metabolic syndrome and its components in high and low altitude populations in peru[J].Metab Syndr Relat Disord,2007,5(1):55-62.DOI:10.1089/met.2006.0019.

      [7]CHEN X Q,DONG J,NIU C Y,et al.Effects of hypoxia on glucose,insulin,glucagon,and modulation by corticotropinreleasing factor receptor type 1 in the rat[J].Endocrinology,2007,148(7):3271-3278.DOI:10.1210/en.2006-1224.

      [8]GAMBOA J L,GARCIA-CAZARIN M L,ANDRADE F H.Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle[J].Am J Physiol Regul Integr Comp Physiol,2011,300(1):R85-91.DOI:10.1152/ajpregu.00078.2010.

      [9]趙成玉,圈啟芳,何熠偉,等.慢性持續(xù)性低氧對(duì)大鼠肝臟和胰腺GLUT2 mRNA 表達(dá)的影響[J].中華臨床醫(yī)師雜志( 電 子 版),2015,9(22):4148-4152.DOI:10.3877/cma.j.issn.1674-0785.2015.22.023.ZHAO C Y,QUAN Q F,HE Y W,et al.Effect of chronic hypoxia of high altitude on expression of hepatic and pancreatic GLUT2 mRNA in rat[J].Chinese Journal of Clinicians(Electronic Edition),2015,9(22):4148-4152.DOI:10.3877/cma.j.issn.1674-0785.2015.22.023.

      [10]HU C J,WANG L Y,CHODOSH L A,et al.Differential roles of hypoxia-inducible factor 1α(HIF-1α) and HIF-2α in hypoxic gene regulation[J].Mol Cell Biol,2003,23(24):9361-9374.DOI:10.1128/MCB.23.24.9361-9374.2003.

      [11]DONGIOVANNI P,VALENTI L,F(xiàn)RACANZANI A L,et al.Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver[J].Am J Pathol,2008,172(3):738-747.DOI:10.2353/ajpath.2008.070097.

      [12]PESCADOR N,VILLAR D,CIFUENTES D,et al.Hypoxia promotes glycogen accumulation through hypoxia inducible factor(HIF)-mediated induction of glycogen synthase 1[J].PLoS One,2010,5(3):e9644.DOI:10.1371/journal.pone.0009644.

      [13]PARK S K,HAASE V H,JOHNSON R S.Von Hippel Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-phosphatase[J].Int J Oncol,2007,30(2):341-348.

      [14]RANKIN E B,RHA J,SELAK M A,et al.Hypoxia-inducible factor 2 regulates hepatic lipid metabolism[J].Mol Cell Biol,2009,29(16):4527-4538.DOI:10.1128/MCB.00200-09.

      [15]戚華兵,王鳳君,汪仕良.嚴(yán)重?zé)齻笫蟾闻K葡萄糖轉(zhuǎn)運(yùn)體1蛋白表達(dá)的實(shí)驗(yàn)研究[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2003,25(18):1613-1616.DOI:10.3321/j.issn:1000-5404.2003.18.007.QI H B,WANG F J,WANG S L.An experimental study of glucose transporter 1 protein expression in the burned rat liver[J].Acta Academiae Medicinae Militaris Tertiae,2003,25(18):1613-1616.DOI:10.3321/j.issn:1000-5404.2003.18.007.

      [16]SANTALUCíA T,BOHELER K R,BRAND N J,et al.Factors involved in GLUT-1 glucose transporter gene transcription in cardiac muscle[J].J Biol Chem,1999,274(25):17626-17634.DOI:10.1074/jbc.274.25.17626.

      [17]KIM H I,AHN Y H.Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and betacells[J].Diabetes,2004,53(Suppl 1):S60-65.

      [18]WOOD I S,WANG B,LORENTE-CEBRIáN S,et al.Hypoxia increases expression of selective facilitative glucose transporters(GLUT) and 2-deoxy-d-glucose uptake in human adipocytes[J].Biochem Biophys Res Commun,2007,361(2):468-473.DOI:10.1016/j.bbrc.2007.07.032.

      [19]BASHAN N,BURDETT E,HUNDAL H S,et al.Regulation of glucose transport and GLUT1 glucose transporter expression by O2in muscle cells in culture[J].Am J Physiol,1992,262(3 Pt 1):C682-690.DOI:10.1152/ajpcell.1992.262.3.C682.

      [20]龔豪杰,張楠,姚璐,等.低氧﹑低氧訓(xùn)練對(duì)AMPKα2三種不同基因狀態(tài)鼠骨骼肌GLUT4表達(dá)及肌糖元含量的影響[J].體育科學(xué),2010,30(5):41-48.DOI:10.3969/j.issn.1000-677X.2010.05.005.GONG H J,ZHANG N,YAO L,et al.Effects of Hypoxia/Hypoxia training on Glut4 expression and glycogen storage in skeletal muscle of AMPKα2-WT /KO /OE mice[J].China Sport Science,2010,30(5):41-48.DOI:10.3969/j.issn.1000-677X.2010.05.005.

      [21]黃緘,黃慶愿,高鈺琪,等.缺氧習(xí)服大鼠骨骼肌葡萄糖轉(zhuǎn)運(yùn)體特點(diǎn)的研究[J].第三軍醫(yī)大學(xué)學(xué)報(bào),2004,26(18):1607-1610.DOI:10.3321/j.issn:1000-5404.2004.18.001.HUANG J,HUANG Q Y,GAO Y Q,et al.Characterization of glucose transporters in skeletal muscle after acclimatization to hypobaric hypoxia[J].Acta Academiae Medicinae Militaris Tertiae,2004,26(18):1607-1610.DOI:10.3321/j.issn:1000-5404.2004.18.001.

      [22]TEROVA G,RIMOLDI S,BRAMBILLA F,et al.In vivo regulation of GLUT2 mRNA in sea bass(Dicentrarchus labrax)in response to acute and chronic hypoxia[J].Comp Biochem Physiol B Biochem Mol Biol,2009,152(4):306-316.DOI:10.1016/j.cbpb.2008.12.011.

      [23]KANZAKI M.Insulin receptor signals regulating GLUT4 translocation and actin dynamics[J].Endocr J,2006,53(3):267-293.

      [24]LEAVENS K F,BIRNBAUM M J.Insulin signaling to hepatic lipid metabolism in health and disease[J].Crit Rev Biochem Mol Biol,2011,46(3):200-215.DOI:10.3109/10409238.2011.562481.

      [25]TANIGUCHI C M,EMANUELLI B,KAHN C R.Critical nodes in signalling pathways:insights into insulin action[J].Nat Rev Mol Cell Biol,2006,7(2):85-96.DOI:10.1038/nrm1837.

      [26]SIMONSON T S,MCCLAIN D A,JORDE L B,et al.Genetic determinants of Tibetan high-altitude adaptation[J].Hum Genet,2012,131(4):527-533.DOI:10.1007/s00439-011-1109-3.

      [27]SCHEINFELDT L B,TISHKOFF S A.Recent human adaptation:genomic approaches,interpretation and insights[J].Nat Rev Genet,2013,14(10):692-702.DOI:10.1038/nrg3604.

      [28]LENDAHL U,LEE K L,YANG H,et al.Generating specificity and diversity in the transcriptional response to hypoxia[J].Nat Rev Genet,2009,10(12):821-832.DOI:10.1038/nrg2665.

      [29]MAJMUNDAR A J,WONG W J,SIMON M C.Hypoxia-inducible factors and the response to hypoxic stress[J].Mol Cell,2010,40(2):294-309.DOI:10.1016/j.molcel.2010.09.022.

      [30]WELJIE A M,JIRIK F R.Hypoxia-induced metabolic shifts in cancer cells:moving beyond the Warburg effect[J].Int J Biochem Cell Biol,2011,43(7):981-989.DOI:10.1016/j.biocel.2010.08.009.

      [31]WIESENER M S,JüRGENSEN J S,ROSENBERGER C,et al.Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs[J].FASEB J,2003,17(2):271-273.DOI:10.1096/fj.02-0445fje.

      [32]JIANG B H,SEMENZA G L,BAUER C,et al.Hypoxiainducible factor 1 levels vary exponentially over a physiologically relevant range of O2tension[J].Am J Physiol,1996,271(4 Pt 1):C1172-1180.DOI:10.1152/ajpcell.1996.271.4.C1172.

      [33]LOBODA A,JOZKOWICZ A,DULAK J.HIF-1 and HIF-2 transcription factors——similar but not identical[J].Mol Cells,2010,29(5):435-442.DOI:10.1007/s10059-010-0067-2.

      [34]MAKINO Y,CAO R,SVENSSON K,et al.Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression[J].Nature,2001,414(6863):550-554.DOI:10.1038/35107085.

      [35]STEINBERG G R,KEMP B E.AMPK in health and disease[J].Physiol Rev,2009,89(3):1025-1078.DOI:10.1152/physrev.00011.2008.

      [36]SEMENZA G L,WANG G L.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J].Mol Cell Biol,1992,12(12):5447-5454.DOI:10.1128/MCB.12.12.5447.

      [37]WANG G L,JIANG B H,RUE E A,et al.Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2tension[J].Proc Natl Acad Sci U S A,1995,92(12):5510-5514.

      [38]HUANG L E,ARANY Z,LIVINGSTON D M,et al.Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit[J].J Biol Chem,1996,271(50):32253-32259.DOI:10.1074/jbc.271.50.32253.

      [39]CHEN C,PORE N,BEHROOZ A,et al.Regulation of glut1 mRNA by hypoxia-inducible factor-1.Interaction between H-ras and hypoxia[J].J Biol Chem,2001,276(12):9519-9525.DOI:10.1074/jbc.M010144200.

      [40]HAYASHI M,SAKATA M,TAKEDA T,et al.Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells[J].J Endocrinol,2004,183(1):145-154.DOI:10.1677/joe.1.05599.

      [41]CALVERT J W,CAHILL J,YAMAGUCHI-OKADA M,et al.Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes[J].J Appl Physiol(1985),2006,101(3):853-865.DOI:10.1152/japplphysiol.00268.2006.

      [42]LIU Y,LI Y M,TIAN R F,et al.The expression and significance of HIF-1α and GLUT-3 in glioma[J].Brain Res,2009,1304:149-154.DOI:10.1016/j.brainres.2009.09.083.

      [43]DANG C V,KIM J W,GAO P,et al.The interplay between MYC and HIF in cancer[J].Nat Rev Cancer,2008,8(1):51-56.DOI:10.1038/nrc2274.

      [44]DENKO N C.Hypoxia,HIF1 and glucose metabolism in the solid tumour[J].Nat Rev Cancer,2008,8(9):705-713.DOI:10.1038/nrc2468.

      [45]LUO W,HU H,CHANG R,et al.Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J].Cell,2011,145(5):732-744.DOI:10.1016/j.cell.2011.03.054.

      [46]CHOI J H,PARK M J,KIM K W,et al.Molecular mechanism of hypoxia-mediated hepatic gluconeogenesis by transcriptional regulation[J].FEBS Lett,2005,579(13):2795.DOI:10.1016/j.febslet.2005.03.097.

      [47]PESCADOR N,VILLAR D,CIFUENTES D,et al.Hypoxia promotes glycogen accumulation through hypoxia inducible factor(HIF)-mediated induction of glycogen synthase 1[J].PLoS One,2010,5(3):e9644.DOI:10.1371/journal.pone.0009644.

      [48]CANTLEY J,SELMAN C,SHUKLA D,et al.Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice[J].J Clin Invest,2009,119(1):125-135.DOI:10.1172/JCI26934.

      [49]SHEN G M,ZHANG F L,LIU X L,et al.Hypoxia‐inducible factor 1‐mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF‐7 cells under hypoxia[J].FEBS Lett,2010,584(20):4366-4372.DOI:10.1016/j.febslet.2010.09.040.

      [50]LUO X,ZHANG Y,RUAN X,et al.Fasting-induced protein phosphatase 1 regulatory subunit contributes to postprandial blood glucose homeostasis via regulation of hepatic glycogenesis[J].Diabetes,2011,60(5):1435-1445.DOI:10.2337/db10-1663.

      [51]EMA M,TAYA S,YOKOTANI N,et al.A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development[J].Proc Natl Acad Sci U S A,1997,94(9):4273-4278.

      [52]TIAN H,MCKNIGHT S L,RUSSELL D W.Endothelial PAS domain protein 1(EPAS1),a transcription factor selectively expressed in endothelial cells[J].Genes Dev,1997,11(1):72-82.DOI:10.1101/gad.11.1.72.

      [53]FLAMME I,F(xiàn)R?HLICH T,VON REUTERN M,et al.HRF,a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels[J].Mech Dev,1997,63(1):51-60.DOI:10.1016/S0925-4773(97)00674-6.

      [54]YI X,LIANG Y,HUERTA-SANCHEZ E,et al.Sequencing of 50 human exomes reveals adaptation to high altitude[J].Science,2010,329(5987):75-78.DOI:10.1126/science.1190371.

      [55]BEALL C M,CAVALLERI G L,DENG L,et al.Natural selection on EPAS1(HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders[J].Proc Natl Acad Sci U S A,2010,107(25):11459-11464.DOI:10.1073/pnas.1002443107.

      [56]PATEL S A,SIMON M C.Biology of hypoxia-inducible factor-2alpha in development and disease[J].Cell Death Differ,2008,15(4):628-634.DOI:10.1038/cdd.2008.17.

      [57]HOLMQUIST-MENGELBIER L,F(xiàn)REDLUND E,L?FSTEDT T,et al.Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma:HIF-2alpha promotes an aggressive phenotype[J].Cancer Cell,2006,10(5):413-423.DOI:10.1016/j.ccr.2006.08.026.

      [58]WIESENER M S,TURLEY H,ALLEN W E,et al.Induction of endothelial PAS domain protein-1 by hypoxia:characterization and comparison with hypoxia-inducible factor-1alpha[J].Blood,1998,92(7):2260-2268.

      [59]WEIDEMANN A,JOHNSON R S.Biology of HIF-1α[J].Cell Death Differ,2008,15(4):621-627.DOI:10.1038/cdd.2008.12.

      [60]ROSENBERGER C,MANDRIOTA S,JüRGENSEN J S,et al.Expression of hypoxia-inducible factor-1alpha and-2alpha in hypoxic and ischemic rat kidneys[J].J Am Soc Nephrol,2002,13(7):1721-1732.DOI:10.1097/01.ASN.0000017223.49823.2A.

      [61]KUBOTA N,KUBOTA T,ITOH S,et al.Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding[J].Cell Metab,2008,8(1):49-64.DOI:10.1016/j.cmet.2008.05.007.

      [62]DONG X,PARK S,LIN X,et al.Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth[J].J Clin Invest,2006,116(1):101-114.DOI:10.1172/JCI25735.

      [63]DONG X C,COPPS K D,GUO S,et al.Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation[J].Cell Metab,2008,8(1):65-76.DOI:10.1016/j.cmet.2008.06.006.

      [64]WEI K,PIECEWICZ S M,MCGINNIS L M,et al.A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by VEGF inhibition[J].Nat Med,2013,19(10):1331-1337.DOI:10.1038/nm.3295.

      [65]LANDIS J,SHAW L M.Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis[J].J Biol Chem,2014,289(26):18603-18613.DOI:10.1074/jbc.M114.564070.

      [66]ELSTROM R L,BAUER D E,BUZZAI M,et al.Akt stimulates aerobic glycolysis in cancer cells[J].Cancer Res,2004,64(11):3892-3899.DOI:10.1158/0008-5472.CAN-03-2904.

      [67]ZHUO B,LI Y,LI Z,et al.PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma[J].Biochem Biophys Res Commun,2015,464(2):401-406.DOI:10.1016/j.bbrc.2015.06.092.

      [68]LI W,PENG C,LEE M H,et al.TRAF4 is a critical molecule for Akt activation in lung cancer[J].Cancer Res,2013,73(23):6938-6950.DOI:10.1158/0008-5472.CAN-13-0913.

      [69]DEPREZ J,VERTOMMEN D,ALESSI D R,et al.Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades[J].J Biol Chem,1997,272(28):17269-17275.DOI:10.1074/jbc.272.28.17269.

      [70]BARTHEL A,OKINO S T,LIAO J,et al.Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1[J].J Biol Chem,1999,274(29):20281-20286.DOI:10.1074/jbc.274.29.20281.

      [71]OAKHILL J S,STEEL R,CHEN Z P,et al.AMPK is a direct adenylate charge-regulated protein kinase[J].Science,2011,332(6036):1433-1435.DOI:10.1126/science.1200094.

      [72]HARDIE D G,ROSS F A,HAWLEY S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nat Rev Mol Cell Biol,2012,13(4):251-262.DOI:10.1038/nrm3311.

      [73]HARDIE D G.Molecular pathways:is AMPK a friend or a foe in cancer?[J].Clin Cancer Res,2015,21(17):3836-3840.DOI:10.1158/1078-0432.CCR-14-3300.

      [74]IM S S,KWON S K,KIM T H,et al.Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes[J].IUBMB Life,2007,59(3):134–145.DOI:10.1080/15216540701313788.

      [75]WOJTASZEWSKI J F,HIGAKI Y,HIRSHMAN M F,et al.Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice[J].J Clin Invest,1999,104(9):1257-1264.DOI:10.1172/JCI7961.

      [76]SANO H,KANE S,SANO E,et al.Insulin-stimulated phosphorylation of a rab GTPase-activating protein regulates GLUT4 translocation[J].J Biol Chem,2003,278(17):14599-14602.DOI:10.1074/jbc.C300063200.

      [77]KRAMER H F,WITCZAK C A,F(xiàn)UJII N,et al.Distinct signals regulate AS160 phosphorylation in response to insulin,AICAR,and contraction in mouse skeletal muscle[J].Diabetes,2006,55(7):2067-2076.DOI:10.2337/db06-0150.

      [78]TREEBAK J T,GLUND S,DESHMUKH A,et al.AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits[J].Diabetes,2006,55(7):2051-2058.DOI:10.2337/db06-0175.

      [79]TAYLOR E B,AN D,KRAMER H F,et al.Discovery of TBC1D1 as an insulin-,AICAR-,and contraction-stimulated signaling nexus in mouse skeletal muscle[J].J Biol Chem,2008,283(15):9787-9796.DOI:10.1074/jbc.M708839200.

      [80]CHEN S,MURPHY J,TOTH R,et al.Complementary regulation of TBC1D1 and AS160 by growth factors,insulin and AMPK activators[J].Biochem J,2008,409(2):449-459.DOI:10.1042/BJ20071114.

      [81]HORIKE N,SAKODA H,KUSHIYAMA A,et al.AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver[J].J Biol Chem,2008,283(49):33902-33910.DOI:10.1074/jbc.M802537200.

      [82]COOL B,ZINKER B,CHIOU W,et al.Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J].Cell Metab,2006,3(6):403-416.DOI:10.1016/j.cmet.2006.05.005.

      [83]CORTON J M,GILLESPIEJ G,HAWLEY S A,et al.5-aminoimidazole-4-carboxamide ribonucleoside.A specific method for activating AMP-activated protein kinase in intact cells?[J].Eur J Biochem,1995,229(2):558-565.DOI:10.1111/j.1432-1033.1995.tb20498.x.

      [84]WALKER J,JIJON H B,DIAZ H,et al.5-aminoimidazole-4-carboxamide riboside(AICAR) enhances GLUT2-dependent jejunal glucose transport:a possible role for AMPK[J].Biochem J,2005,385(2):485-491.DOI:10.1042/BJ20040694.

      [85]MARSIN A,BERTRAND L,RIDER M H,et al.Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia[J].Curr Biol,2000,10(20):1247-1255.DOI:10.1016/S0960-9822(00)00742-9.

      [86]JORGENSEN S B,NIELSEN J N,BIRK J B,et al.The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading[J].Diabetes,2004,53(12):3074-3081.DOI:10.2337/diabetes.53.12.3074.

      [87]WINDER W W,HOLMES B F,RUBINK D S,et al.Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle[J].J Appl Physiol(1985),2000,88(6):2219-2226.DOI:10.1152/jappl.2000.88.6.2219.

      猜你喜歡
      糖酵解低氧激酶
      非編碼RNA在胃癌糖酵解中作用的研究進(jìn)展
      蚓激酶對(duì)UUO大鼠腎組織NOX4、FAK、Src的影響
      間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
      蚓激酶的藥理作用研究進(jìn)展
      糖酵解與動(dòng)脈粥樣硬化進(jìn)展
      放射對(duì)口腔鱗癌細(xì)胞DNA損傷和糖酵解的影響
      18F-FDG PET/CT中病灶糖酵解總量判斷局部晚期胰腺癌放射治療的預(yù)后價(jià)值
      Wnt/β-catenin信號(hào)通路在低氧促進(jìn)hBMSCs體外增殖中的作用
      黏著斑激酶和踝蛋白在黏著斑合成代謝中的作用
      裸鼴鼠不同組織中低氧相關(guān)基因的表達(dá)
      台中市| 丰县| 广宁县| 沙河市| 平乡县| 甘德县| 吴忠市| 日喀则市| 广丰县| 上饶县| 五莲县| 绥棱县| 白城市| 石柱| 石阡县| 黄山市| 澎湖县| 茶陵县| 山阴县| 普兰县| 湖口县| 格尔木市| 正镶白旗| 赫章县| 合水县| 延寿县| 长治县| 益阳市| 平利县| 睢宁县| 桂阳县| 大化| 桦川县| 巫山县| 秀山| 呼图壁县| 克东县| 南皮县| 泗洪县| 德清县| 青田县|