隋益虎,胡能兵,唐金寶
(安徽科技學(xué)院 農(nóng)學(xué)院,安徽 鳳陽 233100)
辣椒(CapsicumannuumL.)是一種世界性蔬菜作物,在我國(guó)辣椒種植面積位居蔬菜作物之首[1]。目前廣泛種植的辣椒為常規(guī)綠果(未成熟果)類型,鮮有紫果類型。紫色辣椒相對(duì)綠色辣椒有較高的抗逆性,且未成熟果富含的花青素具有保健等特點(diǎn)。安徽科技學(xué)院辣椒課題組經(jīng)過十多年努力,選育出了三系配套的紫色線椒新品種——鳳紫運(yùn)1號(hào),2013年已通過安徽省級(jí)審定/登記。該品種母本是通過種間遠(yuǎn)緣雜交創(chuàng)制的綠色辣椒雄性核質(zhì)互作不育系(CMS) 1110A[2],父本是含有高辣椒素的紫色辣椒純系9007-2。F1代植株的子葉、真葉、莖、花和未成熟果均呈紫色,尤其是未成熟果中含有較高的花青素;同時(shí),具有抗病毒病和疫病,耐高低溫和強(qiáng)光等特點(diǎn),因此,可有效減少農(nóng)藥的使用,提高商品果實(shí)的安全性[3]。
影響辣椒生產(chǎn)的農(nóng)藝因子很多,為了使不同品種辣椒的栽培產(chǎn)量或經(jīng)濟(jì)效益最大化,前人在單一因子或多種因子組合等方面做了大量研究[4-10]。而本課題組根據(jù)供試土壤環(huán)境條件及辣椒新品種的生長(zhǎng)發(fā)育特點(diǎn),試驗(yàn)選擇密度、氮肥和硼肥為主要優(yōu)化因子,篩選最佳因子水平組合,旨在為特色辣椒新品種鳳紫運(yùn)1號(hào)的高產(chǎn)栽培與大面積推廣提供參考。
實(shí)驗(yàn)于2015年1—9月在安徽科技學(xué)院蔬菜基地中心進(jìn)行。實(shí)驗(yàn)地前茬為小白菜,黏性黃棕壤土。0~20 cm 耕層含有機(jī)質(zhì)1.21%,全氮0.09%,堿解氮78 mg·kg-1,速效磷27 mg·kg-1,速效鉀152.5 mg·kg-1,熱水溶性硼0.28 mg·kg-1。供試?yán)苯菲贩N為鳳紫運(yùn)1號(hào)紫色辣椒新品種,供試肥料的氮肥為尿素,微肥硼肥為四硼酸鈉。
采用三因素五水平二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì),選取密度(x1)、氮肥(x2)、硼肥(x3)為自變量,五水平分別為1.682、1、0、-1、-1.682,以辣椒鮮果實(shí)產(chǎn)量(y)為目標(biāo)函數(shù)。試驗(yàn)共設(shè)置23個(gè)處理組合,小區(qū)(畦)長(zhǎng)度2.75 m,寬度1 m(帶溝),面積為2.75 m2。每畦雙行,行距0.5 m,每穴單株種植,試驗(yàn)區(qū)四周設(shè)有保護(hù)畦。小區(qū)和折合667 m2的密度水平、氮肥和硼肥施用量及其編碼列于表1。
2015年1月在高效節(jié)能溫室內(nèi)育苗,4月9日進(jìn)行小拱棚覆蓋栽培,16日根據(jù)設(shè)計(jì)量,按小區(qū)均勻施用硼肥;5月10日按小區(qū)均勻施用尿素,并撤除小拱棚。其后的水分、中耕除草等管理均按常規(guī)生產(chǎn)進(jìn)行并嚴(yán)格控制作業(yè)的一致性,減少試驗(yàn)誤差。每個(gè)小區(qū)的植株都按株編號(hào),6月3日進(jìn)行第一次采摘,以后每1周采摘1次,直至8月30日止,每個(gè)被采果實(shí)長(zhǎng)度要求大于10 cm。每次采摘后立即用電子天平稱重并按株分別記錄鮮果質(zhì)量,最后對(duì)整個(gè)生長(zhǎng)期每株鮮果質(zhì)量累加求和,再計(jì)算小區(qū)產(chǎn)量,折算667m2產(chǎn)量。
表1試驗(yàn)因子及其水平編碼
Table1Coding of experimental factors and levels
水平編碼Levelcoding密度Plantingdensity(x1)小區(qū)株數(shù)Plantnumberperplot667m2株數(shù)Plantnumberper667m2氮肥Nitrogenfertilizer(x2)小區(qū)施量Amountperplot/g667m2施量Amountper667m2/kg硼肥Boronfertilizer(x3)小區(qū)施量Amountperplot/g667m2施量Amountper667m2/kg168219460816540020412510001174123140339563300080001536381032498220620500-1143396661600808250200-168212291141994400變化區(qū)間Range248537897412380300
根據(jù)每株辣椒的多次產(chǎn)量記錄結(jié)果算得的小區(qū)與667m2產(chǎn)量列于表2。試驗(yàn)的三因素二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)結(jié)構(gòu)矩陣及其試驗(yàn)結(jié)果(小區(qū)產(chǎn)量)部分計(jì)算過程列于表3。
表2二十三個(gè)處理組合的辣椒果實(shí)產(chǎn)量
Table2Pepper fruit yields of 23 treatment combinations
試驗(yàn)區(qū)號(hào)No.ofplot產(chǎn)量Yield小區(qū)鮮果質(zhì)量Freshfruitweightperplot/(g·275m-2)667m2鮮果質(zhì)量Freshfruitweightper667m2/kg試驗(yàn)區(qū)號(hào)No.ofplot產(chǎn)量Yield小區(qū)鮮果質(zhì)量Freshfruitweightperplot/(g·275m-2)667m2鮮果質(zhì)量Freshfruitweightper667m2/kg19983202420931393471022666727881351911231460051514562537448451806251591774022255246927551679931692432022414858198901988231789658521742266620351605431894145022830276816701653051986803021049785819101411132095011023040297915101919412187394521193210544045131931228277602007321110502402546832388075521358312487550118231
表3三因素二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)結(jié)構(gòu)矩陣及其試驗(yàn)結(jié)果計(jì)算
Table3Structure matrix of three-factor quadratic regression orthogonal rotational combination designs and processing of the experimental data
試驗(yàn)區(qū)號(hào)No.ofplotx0x1x2x3x1x2x1x3x2x3x′1x′2x′3產(chǎn)量Yield/(g·275m-2)111111110406040604069983202111-11-1-1040604060406788135311-11-11-1040604060406744845411-1-1-1-1104060406040669275551-111-11104060406040681989061-11-1-1-1-104060406040666203571-1-1111-104060406040668167081-1-1-11-11040604060406581910911682000002235-0594-0594791510101-1682000002235-0594-0594544045111016820000-05942235-059410502401210-16820000-05942235-0594487550131001682000-0594-0594223593471014100-1682000-0594-05942235600515151000000-0594-0594-0594917740161000000-0594-0594-0594924320171000000-0594-0594-0594896585181000000-0594-0594-0594941450191000000-0594-0594-0594868030201000000-0594-0594-0594950110211000000-0594-0594-0594873945221000000-0594-0594-0594827760231000000-0594-0594-0594880755B2155366589478613151364458108200599130515198921619-121669696-64457414-65183053T=18458825D23136581365813658888158961589615896b937115876551370110824767922141163137564986252702375-7654108-4054946-4100595Q58620751116774929828571803802129107533785701558422645931272949261371302267289276
按二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)的分析方法[11],利用Excel軟件計(jì)算,得小區(qū)產(chǎn)量(y,kg·2.75m-2)依密度(x1)、氮肥(x2)和硼肥(x3)變化的函數(shù)模型為:
根據(jù)變異來源將全試驗(yàn)總平方和分解為回歸、失擬和誤差項(xiàng),F(xiàn)測(cè)驗(yàn)表明:F1=失擬均方/誤差均方=0.641 9,Pr=0.675 5,失擬不顯著,說明回歸方程的擬合度好,主要影響因子已被考查。F2=回歸均方/剩余均方=41.57,Pr=9.104×10-6,回歸極顯著,說明試驗(yàn)指標(biāo)產(chǎn)量依考查因子(x1、x2和x3)回歸在總體上達(dá)到極顯著水平。進(jìn)一步將模型中回歸項(xiàng)平方和再分解為各因子一次項(xiàng)、交互項(xiàng)及二次項(xiàng),F(xiàn)測(cè)驗(yàn)表明:除交互項(xiàng)x1x2和x2x3回歸沒有達(dá)到顯著,其余項(xiàng)均達(dá)極顯著水平(表4)。
表4辣椒產(chǎn)量三因素二次回歸正交旋轉(zhuǎn)組合試驗(yàn)方差分析
Table4Variance analysis of pepper yield based on three-factor quadratic orthogonal rotation combination design
變異來源Sourceofvariation平方和Sumofsquares自由度Degreeoffreedom均方MeansquareF值Fvalue顯著水平Significancelevel回歸Regression4998385135955537612641579104E?6x15862075111586207510438800002x2167749298211677492980125563608E?6x3857180380185718038064164328E?5x1x22129107512129107515902424x1x33378570151337857015252900010x2x35842264515842264543700699x21931272949193127294969703207E?5x222613713021261371302195600022x232672892761267289276200100021失擬Lackoffit49729509599459020641906755誤差Error123954691815494336總變異Totalvariation517206933622
圖1 三因素對(duì)辣椒產(chǎn)量的效應(yīng)Fig.1 Effects of three factors on the yield of pepper
將x1、x3的各水平編碼值代入方程中計(jì)算相應(yīng)互作的辣椒果實(shí)鮮質(zhì)量值y1,3,比較表明,x1與x3存在正向互作效應(yīng),不論種植密度在何水平下,增施硼肥都能帶來辣椒產(chǎn)量的增加;隨著密度增大,硼肥施用水平亦需相應(yīng)提高。但在不同密度水平下,各硼肥水平的增產(chǎn)作用大小不同。低密度水平(-1~-1.682)配合零水平硼(0.5 kg·667m-2),高密度水平(1~1.682)配合高水平硼(1.0 kg·667m-2)均能獲得最佳互作效應(yīng)(表5)。
表5密度(x1)與硼肥(x3)對(duì)辣椒果實(shí)鮮質(zhì)量的互作效應(yīng)
Table5Interaction effect of planting density (x1) and boron fertilizer (x3) on the fresh pepper fruit weight
密度(x1)Plantingdensity硼肥Boronfertilizer(x3)-1682-1011682-16826389069338704306332053766-1749028337488898862207968907817691080103103106924104826166142834781020001123201146541682491546951392468107220112577
為了研究辣椒果實(shí)產(chǎn)量隨各因素水平增減的變化率,對(duì)產(chǎn)量數(shù)學(xué)模型求一階偏導(dǎo)數(shù),同時(shí)將其他2個(gè)變量分別固定在“0”水平,得到dy1/dx1=0.655 1-1.530 8x1,dy2/dx2=1.108 2-0.811 0x2,dy3/dx3=0.792 2-0.820 2x3,可見密度(x1)、氮肥(x2)和硼肥(x3)的邊際產(chǎn)量均有明顯變化,其中密度(x1)的邊際效應(yīng)最大;當(dāng)各變量分別取較低水平時(shí),增產(chǎn)效應(yīng)較大,反之則較??;當(dāng)三因素超出適宜范圍即越過產(chǎn)量最佳點(diǎn)后,邊際產(chǎn)量的效應(yīng)降低,并最終為負(fù)值。
在本研究約束范圍x∈[-1.682,1.682]內(nèi),辣椒果實(shí)的最高產(chǎn)量為3 206.678 kg·667m-2,其處理因子水平組合為x1=1,x2=1.682,x3=1.682(即密度4 123株·667m-2,氮肥40.020 kg·667m-2,硼肥1.000 kg·667m-2)。同時(shí)對(duì)125個(gè)處理組合進(jìn)行產(chǎn)量模擬得到超過2 500 kg·667m-2產(chǎn)量的組合有24個(gè),說明鳳紫運(yùn)1號(hào)紫色辣椒的穩(wěn)產(chǎn)性與高產(chǎn)性均較好。
進(jìn)一步對(duì)綜合因子進(jìn)行頻數(shù)統(tǒng)計(jì)分析,獲得高產(chǎn)栽培的優(yōu)化區(qū)間(95%置信度),表明在本實(shí)驗(yàn)條件下,按常規(guī)技術(shù)標(biāo)準(zhǔn)進(jìn)行管理,鳳紫運(yùn)1號(hào)產(chǎn)量在2 500 kg·667m-2以上的優(yōu)化組合模式為:密度為3 903~4 172 株·667m-2,氮肥施量為31.186~36.081 kg·667m-2,硼肥施量為0.724~0.880 kg·667m-2(表6)。
表6鳳紫運(yùn)1號(hào)產(chǎn)量高于2 500 kg·667m-2的綜合因子水平頻數(shù)分析
Table6Comprehensive frequency analysis of different factor levels combination on fresh pepper fruit weight of Fengziyun No.1 higher than 2 500 kg·667m-2
編碼水平Levelcoding密度(x1)頻數(shù)Frequencybasedondensity氮肥(x2)頻數(shù)Frequencybasedonnitrogenfertilizer硼肥(x3)頻數(shù)Frequencybasedonboronfertilizer-1682000-1000097618891682799平均值Mean082390964110058標(biāo)準(zhǔn)差Standarddeviation01414013920133095%置信區(qū)間Confidenceinterval05468~1101006913~1236807451~12664優(yōu)化區(qū)間Optimizedranges3903~417231186~360810724~0880
在本實(shí)驗(yàn)的土壤、管理和設(shè)計(jì)的因子水平條件下,紫色辣椒鳳紫運(yùn)1號(hào)的果實(shí)產(chǎn)量依密度(x1)、氮肥(x2)和硼肥(x3)三因子的回歸極顯著,回歸方程可用于預(yù)測(cè)產(chǎn)量并指導(dǎo)高產(chǎn)栽培。本研究中,當(dāng)處理組合密度為4 123株·667m-2(x1=1),氮肥40.020 kg·667m-2(x2=1.682),硼肥1.000 kg·667m-2(x3=1.682)時(shí),辣椒果實(shí)的產(chǎn)量最高,達(dá)3 206.678 kg·667m-2。
高產(chǎn)原因分析表明,除三因子一次項(xiàng)回歸正向極顯著外,x1、x3互作亦極顯著,x2、x3存在弱正向互作(P=0.069 9),這可能與充足的單株?duì)I養(yǎng)狀況以及硼肥促進(jìn)授粉受精有關(guān)。有研究[5,12-13]表明,種植密度通過影響通風(fēng)、透光從而影響辣椒株高、分枝數(shù)、結(jié)果數(shù)量和單果質(zhì)量等,合理密植是辣椒高產(chǎn)和高效栽培的重要農(nóng)藝措施之一。氮是辣椒必需的大量元素,能夠改善其多項(xiàng)生理功能[14],氮的作用大于磷、鉀[15]。李子雙等[16]研究表明,氮肥對(duì)產(chǎn)量的影響大于磷肥與硅鈣肥,能改善辣椒吸收營(yíng)養(yǎng)元素等功能,但應(yīng)適量施用,過多施用反而會(huì)造成產(chǎn)量降低、品質(zhì)下降等現(xiàn)象。硼是植物的必需微量元素,一些學(xué)者研究證實(shí)硼營(yíng)養(yǎng)對(duì)油菜[17]、大豆[18]及辣椒[8]等植物的生長(zhǎng)發(fā)育及產(chǎn)量均有較大的影響。硼參與細(xì)胞生長(zhǎng)許多代謝過程[19-20],尤其在花粉母細(xì)胞減數(shù)分裂敏感階段,缺硼引起雄性不育[21-22],最終導(dǎo)致結(jié)實(shí)率下降、落果、果實(shí)畸形,嚴(yán)重降低了產(chǎn)量[23]。鳳紫運(yùn)1號(hào)是三系配套的雜種一代,增施硼肥可能有助于恢復(fù)基因在F1中發(fā)揮作用,改善其花粉?;钚詮亩岣弋a(chǎn)量。此外,前人還證實(shí)硼能促進(jìn)某些作物對(duì)大量元素氮、鉀、磷的吸收[24-25]以及對(duì)中、微量元素Ca2+、Mg2+、Zn2+、Cu2+的吸收[26],從而平衡這些礦質(zhì)營(yíng)養(yǎng)使植株生長(zhǎng)良好。本研究中由于氮肥(x2)和硼肥(x3)均取了最高水平(1.682),所以實(shí)際生產(chǎn)中隨著兩者施用水平的提高,還有更高產(chǎn)的可能。
三因子綜合試驗(yàn)?zāi)M得到了高產(chǎn)(≥2 500 kg·667m-2)處理組合24個(gè),占總組合數(shù)的比例達(dá)19.2%,說明鳳紫運(yùn)1號(hào)在生產(chǎn)上具有較好的穩(wěn)產(chǎn)、高產(chǎn)性。在95%置信度下,鳳紫運(yùn)1號(hào)高產(chǎn)優(yōu)化農(nóng)藝措施模式為:密度3 903~4 172 株·667m-2,氮肥施量31.186~36.081 kg·667m-2,硼肥施量0.724~0.880 kg·667m-2。此模式也為類似的果數(shù)與果質(zhì)量并重型辣椒雜交品種的高產(chǎn)栽培提供了借鑒。
[1] 王立浩,張正海,曹亞從,等.“十二五”我國(guó)辣椒遺傳育種研究進(jìn)展及其展望[J].中國(guó)蔬菜, 2016 (1): 1-7.
WANG L H, ZHANG Z H, CAO Y C, et al. Progress and prospect of genetics and breeding of pepper in China during the twelfth five-year plan period[J].ChinaVegetables, 2016 (1): 1-7.(in Chinese)
[2] 隋益虎,張子學(xué),胡能兵,等.辣椒雄性不育系1110A的選育[J].安徽科技學(xué)院學(xué)報(bào),2013, 27(2): 14-17.
SUI Y H, ZHANG Z X, HU N B, et al. Breeding of a new CMS capsicum line 1110A[J].JournalofAnhuiScienceandTechnologyUniversity, 2013,27(2): 14-17.(in Chinese with English abstract)
[3] 胡能兵,隋益虎,張子學(xué),等.紫色辣椒色素性狀觀察及其葉片色素提取體系優(yōu)化[J].西北植物學(xué)報(bào), 2012, 32(12): 2450-2456.
HU N B, SUI Y H, ZHANG Z X, et al. Observation of pigment in purple pepper and extraction system optimization of leaf purple pigment[J].ActaBotanicaBoreali-OccidentaliaSinica, 2012, 32(12): 2450-2456.(in Chinese with English abstract)
[4] 李德斌.不同栽培密度對(duì)辣椒產(chǎn)量和經(jīng)濟(jì)性狀的影響[J].現(xiàn)代農(nóng)業(yè)科技, 2013 (16): 74.
LI D B. Effect of different planting density on fruit yield and economic characters of pepper[J].ModernAgriculturalSciencesandTechnology, 2013(16): 74.(in Chinese)
[5] 肖莉,鄭元紅,王慧,等.不同栽培方式及種植密度對(duì)辣椒產(chǎn)量的影響[J].長(zhǎng)江蔬菜, 2011 (4): 39-42.
XIAO L, ZHENG Y H, WANG H, et al. Effect of planting method and density on yield of hot pepper[J].JournalofChangjiangVegetables, 2011(4): 39-42.(in Chinese with English abstract)
[6] 呂長(zhǎng)山,王金玲,于廣建,等.氮肥對(duì)辣椒果實(shí)品質(zhì)及產(chǎn)量的影響[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào), 2005, 36(4): 448-450.
LV C S, WANG J L, YU G J, et al. Effect of nitrogen fertilizer on quality and yield of pepper fruits[J].JournalofNortheastAgriculturalUniversity, 2005, 36(4): 448-450.(in Chinese with English abstract)
[7] 隋益虎,汪建飛,張子學(xué),等.CO2氣肥、N肥及B肥對(duì)辣椒的施用效應(yīng)[J]. 安徽農(nóng)業(yè)技術(shù)師范學(xué)院學(xué)報(bào), 1999, 13(1): 32-37.
SUI Y H, WANG J F, ZHANG Z X, et al. Effect of fertilizer CO2, N and B on pepper[J].JournalofAnhuiAgrotechnicalTeachersCollege, 1999, 13(1): 32-37.(in Chinese with English abstract)
[8] 左明玉.硼肥用量及施用方式對(duì)辣椒產(chǎn)量、效益的影響[J].安徽農(nóng)業(yè)科學(xué), 2014, 42(9): 2619-2621.
ZUO M Y. Effects of boron fertilizer amount and application mode on pepper yield and benefits[J].JournalofAnhuiAgriculturalSciences, 2014, 42(9):2619-2621.(in Chinese with English abstract)
[9] 曾長(zhǎng)立,康六生.植物生長(zhǎng)調(diào)節(jié)劑、氮肥與密度配伍對(duì)辣椒產(chǎn)量及品質(zhì)的影響[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2009, 31(4): 644-649.
ZENG C L, KANG L S. The effect of composite method of plant growth regulators, nitrogen fertilizer and planting density on the yield and quality of hot pepper[J].ActaAgriculturaeUniversitatisJiangxiensis, 2009, 31(4): 644-649.(in Chinese with English abstract)
[10] 張福建,陳昱,吳超群,等.外源脂肪酸對(duì)辣椒生長(zhǎng)及根際土壤環(huán)境的影響[J].浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(5): 760-766.
ZHANG F J, CHEN Y, WU C Q, et al. Effects of exogenous fatty acids on growth and rhizosphere soil of pepper plants[J].ActaAgriculturaeZhejiangensis, 2017, 29(5): 760-766.(in Chinese with English abstract)
[11] 張祿捷,李榮,姜子濤.二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)優(yōu)化茼蒿籽中總黃酮的微波提取工藝[J].浙江農(nóng)業(yè)學(xué)報(bào),2015, 27(7): 1233-1238.
ZHANG L J, LI R, JIANG Z T. Optimization of microwave-assisted extraction technology for flavonoids fromChrysanthemumcoronariumL. seeds by quadratic regression orthogonal rotary[J].ActaAgriculturaeZhejiangensis, 2015, 27(7): 1233-1238.(in Chinese with English abstract)
[12] 趙貞祥,楊永崗,張二喜,等.旱地辣椒栽培中密度、氮、磷及鉀肥因子的優(yōu)化[J].土壤, 2013, 45(4): 628-632.
ZHAO Z X, YANG Y G, ZHANG E X, et al. Optimization of transplanting density, nitrogen, phosphorus and potassium fertilization on yield of pepper in drought area[J].Soils, 2013, 45(4): 628-632.(in Chinese with English abstract)
[13] 岳振平.不同種植密度對(duì)早春大棚辣椒產(chǎn)量和產(chǎn)值的影響[J].北方園藝,2014 (5): 51-52.
YUE Z P. Effect of different planting density on fruit yield and output value of pepper in early spring[J].NorthernHorticulture, 2014 (5): 51-52. (in Chinese with English abstract)
[14] 付小松,何建文,韓世玉.水分和氮素脅迫對(duì)辣椒產(chǎn)量形成及抗逆性評(píng)價(jià)[J].長(zhǎng)江蔬菜,2015 (4): 25-28.
FU X S, HE J W, HAN S Y. Effects of water and nitrogen stress on pepper yield and stress resistance evaluation[J].JournalofChangjiangVegetables, 2015(4): 25-28.(in Chinese with English abstract)
[15] 黃科,劉明月,吳秋云.氮磷鉀施用量與辣椒產(chǎn)量的相關(guān)性研究[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2002, 24(6): 772-776.
HUANG K, LIU M Y, WU Q Y. A study on the correlation between combined application of N P K and the yield of hot pepper[J].ActaAgriculturaeUniversitatisJiangxiensis, 2002, 24(6): 772-776.(in Chinese with English abstract)
[16] 李子雙,王薇,張世文,等.氮磷與硅鈣肥配施對(duì)辣椒產(chǎn)量和品質(zhì)的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(2): 458-466.
LI Z S, WANG W, ZHANG S W, et al. Effect of nitrogen, phosphorus and silicon calcium fertilizer on yield and quality of pepper[J].JournalofPlantNutritionandFertilizer, 2015, 21(2): 458-466.(in Chinese with English abstract)
[17] 張秀省,沈振國(guó),沈康.硼對(duì)油菜花器官發(fā)育和結(jié)實(shí)性的影響[J].土壤學(xué)報(bào),1994, 31(2): 146-152.
ZHANG X S, SHEN Z G, SHEN K. Effect of boron on floral organs development and seed-setting of rapeseed (BrassicanapusL.)[J].ActaPedologicaSinica, 1994, 31(2): 146-152.(in Chinese with English abstract)
[18] 劉鵬,楊玉愛.鉬硼對(duì)大豆氮磷鉀吸收及產(chǎn)量的影響[J].中國(guó)油料作物學(xué)報(bào),2000, 22(3):57-60.
LIU P, YANG Y A. Effect of molybdenum or boron application on N, P, K absorption and yield in soybean[J].ChineseJournalofOilCropSciences, 2000, 22(3):57-60.(in Chinese with English abstract)
[19] MIGUEL R N, LUIS P, REGUERA M, et al. Developmentally regulated membrane glycoprotein sharing antigenicity with rhamnogalacturonan Ⅱare not detected in nodulated boron deficientPisumsativum[J].Plant,CellandEnvironment, 2007, 30(11): 1436-1443.
[20] CAMACHO-CRISTOBAL J J, REXACH J, GONZALEZ-FONTES A. Boron in plants: deficiency and toxicity[J].JournalofIntegrativePlantBiology, 2008, 50 (10): 1247-1255.
[21] RAWSON H M, SUBEDI K D. Sterility in wheat in subtropical Asia: extent, causes and solutions [C]// Proceedings No 73 (Workshop held at Lumle Agricultural Research Centre, Nepal, 18-21 September 1995.) Canberra, ACIAR, 1996: 1-154.
[22] HUANG L B, PANT J, DELL B, et al. Effects of boron deficiency on anther development and floret fertility in wheat (TriticumaestivumL. ‘Wilgoyne’)[J].AnnalsofBotany, 2000, 85(4): 493-500.
[23] 祖艷群,林克惠.硼在植物體中的作用及對(duì)作物產(chǎn)量和品質(zhì)的影響[J].云南農(nóng)業(yè)大學(xué)學(xué)報(bào),2000, 15(4): 359-364.
ZU Y Q, LIN K H. The role of boron in plants and its effect on the yield and quality of crops[J].JournalofYunnanAgriculturalUniversity, 2000, 15(4): 359-364.(in Chinese with English abstract)
[24] CAMACHO-CRISTOBAL J J, GONZALEZ-FONTES A. Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants[J].Planta, 1999, 209(4): 528-536.
[25] MARSCHER H, MARSCHER P. Mineral nutrition of higher plants[M]. 3rd edition. New York: Academic press, 2012:158-483.
[26] SHAABAN M M, El-FOULY M M, ABDEL-MAGUID A A. Zinc-boron relationship in wheat plants grown under low or high levels of calcium carbonate in the soil[J].PakistanJournalofBiologicalSciences, 2004, 7(4): 633-639.