戴超輝,馮海悅,吳圣龍,2,包文斌,2,*
(1.揚州大學 動物科學與技術(shù)學院,江蘇 揚州 225009; 2.江蘇省種豬繁育和健康養(yǎng)殖工程技術(shù)研究中心,江蘇 揚州 225009)
豬病頻發(fā)是當前規(guī)?;B(yǎng)豬業(yè)面臨的嚴峻問題,給養(yǎng)豬產(chǎn)業(yè)帶來了嚴重的經(jīng)濟損失,而抗生素和藥物等的濫用又引發(fā)了一系列如環(huán)保、抗生素殘留、食品安全等問題。雖然現(xiàn)在養(yǎng)殖場的管理水平和疾病防治技術(shù)不斷完善和提高,在一定程度上減少了疾病的發(fā)生和傳播,但并未從根本上徹底防控豬病的發(fā)生。因此,發(fā)掘與抗病性狀有關(guān)的分子標記,通過分子選育從遺傳本質(zhì)上提高豬群的一般抗病力和特殊抗病力,是從長遠角度解決豬病發(fā)生的有效手段之一。豬的抗病性狀多表現(xiàn)為中遺傳力或低遺傳力,通過傳統(tǒng)的育種方法難以對豬的抗病力實施有效的遺傳改良,所以,抗病育種可以通過間接方法即對抗病力性狀(免疫指標或免疫性狀)進行選擇[1]。免疫力和抗病力有很密切的關(guān)系,因此可以通過增強機體的一般免疫力來間接提高機體的抗病能力。Toll樣受體(Toll like receptors, TLRs)最早被發(fā)現(xiàn)在果蠅的Toll蛋白,它不僅可以參與調(diào)節(jié)胚胎果蠅背腹側(cè)極性的形成,而且還直接介導果蠅微生物感染的天然免疫反應[2]。在哺乳動物中,Toll樣受體基因家族屬于I型跨膜蛋白受體,并廣泛分布在胃腸道和呼吸道等組織中,在機體固有免疫和誘導的適應性免疫,特別是先天免疫活化的防御機制中起到重要作用[3]。近些年來,豬Toll樣受體(TLRs)已經(jīng)被廣泛研究,并且它們在先天免疫中的巨大重要性目前正在被揭示;同時豬是重要的模式動物,其具有TLR的主要的樹突細胞群體與人類是相似的,對豬源TLRs的研究也將為人類疾病研究和疫苗的開發(fā)提供了有效的模型和手段,具有重要的科學意義和應用前景。為此,本文主要綜述了國內(nèi)外對豬源TLRs的種類、功能、介導的信號通路以及在豬抗病育種中應用的相關(guān)研究進展,旨在為進一步探討TLRs對豬免疫調(diào)控作用的機制研究提供理論參考。
在人類中已經(jīng)發(fā)現(xiàn)了13種TLR蛋白;在豬中,已經(jīng)克隆并鑒定了TLR1-10這10種TLR蛋白,在豬中已經(jīng)鑒定的10個TLR基因具體信息見表1。
豬TLR1基因定位于8號染色體上,它的開放閱讀框(open reading frame, ORF)長2 391 bp,并編碼796個氨基酸[4]。豬TLR2基因的ORF長2 358 bp,編碼785個氨基酸,其氨基酸序列與人的同源性為72.3%,與鼠的同源性為61.0%;TLR2胞外區(qū)有4個富含亮氨酸的重復單位(leucine-rich repeat, LRR),膜外區(qū)含6個N連接的糖基化位點,膜外區(qū)蛋白是彎曲狀的螺旋結(jié)構(gòu),由背側(cè)的α螺旋和內(nèi)側(cè)的β折疊平行交替排列形成,它的N末端有信號肽[4,6]。豬TLR3基因的ORF長2 718 bp,編碼906個氨基酸,為跨膜蛋白,氨基酸序列與哺乳動物的同源性較高,其次是雞,而與斑馬魚的同源性較低[7-9]。另外,管齊賽等[10]克隆的TLR3剪接體基因pTLR3a和pTLR3b由第3外顯子部分或全部缺失組成,使得其缺失部分蛋白質(zhì)的編碼框發(fā)生改變,導致TLR3蛋白二級結(jié)構(gòu)發(fā)生了較大的變化。TLR4基因ORF長2 526 bp,編碼了785個氨基酸殘基,其胞外區(qū)包含13個LRR,膜外區(qū)有8個糖基化位點,膜外區(qū)蛋白是彎曲狀的螺旋結(jié)構(gòu),由背側(cè)的α螺旋和內(nèi)側(cè)的β折疊平行交替排列形成,它的N末端存在信號肽[11-13]。楊秀芹等[14]克隆的野豬TLR4基因也是由胞外區(qū)、跨膜區(qū)和胞內(nèi)區(qū)3部分組成,在多肽鏈上依次排列著信號肽和LRRs等結(jié)構(gòu)功能域。TLR5基因ORF長2 571 bp,由642個氨基酸組成的胞外區(qū)、23個氨基酸組成的跨膜區(qū)和191個氨基酸組成的胞內(nèi)區(qū)組成;胞外區(qū)具有LRR結(jié)構(gòu)域,胞內(nèi)區(qū)具有TIR結(jié)構(gòu)域(Toll/Interleukin-1 receptor domain),表現(xiàn)出典型的TLR家族結(jié)構(gòu)特征[14-18]。TLR6基因和TLR1基因一樣,定位于8號染色體上,它的開放閱讀框(ORF)長2 391 bp,并編碼796個氨基酸,總氨基酸序列和TLR1具有71%的相似性,特別是在細胞質(zhì)區(qū)域高達92%,這與在人TLR1和TLR6之間的高度相似性是一致的,表明TLR1和TLR6具有高度同源性[5]。豬TLR7基因ORF長3 150 bp,編碼1 050個氨基酸殘基,在進化過程中具有高度保守性,親緣關(guān)系越近,同源性越高,與牛和綿羊的同源性較高,與馬、狗、人、家鼠、褐鼠的次之;其胞外區(qū)包含LRR-RI結(jié)構(gòu)域,胞內(nèi)包含TIR結(jié)構(gòu)域,也是TLR家族典型的結(jié)構(gòu)特征[8,19-25]。
表1豬Toll樣受體基本信息
Table1Pig Toll-like receptor information
豬TLR8基因的ORF長3 087 bp,編碼1 029個氨基酸。同源性分析結(jié)果顯示,與牛、馬、羊和人的同源性較高,與鼠的同源性次之,與雞的同源性最低,其蛋白分子結(jié)構(gòu)預測表明豬TLR8為跨膜蛋白[8,26]。豬TLR9基因ORF長3 093 bp,編碼1 030個氨基酸殘基,包含24個氨基酸構(gòu)成的信號肽序列,屬于I型跨膜受體,具有LRR結(jié)構(gòu)域和TIR結(jié)構(gòu)域;與牛、馬、羊和人的同源性較高,與家鼠、褐鼠的次之[27-29]。豬TLR10基因ORF長2 862 bp,編碼811個氨基酸,豬TLR10和人TLR10的氨基酸序列有80%的相似性[4]。因此,在整個TLRs家族中,TLRs在進化過程中具有高度保守性,它們的分子結(jié)構(gòu)與其分子功能相適應,在機體中扮演著不同卻重要的角色。
Bergman等[30]對野豬和家豬(漢普夏、長白和大白)的TLR1、TLR2和TLR6基因的開放閱讀框進行了測序,在TLR1、TLR2和TLR6中分別檢測到20,27和26個SNPs;并且這3個基因在野豬中的SNP頻率要相對低于家豬。Shinkai等[15]研究發(fā)現(xiàn)在來自11個品種的96頭豬的和TLR1、TLR2、TLR4、TLR5和TLR6基因的編碼序列中分別包含了21、11、7、13和11個引起氨基酸取代的SNPs。在Muneta等[31]的研究中,分析了7個不同品種豬的TLR2的單核苷酸多態(tài)性(C406G)的基因分型,結(jié)果發(fā)現(xiàn)C406G突變僅在日本的長白豬品種中發(fā)現(xiàn)。劉勝貴等[32]發(fā)現(xiàn)豬TLR2基因多態(tài)性程度低,僅在編碼區(qū)第1 255位點上存在1個單堿基突變位點,并且該位點為異義突變。在陳月嬋等[33]的研究中,豬TLR3基因存在3個核苷酸的差異,分別是c.36C>T、c.2643T>C和c.2649A>G,且均為同義突變。李海濤等[34]在野豬、民豬、杜洛克、長白豬和大白豬的TLR3基因中檢測出了8個SNPs,并且各種基因型在不同豬品種中的分布存在著明顯的差異。邢明偉[35]等分析了豬TLR3基因A1116T點突變的功能,并在細胞水平上初步確定了該點突變對TLR3的配體識別、信號轉(zhuǎn)導能力具有一定影響。Palermo等[36]的研究發(fā)現(xiàn)豬TLR4基因存在34個SNP,17個在編碼區(qū),17個在非編碼區(qū),5個非同義突變聚集在外顯子3上。潘章源等[37-38]在豬TLR4基因外顯子1中分離檢測到3個等位基因,6種基因型,且TLR4基因外顯子1的多態(tài)性在中國地方豬品種和引進品種中的分布存在極顯著的差異。劉筱等[39]在中國地方豬品種(梅山豬、二花臉、蘇鐘豬、姜曲海豬、金華豬和淮豬)、引進品種(大約克和皮特蘭)等9個群體的TLR4編碼區(qū)檢測到C1027A 突變可引起編碼氨基酸性質(zhì)的改變。朱衛(wèi)華等[40]也在霍壽黑豬和長白豬的TLR4基因第3外顯子檢測到了1個錯義突變C1027A,并且該多態(tài)位點基因型在霍壽黑豬和長白豬2個中外豬品種間的分布存在極顯著差異。丁月云等[41]對安徽地方豬皖南黑豬、圩豬、安慶六白豬、霍壽黑豬及引進品種長白豬共5個群體354個樣本的TLR4基因外顯子3部分片段的遺傳變異進行了檢測,發(fā)現(xiàn)G417A、C1027A的各基因型在5個中外豬品種間的分布存在極顯著差異。周波等[42]在所檢測的5個品種(梅山豬、新淮豬、大白豬、長白豬和杜洛克豬)TLR4基因的SNP中發(fā)現(xiàn)了2個能引起編碼的氨基酸性質(zhì)發(fā)生改變。陳月嬋等[43]對北京黑豬、長白豬、野豬、杜洛克豬、大白豬、民豬6個中外豬品種TLR4基因第3外顯子1 824位點的G / A和3′UTR的208位點T / C多態(tài)進行群體遺傳學分析,發(fā)現(xiàn)它們各基因型在不同豬品種間的分布均存在顯著或極顯著差異。Ju等[44]克隆了巴馬香豬TLR4基因的選擇性剪接變體,發(fā)現(xiàn)TLR4基因的第2外顯子存在167 bp的短剪接體,并且該蛋白被推定為一種截短的膜蛋白,由缺乏信號肽的膜外區(qū)、跨膜區(qū)和膜內(nèi)區(qū)組成。楊秀芹等[45]比較分析了抗病性差異明顯的民豬和長白豬的TLR5基因的變異情況,結(jié)果發(fā)現(xiàn)TLR5基因c. 834 T>G點突變在這2個品種間的分布具有極顯著差異,民豬以G為優(yōu)勢等位基因,長白豬以T為優(yōu)勢等位基因。魏麟等[46]發(fā)現(xiàn)豬TLR6基因片段MspI酶切位點具有兩種等位基因T / C,并且C等位基因是群體中的優(yōu)勢等位基因。Bergman[47]發(fā)現(xiàn)TLR1和TLR2基因在家豬中比在野豬中存在更多的SNPs。Clop等[48]對10個豬品種的10個TLR基因進行了基因分型研究,最終鑒定了306個SNPs,其中147個變異位點能夠引起氨基酸的改變。豬10種TLRs的CDS區(qū)中多態(tài)性的分布情況見表2。
在整體上,TLRs家族雖然高度保守,但仍具有一定的遺傳變異多樣性,尤其是一些非同義突變可能對蛋白結(jié)構(gòu)甚至對基因功能產(chǎn)生影響。并且在不同豬品種中,TLRs的遺傳變異也具有一定的差異性,這跟不同豬品種的抗逆性或抗病性也是有一定聯(lián)系的,例如抵抗力相對較高的野豬、藏豬、民豬、梅山豬等豬品種中,TLRs的多態(tài)性普遍偏低。因此,篩查顯著影響表型的變異位點將對豬的抗病育種具有重要的意義。
Uddin等[50]的研究發(fā)現(xiàn)豬TLR家族(TLR1-10)基因在所檢測的腸相關(guān)淋巴組織(胃粘膜、十二指腸,空腸和回腸和腸系膜淋巴結(jié))中都有mRNA表達,并且TLR3在TLRs中顯示出最高的mRNA豐度;成年豬腸系膜淋巴結(jié)中的TLR1和TLR6的表達量高于新生豬;TLR2、TLR3和TLR9的蛋白質(zhì)定位顯示TLR表達在細胞固有層中,并且在腸中的淋巴集結(jié)以及在腸系膜淋巴結(jié)中的淋巴濾泡周圍和內(nèi)部豐度較高。Marantidis等[51]發(fā)現(xiàn),所有檢測的TLRs基因都在雄性和雌性豬的生殖器官中表達,其中TLR3和TLR5表達較高,TLR9最低;在胚胎中,TLR1顯示出高表達水平。Cheng等[52]調(diào)查了約克夏和藏豬的胸腺、脾、血液、扁桃體、腸系膜和肺門淋巴結(jié)等組織中TLR基因(TLR1-TLR9)的表達模式,發(fā)現(xiàn)所有組織中均檢測到所有TLR基因的mRNA表達,具有廣譜的表達特點。在王鵬飛[9]的研究中,TLR3基因在肝、脾、腎和胃中均有較高豐度的表達,在心臟、肺、大腦、肌肉、子宮、淋巴結(jié)、大腸和小腸中表達較低,而在小腦和扁桃體中幾乎檢測不到其表達。lvarez等[53]發(fā)現(xiàn)豬TLR4 mRNA在樹突狀細胞、單核細胞、巨噬細胞以及骨髓、胸腺、淋巴結(jié)、脾、肝、腎臟和卵巢等組織中均有表達。同樣地,邱小田等[54]通過RT-PCR表明豬源TLR4 mRNA在心臟、肝臟、脾臟、肺、腎臟、骨骼肌、胸腺、淋巴結(jié)、白質(zhì)、灰質(zhì)、睪丸和小腸等12種組織中均有表達,并且在肺中有最高的表達豐度。JU等[44]通過qRT-PCR定量檢測TLR4可變剪接變體的表達,發(fā)現(xiàn)熱應激豬的外周血單核細胞中TLR4的選擇性剪接變體(TLR4-ASV)的表達水平顯著增加。Wang等[55]檢測了大白豬、蘇太豬和梅山豬中TLR4基因的組織表達譜,發(fā)現(xiàn)TLR4基因在所檢測的心、肝、脾、肺、腎、胃、肌肉、胸腺、淋巴、十二指腸和空腸組織中均有表達,并且在免疫組織中具有相對較高的表達豐度,但在肺中表達水平最高。Ansari等[56]通過免疫組化技術(shù)分析TLR4蛋白在懷孕母豬子宮中的分布,發(fā)現(xiàn)TLR4蛋白在子宮的不同組織學層中均有表達。楊秀芹等[14]發(fā)現(xiàn)野豬TLR4和TLR5基因在所檢測的各組織內(nèi)(胃、腎、脾、肺、心、肝、腸和肌肉)都有不同豐度的表達。朱浩妮[57]通過對榮昌仔豬TLR基因的表達發(fā)育規(guī)律的檢測,發(fā)現(xiàn)TLR2、3、4、7、9的表達量在肝臟、脾臟、肺、腸系膜淋巴結(jié)和空腸組織中存在明顯的差異,并且總體上隨著日齡的增加,表達量顯著增加。Balachandran等[58]通過免疫組化和免疫電子顯微鏡研究表明,TLR10在豬的肺內(nèi)血管內(nèi)皮和平滑肌中均有表達。
表2豬模式識別受體PRRs的CDS區(qū)中多態(tài)性的分布
Table2Distribution of polymorphisms in CDS of porcine pattern recognition receptors (PRRs)
基因GeneSNP總數(shù)SNPsum總計Total非同義Nonsynonymous同義Synonymous配體區(qū)SNPSNPinregionforligandrecognition總計Total非同義Nonsynonymous同義Synonymous信號轉(zhuǎn)導區(qū)SNPSNPinregionforsignaltransduction總計Total非同義Nonsynonymous同義Synonymous參考資料ReferenceTLR1452124341717514[49]TLR223111217107312[49]TLR31569936202[49]TLR413761073101[49]TLR535132221111012111[49]TLR62011914104202[49]TLR7153121239202[49]TLR82291320713000[49]TLR92571818513101NCBITLR10634221352312945NCBI
綜上,不同的TLRs具有不同的組織表達水平,并且在不同時間段的表達水平也有所差異,不同豬品種之間也存在表達差異。TLRs的表達與機體的免疫調(diào)控密切相關(guān),這也從側(cè)面揭示了不同豬品種、不同生長發(fā)育階段以及不同組織中的TLRs表達在機體免疫應答中發(fā)揮的調(diào)控作用。圖1展示了不同TLRs在所檢測的不同組織中的整體表達水平情況,總體來說在大多數(shù)組織中TLR1-TLR10都有表達,并且TLR3的表達水平相對較高,TLR2和TLR6次之,TLR9和TLR10相對較低,除了基因本身功能,這與所報道的文獻不是很多也有一定的關(guān)系。
A軸的1~10代表TLR1-TLR10;B軸的1~16代表肝、脾、肺、腎、胃、肌肉、胸腺、淋巴、十二指腸、空腸、回腸、血液、扁桃體、胚胎、睪丸和卵巢等16個組織;C軸代表相對表達水平,并定義3為最高表達水平,2為中等表達水平,1為普遍表達水平,0.5為低表達水平Number 1-10 on A axis represented TLR1-TLR10; Number 1-16 on B axis represented 16 different tissues such as liver, spleen, lung, kidney, tummy, muscle, thymus, lymph, duodenum, jejunum, ileum, blood, tonsil, embryo, testes and ovary. And on C axis number 3 was defined as the highest expression level, number 2 was defined as middle expression level, number 1 was defined as common expression level and number 0.5 was defined as low expression level圖1 豬源TLRs在不同組織中的表達模式Fig.1 Expression pattern in different tissues of pig’s TLRs
人的TLRs信號通路已經(jīng)被研究的非常深入,除了TLR10,其他TLRs的配體均被明確鑒定(圖2)。在哺乳動物(包括豬)體內(nèi),識別細胞外微生物成分或結(jié)構(gòu)的TLRs(如 TLR1、2、4、5和 6)表達在宿主細胞膜表面,識別病毒或細菌核酸成分的TLRs(如 TLR3、7、8和9)表達在細胞內(nèi)內(nèi)吞小泡上。與人源類似,豬源TLRs信號通路也主要分為髓樣分化因子88(myeloid differentiation factor 88, MyD88)依賴通路、β干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR receptor domain containing adaptor inducing interferon-β,TRIF)依賴通路(又稱TICAM1依賴通路)[59]、小GTP酶通路[60]和磷脂酰肌醇(PIPs)通路[61]。其中最主要的通路是MyD88依賴通路,它可以最終激活核因子-κB(nuclear factor-κB, NF-κB),導致許多目的基因表達上調(diào)。所有的TLRs均包含TIR結(jié)構(gòu)域,MyD88的TIR結(jié)構(gòu)域都可與之結(jié)合;MyD88依賴通路是除TLR3外所有TLRs的共同通路,因此MyD88依賴通路是最主要的TLR信號通路[62-64]。
豬MyD88基因位于豬第13號染色體,編碼293個氨基酸的序列,與人相比同源性達到87%~88%。其在各組織中廣泛表達,特別是在免疫組織和腸道組織中高表達,MyD88作為TLRs/IL-1R信號通路中一個關(guān)鍵接頭分子,在傳遞炎癥信號和增強炎癥強度,引發(fā)腸道炎癥介質(zhì)的釋放中具有重要的作用[65-66]。Dai等[67]發(fā)現(xiàn)在MyD88基因沉默的PK15細胞中,TLR4和IL-1β的轉(zhuǎn)錄水平顯著降低;當細胞被LPS(0.1 μg·mL-1)誘導6 h后,促炎細胞因子的總體水平均發(fā)生上調(diào)且IL-1β、TNF-α、IL-6、IL-8和IL-12的水平對照組顯著高于RNAi組,揭示MyD88基因沉默后可以減少TLR4信號轉(zhuǎn)導,抑制促炎細胞因子的釋放,并一定程度上導致免疫抑制。圖3主要揭示了MyD88介導的豬源TLRs信號的傳導和免疫調(diào)控。
Muneta等[5]發(fā)現(xiàn)抗磷酸TLR2和TLR6抗體能夠協(xié)同阻斷豬肺泡巨噬細胞由豬肺炎支原體刺激的腫瘤壞死因子-α(TNF-α)的產(chǎn)生,表明TLR2和TLR6對豬肺泡巨噬細胞中識別豬肺炎支原體具有重要的作用。Uenishi等[49]發(fā)現(xiàn)豬PRR基因的多態(tài)性可能與豬的疾病易感性有關(guān),并且TLR2的特定等位基因顯示出肺炎感染趨勢的增加。方曉敏等[70]發(fā)現(xiàn)豬TLR4基因C1027A的C等位基因極可能是豬抗支原體肺炎感染的優(yōu)勢基因。劉筱等[71]發(fā)現(xiàn)蘇鐘豬感染肺炎支原體后,可引起TLR2和TLR4表達的增加以及肺內(nèi)促炎因子TNF-α、IL-1β的釋放,導致肺部炎癥反應。Shinkai等[72]發(fā)現(xiàn)杜洛克豬TLR5基因中特異單倍型(a/b和a/d)能夠引起放線桿菌肺炎支原體(APP)血清型2和5疫苗接種的應答增加。因此,對這些TLRs確證的影響支原體感染的變異位點的篩選將對豬抗支原體性狀的遺傳改良產(chǎn)生重要意義。
圖片資料引用自文獻[68]Image data was cited from the reference [68]圖2 人源TLRs及其所識別的微生物相關(guān)分子模式(MAMPs)Fig.2 Human TLRs and their identified microbial related molecular patterns (MAMPs)
圖片資料引用自文獻[69];這里顯示的只有參與信號通路的代表性分子,其中虛線箭頭表示信號傳遞,實線箭頭表示分子遷移Image data was cited from the reference [69]. Only representative molecules participating in the signaling pathway were shown here. Dotted arrows indicated the transmission of signals. Arrows with solid lines showed the translocation of the molecules圖3 豬源TLRs分子誘導的不同類型信號通路的示意圖Fig.3 Schematic illustration of different types of signaling pathway induced by porcine TLR molecules
Liu等[73]發(fā)現(xiàn)用豬繁殖與呼吸綜合征病毒(porcine reproductive and respiratory syndrome virus, PRRSV)感染豬后,TLR2、3、4、7、8 的表達量均發(fā)生顯著上調(diào)。Miguel等[74]發(fā)現(xiàn)PRRSV的感染增加了支氣管淋巴結(jié)中TLR3、TLR4和TLR7的mRNA表達水平,并導致促炎細胞因子表達水平增加。Wang等[75]對豬TLR3基因編碼區(qū)5個已知的非同義SNP進行分析,結(jié)果發(fā)現(xiàn),SNP c.933A>G能顯著降低Poly (I∶C)反應,還可導致TLR3基因高度保守的第12亮氨酸重復區(qū)域中的保守氨基酸發(fā)生改變。Duan等[76]發(fā)現(xiàn),體外培養(yǎng)的豬淋巴細胞與圓環(huán)病毒(porcine circovirus,PCV)2型共孵育時,MyD88蛋白的表達明顯增加,并且TLR1,TLR3,TLR4和TLR9的mRNA表達顯著上調(diào),表明TLR-MyD88-NF-κB信號通路在PCV2誘導淋巴細胞的免疫過程中發(fā)揮了重要的調(diào)控功能。王建立等[77]發(fā)現(xiàn)PCV2感染初期仔豬出現(xiàn)了免疫應答,而病毒感染后期,TLR2和TLR4的mRNA表達水平下調(diào),仔豬免疫應答受到一定程度的抑制;在病毒感染后28 d,TLR2和TLR4的mRNA表達趨勢接近對照組,即感染后28 d模式識別受體mRNA開始恢復轉(zhuǎn)錄水平,表明此時豬細胞模式識別受體(PRR)的功能也開始恢復,這樣有利于發(fā)揮巨噬細胞執(zhí)行清除病毒的功能。Shinkai等[72]發(fā)現(xiàn)杜洛克豬TLR5基因中特異單倍型(a/b和a/d)顯示針對丹毒(erysipelas, ER)血清型接種的抗體應答降低。在周敬禹[78]的研究中,輪狀病毒(poreine rotavirus, PRV)感染組中IPEC-J2細胞的TLR3及NF-κB的mRNA 表達水平隨感染時間延長而不斷加強,且差異顯著。曹志[79]發(fā)現(xiàn)豬瘟病毒(classical swine fever virus, CSFV)能顯著上調(diào)TLR2、TLR4和TLR7基因的表達。Brogaard等[80]通過檢測豬感染甲型流感病毒(influenza A virus, IAV)前和感染后第1、3和14天的先天免疫因子mRNA轉(zhuǎn)錄物的差異表達,發(fā)現(xiàn)TLR4、TLR7和TLR8的表達水平在干擾后24 h發(fā)生顯著上調(diào),其中TLR4基因上調(diào)到最高水平;而在第14天,TLR3、TLR4和TNF基因表達開始下調(diào),并接近未感染水平,提示感染清除;豬的IAV感染證實了感染期間和之后免疫因子PRR等的mRNA調(diào)節(jié)的動態(tài)變化,先天免疫信號的傳導在IAV感染過程中發(fā)揮了重要的調(diào)控作用。Borrego等[81]發(fā)現(xiàn)口蹄疫病毒(foot and mouth disease virus, FMDV)模擬物能夠觸發(fā)豬細胞模式識別受體(PRR)參與的快速先天免疫反應,并發(fā)現(xiàn)巴非洛霉素A1能夠抑制體外培養(yǎng)的豬外周血單核細胞(PBMCs)內(nèi)源性TLR3、7、8和9的信號傳導。由此可見,TLRs的表達和遺傳變異在PRRSV、PCV、ER、PRV、CSFV、IAV和FMDV等病毒的識別以及免疫反應中確實發(fā)揮了重要的調(diào)控作用,有必要對其表達調(diào)控的分子機制進行進一步分析驗證,深入挖掘?qū)Σ《厩秩揪哂锌剐宰饔玫倪z傳標記,從而實施抗病育種。
王攀等[82]發(fā)現(xiàn)TLR2基因表達水平在內(nèi)毒素脂多糖(Lipopolysaccharide, LPS)刺激在五指山小型豬近交系主動脈內(nèi)皮細胞后顯著升高,提示TLR2基因能夠介導細胞炎癥相關(guān)因子的表達。Jang等[83]發(fā)現(xiàn)喂食鼠李糖桿菌可增加豬氣管支氣管淋巴結(jié)中TLRs和促炎因子TNF-α的表達,表明TLRs在鼠李糖桿菌引起的炎癥反應中發(fā)揮了重要的調(diào)控作用。劉筱等[39]發(fā)現(xiàn)蘇鐘豬TLR4編碼區(qū)C1027A突變能影響TLR4識別內(nèi)毒素脂多糖(LPS)的能力,等位基因C為蘇鐘豬抗革蘭陰性菌感染的優(yōu)勢基因。Wang等[84]檢測比較了TLR4基因在蘇太斷奶仔豬F18大腸埃希菌敏感型和抗性型個體中的表達水平,發(fā)現(xiàn)蘇太豬大腸埃希菌F18敏感型個體中TLR4表達水平要顯著高于抗性型個體,TLR4基因表達的下調(diào)與斷奶仔豬對大腸埃希菌F18的抗性相關(guān)。Finamore等[85]發(fā)現(xiàn)產(chǎn)腸毒素大腸埃希菌(ETEC)誘導豬TLR4和MyD88蛋白水平的增加,磷酸化的IKKα、IKKβ、IκBα和NF-κB亞基p65以及炎癥細胞因子IL-8和IL-1β的產(chǎn)生。Zhang等[86]發(fā)現(xiàn)注射LPS的豬具有較高的TLR4基因表達水平和血漿TNF-α濃度,表明TLR4 基因在LPS引起的急性炎癥中發(fā)揮了重要的調(diào)控作用。孫麗等[87]研究發(fā)現(xiàn)LPS誘導豬小腸上皮細胞系(IPEC-J2)后TLR4基因及其信號通路關(guān)鍵基因表達水平均發(fā)生顯著上調(diào),推測LPS誘導引起TLR4信號途徑的信號傳遞,再經(jīng)過級聯(lián)免疫效應引起下游促炎細胞因子的釋放,最終導致炎癥反應。在Radhakrishnan等[88]的研究中,抑制TLR4信號通路能夠緩減高脂肪飲食(HFD)誘導的豬結(jié)腸/腸系膜脂肪炎癥。Arnal等[89]發(fā)現(xiàn)在母豬分娩期間用阿莫西林治療過的成年后代,直腸消化道中的結(jié)腸堿性磷酸酶(AP)、TLR2和TLR4濃度增加。Guo等[90]通過鉤端螺旋體脂多糖(L-LPS)刺激豬成纖維細胞,發(fā)現(xiàn)TLR2在L-LPS刺激后24 h內(nèi)表達明顯上調(diào),而TLR4表達相對較弱;同時MyD88、IL-6和IL-8基因表達顯著上調(diào),并推測豬細胞可以通過L-LPS刺激激活TLR2而不是TLR4,從而誘導細胞因子表達。因此,TLR2和TLR4都在細菌內(nèi)毒素LPS的侵染過程中發(fā)揮了重要的調(diào)控作用,TLR4與LPS引起的急性炎癥具有密切聯(lián)系,而TLR2可能在L-LPS刺激過程中發(fā)揮著比TLR4更直接的作用。
TLR5能夠識別細菌鞭毛蛋白,在免疫系統(tǒng)中發(fā)揮重要作用。Li等[91]研究發(fā)現(xiàn)TLR5基因中的SNP可以改變宿主對鞭毛蛋白的免疫應答,并且對人類和其他動物感染性疾病的易感性具有影響,G2239A對受體功能有影響。Yang等[92]調(diào)查了來自5個豬品種的83個個體中TLR5基因編碼區(qū)的單核苷酸多態(tài)性(SNPs),鑒定了總共19個中等多態(tài)性SNP(0.25 李文華等[93]建立了2型豬鏈球菌(Streptococcussuis2, SS2)感染J774A.1細胞模型,并發(fā)現(xiàn)TLR2基因的mRNA水平在感染SS2后明顯上調(diào),并且感染組TNF-α含量也極顯著升高,但阻斷TLR2后TNF-α表達顯著降低,提示TLR2基因及其信號通路的活性能夠影響SS2引起的細胞自噬作用。朱靜等[94]發(fā)現(xiàn)SS2莢膜唾液酸成分缺失后能夠顯著激活宿主單核/巨噬細胞TLR2分子,導致通路下游AKT磷酸化水平升高,核轉(zhuǎn)錄因子NF-κB激活,從而導致炎癥因子釋放,使得細菌更加容易被機體識別并清除,導致毒力下降。TLR2不僅與L-LPS刺激有關(guān),更與SS2的侵染有密切聯(lián)系。在一定范圍內(nèi),TLR2的高表達可能有利于細菌侵染的抗性調(diào)控。 選擇性剪接是真核生物中的細胞機制,其導致基因產(chǎn)物的相當多樣性,它在幾種疾病和細胞信號調(diào)節(jié)中起重要作用[95]。熱應激是誘導豬免疫抑制的主要因素,而關(guān)于豬的選擇性剪接和熱應激之間的相關(guān)性了解甚少,Ju等[44]研究了豬TLR4基因剪接體的mRNA水平與熱應激的關(guān)系,結(jié)果發(fā)現(xiàn)應激豬中TLR4基因剪接體的mRNA水平顯著上調(diào);與對照豬相比,熱應激組外周血單個核細胞(peripheral blood mononuclear cell,PBMC)中TLR4的選擇性剪接變體(TLR4-ASV)的表達水平增加了2~3倍,提示熱休克可能通過調(diào)節(jié)TLR4及其可變剪接變體的表達調(diào)節(jié)宿主免疫應答。 自從Toll樣受體家族(TLRs)被發(fā)現(xiàn)以來,有關(guān)其分子克隆、表達定位和功能鑒定等研究進展非常迅速。由于其在機體免疫反應過程中發(fā)揮的重要的調(diào)控作用,已經(jīng)成為人類、畜禽類甚至魚類相關(guān)生物學功能的研究熱點。TLRs可利用MyD88和TRIF等介導的信號傳導通路來激活不同的轉(zhuǎn)錄因子,以引起特異性免疫應答。最重要的是,TLRs不僅在天然免疫反應中發(fā)揮了重要的作用,還在一些由支原體、病毒、細菌等感染引起的免疫應答過程中發(fā)揮了重要的調(diào)控功能。隨著分子生物學的迅猛發(fā)展,利用現(xiàn)代高新技術(shù)(高通量測序技術(shù)、全基因組關(guān)聯(lián)分析、基因編輯技術(shù)等),通過對豬源TLRs進行基因功能和調(diào)控的分子機制研究,發(fā)掘有意義的分子標記,從遺傳的角度,通過提高機體免疫力的分子選育間接提高抗病性能,將對豬的抗病育種產(chǎn)生深遠的影響。 [1] 王超,趙書紅,朱猛進. 豬抗病育種的相關(guān)問題及研究進展[J]. 中國畜牧雜志,2014,50(22):67-72. WANG C, ZHAO S H, ZHU M J. Related problems and research progress in anti-disease breeding of pig[J].ChineseJournalofAnimalScience, 2014, 50(22):67-72. (in Chinese with English abstract) [2] MEDZHITOV R. Toll-like receptors and innate immunity[J].NatureReviewsImmunology, 2001, 1(2):135-145. [3] BEUTLER B. The Toll-like receptors: analysis by forward genetic methods[J].Immunogenetics, 2005, 57(6):385-392. [4] MUNETA Y, UENISHI H, KIKUMA R, et al. Porcine TLR2 and TLR6: identification and their involvement in Mycoplasma hyopneumoniae infection[J].JournalofInterferonandCytokineResearch, 2003, 23(10):583-590. [5] SHINKAI H, MUNETA Y, SUZUKI K, et al. Porcine Toll-like receptor 1, 6, and 10 genes: complete sequencing of genomic region and expression analysis[J].MolecularImmunology, 2006, 43(9):1474-1480. [6] 徐漢進,雍艷紅,安立龍,等. 巴馬香豬TLR2基因cDNA的克隆及生物信息學分析[J]. 中國獸醫(yī)學報,2010,30(7):949-953. XU H J, YONG Y H, AN L L, et al. Cloning and bioinformatics analysis ofTLR2 cDNA in Bama miniature pig[J].ChineseJournalofVeterinaryScience, 2010, 30(7):949-953. (in Chinese with English abstract) [7] SANG Y, ROSS C R, ROWLAND R R R, et al. Toll-like receptor 3 activation decreases porcine arterivirus infection[J].ViralImmunology, 2008, 21(3):303-314. [8] 張莉莉,白娟,王先煒,等. 豬Toll樣受體3, 7和8基因的克隆與序列分析[J]. 中國預防獸醫(yī)學報,2010 (9):727-730. ZHANG L L, BAI J, WANG X W, et al. Cloning and sequencing analysis of porcine Toll-like receptor 3, 7 and 8 genes[J].ChineseJournalofPreventiveVeterinaryMedicine, 2010 (9):727-730. (in Chinese with English abstract) [9] 王鵬飛. 豬TLR3基因及SP-C,SP-D基因啟動子功能分析[D]. 泰安:山東農(nóng)業(yè)大學, 2014. WANG P F. Analysis on the promoter function of porcineTLR3 andSP-C,SP-Dgenes [D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract) [10] 管齊賽,房永祥,賈懷杰,等. 合作豬TLR3及其剪接體的基因克隆與序列分析[J]. 中國獸醫(yī)科學,2012,42(7):731-736. GUAN Q S, FANG Y X, JIA H J, et al. Cloning and sequence analysis ofTLR3 and its spliceosomes in Hezuo pig[J].ChineseVeterinaryScience, 2012, 42(7):731-736. (in Chinese with English abstract) [11] THOMAS A V, BROERS A D, VANDEGAART H F, et al. Genomic structure, promoter analysis and expression of the porcine (Sus scrofa)TLR4 gene[J].MolecularImmunology, 2006, 43(6):653-659. [12] DAI Q X, YAO Y F, QI Z C, et al. Sequence characterization and phylogenetic analysis of toll-like receptor (TLR) 4 gene in the Tibetan macaque (Macacathibetana)[J].GeneticsandMolecularResearch, 2015, 14(1):1875-1886. [13] 巨向紅,徐漢進,雍艷紅,等. 巴馬香豬Toll樣受體TLR4基因cDNA的克隆及生物信息學分析[J]. 中國實驗動物學報,2010,18(3):185-190. JU X H, XU H J, YONG Y H, et al. Cloning and bioinformatics analysis ofTLR4 cDNA in Bama miniature pig[J].ActaLaboratoriumAnimalisScientiaSinica, 2010, 18(3): 185-190. (in Chinese with English abstract) [14] 楊秀芹,李海濤,徐揚,等. 野豬Toll樣受體基因的結(jié)構(gòu)和功能鑒定[J]. 獸類學報,2011,31(4):428-432. YANG X Q, LI H T, XU Y, et al. Structural and functional identification of Toll-like receptor genes in wild boar[J].ActaTheriologicaSinica, 2011, 31(4):428-432. (in Chinese with English abstract) [15] SHINKAI H, TANAKA M, MOROZUMI T, et al. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1),TLR2,TLR4,TLR5, andTLR6 genes[J].Immunogenetics, 2006, 58(4):324-330. [16] 魏麟,黎曉英,陳斌,等. 豬Toll樣受體5基因cDNA克隆, 蛋白質(zhì)序列分析及其意義[J]. 中國預防獸醫(yī)學報,2010,32(2):142-144. WEI L, LI X Y, CHEN B, et al. Cloning and sequence of porcine toll-like receptor 5 gene[J].ChineseJournalofPreventiveVeterinaryMedicine, 2010, 32(2): 142-144. (in Chinese with English abstract) [17] 孫小林,潘志明,方強,等. 我國地方品種姜曲海豬TLR5基因的克隆, 表達及鑒定[J]. 細胞與分子免疫學雜志,2012,28(4):436-438. SUN X L, PAN Z M, FANG Q, et al. Cloning, expression and identification ofTLR5 gene from native Chinese variety Jiangquhai pigs[J].ChineseJournalofCellularandMolecularImmunology, 2012, 28(4):436-438. (in Chinese with English abstract) [18] 李海濤,陳月嬋,牛艷春,等. 豬TLR5基因定點突變表達載體構(gòu)建[J]. 東北農(nóng)業(yè)大學學報,2012,43(6):11-15. LI H T, CHEN Y C, NIU Y C, et al. Construction of expression vector of porcineTLR5 gene with site directed mutagenesis[J].JournalofNortheastAgriculturalUniversity, 2012, 43(6):11-15. (in Chinese with English abstract) [19] AlVES M P, NEUHAUS V, GUZYLACK P L, et al. Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets[J].GeneTherapy, 2007, 14(10):836-844. [20] 李強,李學偉,朱礪,等. 豬Toll樣受體7 cDNA的克隆及序列分析[J]. 畜牧獸醫(yī)學報,2008,39(5):531-535. LI Q, LI X W, ZHU L, et al. Cloning and sequence analysis of cDNA encoding porcine Toll-like receptor 7[J].ChineseJournalofAnimalandVeterinarySciences, 2008, 39(5):531-535. (in Chinese with English abstract) [21] 段鳳云,房永祥,陳國華,等. 豬Toll樣受體7基因的克隆及序列分析[J]. 細胞與分子免疫學雜志,2010 (6):599-601. DUAN F Y, FANG Y X, CHEN G H, et al. Cloning and sequence analysis of Toll-like receptor 7 gene in pigs[J].ChineseJournalofCellularandMolecularImmunology, 2010 (6):599-601. (in Chinese with English abstract) [22] 和燕玲,房永祥,陳國華,等. 豬TLR7基因胞外區(qū)部分片段的克隆, 表達及其重組蛋白的純化分析[J]. 安徽農(nóng)業(yè)科學,2009,37(24):11450-11452. HE Y L, FANG Y X, CHEN G H, et al. Research on the clone and expression of the extra cellular domain fragment of porcineTLR7 gene and analysis of the purification of its recombinant protein[J].JournalofAnhuiAgriculturalSciences, 2009, 37(24):11450-11452. (in Chinese with English abstract) [23] 宋紅芹,姜翠翠,孫懷昌. 豬Toll樣受體7基因人工miRNA表達質(zhì)粒的構(gòu)建與篩選[J]. 細胞與分子免疫學雜志,2013,29(1):18-21. SONG H Q, JIANG C C, SUN H C. Construction and screening of the artificial miRNA plasmids targeting porcine Toll-like receptor 7 gene[J].ChineseJournalofCellularandMolecularImmunology, 2013, 29(1):18-21. (in Chinese with English abstract) [24] 胡曉亮, 姜騫, 郭東春, 等. 巴馬小型豬主要固有免疫分子的克隆及序列分析[J]. 黑龍江畜牧獸醫(yī), 2014 (11):13-16. HU X L, JIANG Q, GUO D C, et al. Cloning and sequence analysis of the main innate immune molecules in Bama miniature pig[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2014 (11):13-16. (in Chinese with English abstract) [25] 鈔安軍,吳宇陽,李坤,等. 豬TOLL樣受體7全基因的擴增, 克隆及生物信息學分析[J]. 華北農(nóng)學報,2013,28(1):112-116. CHAO A J, WU Y Y, LI K, et al. Amplification, cloning and bioinformatic analysis of porcineTLR7 gene[J].ActaAgricultureBoreli-Sinica, 2013, 28(1):112-116. (in Chinese with English abstract) [26] ZHU J, LAI K, BROWNILE R, et al. PorcineTLR8 andTLR7 are both activated by a selectiveTLR7 ligand, imiquimod[J].MolecularImmunology, 2008, 45(11):3238-3243. [27] SHIMOSATO T, KITAZAWA H, KATOH S, et al. Swine Toll-like receptor 9 recognizes CpG motifs of human cell stimulant[J].BiochimicaetBiophysicaActa(BBA)-GeneStructureandExpression, 2003, 1627(1):56-61. [28] 王建魁. 豬Toll樣受體9基因胞外區(qū)的克隆及其原核表達[D]. 蘭州:甘肅農(nóng)業(yè)大學,2006. WANG J K. Cloning and proayotic expression of extracellular of domain fragment Toll-like Receptor 9 gene of swine[D]. Lanzhou: Gansu Agricultural University, 2006. (in Chinese with English abstract) [29] 段鳳云,景志忠,房永祥,等. 豬Toll樣受體9基因的克隆, 序列分析及其結(jié)構(gòu)預測[J]. 中國獸醫(yī)學報,2009 (12):1640-1644. DUAN F Y, JING Z Z, FANG Y X, et al. Cloning,sequencing and prediction structure of porcine Toll-like receptor 9 gene[J].ChineseJournalofVeterinaryScience, 2009 (12):1640-1644. (in Chinese with English abstract) [30] BERGMAN I M, ROSENGREN J K, EDMAN K, et al. European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1,TLR2, andTLR6 genes[J].Immunogenetics, 2010, 62(1):49-58. [31] MUNETA Y, MINAGAWA Y, KUSUMOTO M, et al. Development of allele-specific primer PCR for a swine TLR2 SNP and comparison of the frequency among several pig breeds of Japan and the Czech Republic[J].JournalofVeterinaryMedicalScience, 2012, 74(5):553-559. [32] 劉勝貴, 魏麟, 史憲偉, 等. 豬TLR2基因Bi-PASA遺傳標記的建立及多態(tài)性研究[J]. 黑龍江畜牧獸醫(yī), 2007 (1):7-9. LIU S G, WEI L, SHI X W, et al. Bi-PASA geneticmarker and polymorph ism of the porcineTLR2 gene[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2007 (1):7-9. (in Chinese with English abstract) [33] 陳月嬋. 豬TLR3基因的SNPs功能分析[D]. 哈爾濱:東北農(nóng)業(yè)大學,2012. CHEN Y C. Function analysis of single nucleotide polymorphisms (SNPs) in porcineTLR3 gene [D]. Ha’erbin: Northeast Agricultural University, 2012. (in Chinese with English abstract) [34] 李海濤,翟春媛,劉娣,等. 豬TLR3基因變異位點分析[J]. 黑龍江畜牧獸醫(yī),2011 (6):11-13. LI H T, ZHAI C Y, LIU D, et al. The analysis of mutation sites onTLR3 genes in pig[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2011 (6): 11-13. (in Chinese with English abstract) [35] 邢明偉,翟春媛,李海濤,等. 豬TLR3基因A1116T點突變功能初步分析[J]. 畜牧獸醫(yī)學報,2011,42(4):468-474. XING M W, ZHAI C Y, LI H T. A1116T SNP functional analysis of porcineTLR3 gene[J].ActaVeterinariaetZootechnicaSinica, 2011, 42(4):468-474. (in Chinese with English abstract) [36] PALERMO S, CAPRA E, TORREMORELL M, et al. Toll-like receptor 4 genetic diversity among pig populations[J].AnimalGenetics, 2009, 40(3):289-299. [37] 潘章源,葉蘭,朱璟,等. 豬TLR4基因外顯子1新等位基因的分離及遺傳變異分析[J]. 遺傳,2011,33(2):163-167. PAN Z Y, YE L, ZHU J, et al. Isolation of new alleles of the swineTLR4 gene and analysis of its genetic variation[J].Hereditas, 2011, 33(2):163-167. (in Chinese with English abstract) [38] 蘇先敏,王靖,趙喬輝,等. 大白豬TLR4基因外顯子1遺傳變異及其與細胞因子水平的關(guān)系[J]. 中國畜牧雜志,2013,49(13):1-4. SU X M, WANG J, ZHAO Q H, et al. The Genetic Variation ofTLR4 gene exon 1 and its correlation with cytokines level in Large White pigs[J].ChineseJournalofAnimalScience, 2013, 49(13):1-4. (in Chinese with English abstract) [39] 劉筱,方曉敏,鄒曉龍,等. 蘇鐘豬TLR4多態(tài)性及編碼區(qū)C1027A 功能分析[J]. 中國農(nóng)業(yè)科學,2011,45(6):1206-1214. LIU X, FANG X M, ZOU X L, et al. Polymorphism ofTLR4 and function analysis of C1027A in Suzhong pig[J].ScientiaAgriculturaSinica, 2011, 45(6):1206-1214. (in Chinese with English abstract) [40] 朱衛(wèi)華,杜恒,楊勇,等. 霍壽黑豬和長白豬TLR4基因第3外顯子的SNP檢測及其遺傳差異分析[J]. 安徽農(nóng)業(yè)大學學報,2014,41(5):808-812. ZHU W H, DU H, YANG Y, et al. Single nucleotide polymorphism (SNP) detection and genetic difference analysis ofTLR4 gene exon 3 in Huoshou black and Landrance pigs[J].JournalofAnhuiAgriculturalUniversity, 2014, 41(5):808-812. (in Chinese with English abstract) [41] 丁月云,朱衛(wèi)華,薛瑋緯,等. 安徽地方豬TLR4基因3外顯子的SNP分析[J]. 畜牧獸醫(yī)學報,2014 (11):1767-1774. DING Y Y, ZHU W H, XUE W W, et al. Single nucleotide polymorphisms (SNPs) analysis ofTLR4 gene exon 3 in Anhui native pig breeds[J].ActaVeterinariaetZootechnicaSinica, 2014 (11):1767-1774. (in Chinese with English abstract) [42] 周波,劉傳武,虞德兵,等. 用PCR-SSCP方法檢測豬Toll樣受體4 (TLR4) 基因外顯子3的SNP[J]. 畜牧與獸醫(yī),2008,40(6):26-30. ZHOU B, LIU C W, YU De-bing, et al. Detection of SNP in porcineTLR4 gene with polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP)[J].AnimalHusbandry&VeterinaryMedicine, 2008, 40(6):26-30. (in Chinese with English abstract) [43] 陳月嬋, 翟春媛, 劉娣, 等. 豬TLR4基因2個突變位點的PCR-SSCP分析[J]. 黑龍江畜牧獸醫(yī), 2012 (9):1-3. CHEN Y C, ZHAI C Y, LIU D, et al. The analysis of the two mutation sites in theTLR4 genes in pig by PCR-SSCP[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2012 (9):1-3. (in Chinese with English abstract) [44] JU X, XU H, YONG Y, et al. Heat stress upregulates the expression ofTLR4 and its alternative splicing variant in bama miniature pigs[J].JournalofIntegrativeAgriculture, 2014, 13(11):2479-2487. [45] 楊秀芹,牛艷春,李海濤,等. 民豬, 長白豬TLR5基因變異的比較分析[J]. 黑龍江畜牧獸醫(yī),2012(5):60-61. YANG X Q, NIU Y C, LI H T, et al. Comparative Analysis ofTLR5 gene variation in Min and Landrace pigs[J].HeilongjiangAnimalScienceandVeterinaryMedicine, 2012(5):60-61. (in Chinese) [46] 魏麟,陳斌,黎曉英,等. 豬TLR6基因MspI多態(tài)性與生長性狀相關(guān)性研究[J]. 中國農(nóng)學通報,2011,27(11):5-9. WEI L, CHEN B, LI X Y, et al. Associations between MspI polymorphism ofTLR6 gene and growth traits of pigs[J].ChineseAgriculturalScienceBulletin, 2011, 27(11):5-9. (in Chinese with English abstract) [47] BERGMAN I M. Polymorphism in pattern recognition receptor genes in pigs[D]. G?teborg: Linnaeus University Dissertations, 2010. [48] CLOP A, HUISMAN A, VAN AS P, et al. Identification of genetic variation in the swine toll-like receptors and development of a porcineTLRgenotyping array[J].GeneticsSelectionEvolution, 2016, 48(1):28. [49] UENISHI H, SHINKAI H, MOROZUMI T, et al. Polymorphisms in pattern recognition receptors and their relationship to infectious disease susceptibility in pigs[J].BMCProceedings:BioMedCentral, 2011, 5(Suppl 4):S27. [50] UDDIN M J, KAEWMALA K, TESFAYE D, et al. Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age[J].ResearchinVeterinaryScience, 2013, 95(1):92-102. [51] MARANTIDIS A, LALIOTIS G P, MICHAILIDIS G, et al. Study of Toll-Like Receptor and B-defensins genes expression pattern in porcine reproductive organs[J].AnimalBiotechnology, 2015, 26(3):188-193. [52] CHENG C, SUN W K, LIU R, et al. Comparison of gene expression of Toll-like receptors and antimicrobial peptides in immune organs and tissues between Yorkshire and Tibetan pigs[J].AnimalGenetics, 2015, 46(3):272-279. [54] 邱小田, 李玉華, 李何君, 等. 豬Toll-like Receptor 4(TLR4)的定位和組織表達[J]. 農(nóng)業(yè)生物技術(shù)學報, 2007, 15(1):37-40. QIU X T, LI Y H, LI H J, et al. Mapping and tissue expression of porcine Toll-like receptor 4 (TLR4)[J].JournalofAgriculturalBiotechnology, 2007, 15(1):37-40. (in Chinese with English abstract) [55] WANG J, PAN Z Y, ZHENG X R, et al.TLR4 gene expression in pig populations and its association with resistance toEscherichiacoliF18[J].GeneticsandMolecularResearch, 2013, 12(3):2625-2632. [56] ANSARI A R, Ge X H, HUANG H B, et al. Expression patterns of Toll-like receptor 4 in pig uterus during pregnancy[J].PakistanVeterinaryJournal, 2015, 35(4):466-469. [57] 朱浩妮. 不同品種仔豬TLRs表達規(guī)律及VA對仔豬TLRs表達量影響的研究[D]. 雅安:四川農(nóng)業(yè)大學,2010. ZHU H N. TLRs expression profile in piglets of different breeds and effect of vitamin A on TLRS expression of piglets [D]. Ya’an: Sichuan Agricultural University, 2010. (in Chinese with English abstract) [58] BALACHANDRAN Y, Knaus S, Caldwell S, et al. Toll-like receptor 10 expression in chicken, cattle, pig, dog, and rat lungs[J].VeterinaryImmunologyandImmunopathology, 2015, 168(3):184-192. [59] SU X, LI S, MENG M, et al. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-mediated signaling[J].EuropeanJournalofImmunology, 2006, 36(1):199-206. [60] MANUKYAN M, NALBANT P, LUXEN S, et al. RhoA GTPase activation by TLR2 and TLR3 ligands: connecting via Src to NF-κB[J].TheJournalofImmunology, 2009, 182(6):3522-3529. [61] ZHAO X L, XIAO S Y, BERK S, et al. Structural basis of phosphoinositide (PIP) recognition by the TIRAP PIP-binding motif[J].BiophysicalJournal, 2015, 108(2):93a. [62] MITCHELL J A, PAUL C M J, Clarke G W, et al. Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease[J].JournalofEndocrinology, 2007, 193(3):323-330. [63] LIN S C, LO Y C, WU H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signaling[J].Nature, 2010, 465(7300):885-890. [64] BROWN J, WANG H, HAJISHENGALLIS G N, et al. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk[J].JournalofDentalResearch, 2011, 90(4):417-427. [65] TOHNO M, SHIMAZU T, ASO H, et al. Molecular cloning and functional characterization of porcine MyD88 essential for TLR signaling[J].Cellular&MolecularImmunology, 2007, 4(5):369-376. [66] LI X, LIU H, SHULIN Y, et al. Characterization analysis and polymorphism detection of the porcineMyd88 gene[J].GeneticsandMolecularBiology, 2009, 32(2):295-300. [67] DAI C, SUN L, YU L, et al. Effects of porcine MyD88 knockdown on the expression ofTLR4 pathway-related genes and proinflammatory cytokines[J].BioscienceReports, 2016, 36(6):e00409. [68] KRAUSS J L, POTEMPA J, LAMBRIS J D, et al. Complementary Tolls in the periodontium: How periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host[J].Periodontol2000, 2010, 52(1):141-162. [69] UENISHI H, SHINKAI H. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance[J].Developmental&ComparativeImmunology, 2009, 33(3):353-361. [70] 方曉敏,劉筱,孟翠,等. 豬Toll樣受體基因的變異及其與支原體肺炎感染的關(guān)系[J]. 華北農(nóng)學報,2012,27(2):6-11. FANG X M, LIU X, MENG C, et al. Genetic variation of Toll-like receptors and mycoplasma pneumoniae infection in pigs[J].ActaAgricultureBoreali-Sinica, 2012, 27(2):6-11. (in Chinese with English abstract) [71] 劉筱,方曉敏,鄒曉龍,等. 豬感染肺炎支原體后肺組織TLR2,TLR4 及促炎癥因子TNF-α,IL-1β基因表達的變化[J]. 江蘇農(nóng)業(yè)學報,2011,27(6):143-147. LIU X, FANG X M, ZOU X L, et al. Alterations of Toll-like receptorsTLR2 andTLR4 and gene expression of proinflammatory factorsTNF-αandIL-1βin lungs of swine after Myco-plasma pneumoniae infection[J].JiangsuJournalofAgriculturalSciences, 2011, 27(6):143-147. (in Chinese with English abstract) [72] SHINKAI H, ARAKAWA A, TANAKA-MATSUDA M, et al. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs[J].ComparativeImmunologyMicrobiologyandInfectiousDiseases, 2012, 35(6):523-532. [73] LIU C H, CHAUNG H C, CHANG H, et al. Expression of Toll-like receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J].VeterinaryMicrobiology, 2009, 136(3):266-276. [74] MIGUEL J C, CHEN J, VAN ALSTINE W G, et al. Expression of inflammatory cytokines and Toll-like receptors in the brain and respiratory tract of pigs infected with porcine reproductive and respiratory syndrome virus[J].VeterinaryImmunologyandImmunopathology, 2010, 135(3):314-319. [75] WANG L, CHEN Y C, ZHANG D J, et al. Functional characterization of genetic variants in the porcineTLR3 gene[J].GeneticsandMolecularResearch: 2014, 13(1):1348-1357. [76] DUAN D, ZHANG S, LI X, et al. Activation of the TLR/MyD88/NF-κB signal pathway contributes to changes in IL-4 and IL-12 production in piglet lymphocytes infected with porcine circovirus type 2 in vitro[J].PLoSOne, 2014, 9(5):e97653. [77] 王建立,楊柳,楊凱,等. 豬圓環(huán)病毒2型感染的豬肺泡巨噬細胞TLR2/TLR4/CD16/CD18轉(zhuǎn)錄水平動態(tài)變化[J]. 中國畜牧獸醫(yī),2013,40(3):110-117. WANG J L, YANG L, YANG K, et al. Changes in transcription level of TLR2/TLR4/CD16/CD18 of porcine pulmonary alveolar macrophages post-infected PCV2 in vivo[J].ChinaAnimalHusbandry&VeterinaryMedicine, 2013, 40(3):110-117. (in Chinese with English abstract) [78] 周敬禹. TLR3及NF-κB信號通路在豬輪狀病毒體外感染小腸上皮細胞免疫應答中的作用研究[D]. 長春:吉林農(nóng)業(yè)大學,2014. ZHOU J Y. Study on the function of TLR3 and NF-κB passway on immune response in porcine rotavirus infection of intestinal epithelial cells in vitro [D]. Changchun: Jilin Agricultural University, 2014. (in Chinese with English abstract) [79] 曹志. 豬瘟病毒及其非結(jié)構(gòu)蛋白對豬巨噬細胞Toll樣受體介導天然免疫應答的影響[D]. 西安:西北農(nóng)林科技大學,2015. CAO Z. Effect of CSFV and its non-structural proteins on TLR-mediated innate immune response in swine macrophages [D]. Xi’an: Northwest A&F University, 2015. (in Chinese with English abstract) [80] BROGAARD L, HEEGAARD P M H, LARSEN L E, et al. Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection[J].ScientificReports, 2016, 6: 21812. [81] BORREGO B, RODRGUEZ-PULIDO M, REVILLA C, et al. Synthetic RNAs mimicking structural domains in the Foot-and-Mouth disease virus genome elicit a broad innate immune response in porcine cells triggered by RIG-I and TLR activation[J].Viruses, 2015, 7(7):3954-3973. [82] 王攀,陶曉莉,沈祖楠,等. 五指山小型豬近交系主動脈內(nèi)皮細胞體外培養(yǎng)模型的建立和TLR2介導炎癥相關(guān)因子的表達[J]. 中國農(nóng)業(yè)科學,2011,45(2):346-352. WANG P, TAO X L, SHEN Z N, et al. Establishment of aortic endothelial cells model in vitro from Wuzhishan of inbred miniature pig and expression of inflammatory cytokines mediated by TLR2[J].ScientiaAgriculturaSinica, 2011, 45(2):346-352. (in Chinese with English abstract) [83] JANG S, LAKSHMAN S, MOLOKIN A, et al.Lactobacillusrhamnosusand flavanol-enriched cocoa powder altered the immune response to infection with the parasitic nematodeAscarissuumin a pig model[J].TheFASEBJournal, 2016, 30(Suppl 1): 1176.14-1176.14. [84] WANG J, PAN Z Y, ZHENG X R, et al.TLR4 gene expression in pig populations and its association with resistance toEscherichiacoliF18[J].GeneticsandMolecularResearch, 2013, 12(3):2625-2632. [85] FINAMORE A, ROSELLI M, IMBINTO A, et al. Lactobacillus amylovorus inhibits the TLR4 inflammatory signaling triggered by enterotoxigenicEscherichiacolivia modulation of the negative regulators and involvement of TLR2 in intestinal Caco-2 cells and pig explants[J].PLoSOne, 2014, 9(4):e94891. [86] ZHANG J, FU S L, LIU Y, et al. Analysis of MicroRNA expression profiles in weaned pig skeletal muscle after lipopolysaccharide challenge[J].InternationalJournalofMolecularSciences, 2015, 16(9):22438-22455. [87] 孫麗,夏日煒,殷學梅,等. LPS誘導條件下豬小腸上皮細胞TLR4及其信號通路基因表達變化分析[J]. 畜牧獸醫(yī)學報,2015,46 (7):1095-1101. SUN L, XIA R W, YIN X M, et al. Analysis of differential expression of TLR4 and TLR4 signaling pathway genes under lipopolysaccharide-induced pig intestinal epithelial cells[J].ActaVeterinariaetZootechnicaSinica, 2015, 46 (7):1095-1101. (in Chinese with English abstract) [88] RADHAKRISHNAN S, KIM S, REDDIVARI L, et al. Purple-fleshed potato, even after processing, prevents and reverses high-fat diet elevated colonic-mesenteric fat systemic inflammation cascade in pig model (1045.47)[J]. The FASEB Journal, 2014, 28(Suppl 1):1045.47. [89] ARNAL M E, ZHANG J, ERRIDGE C, et al. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring[J].PLoSOne, 2015, 10(2):e0118092. [90] GUO Y, FUKUDA T, DONAI K, et al. Leptospiral lipopolysaccharide stimulates the expression of toll‐like receptor 2 and cytokines in pig fibroblasts[J].AnimalScienceJournal, 2015, 86(2):238-244. [91] LI H T, LIU D, YANG X Q. Identification and functional analysis of a novel single nucleotide polymorphism (SNP) in the porcine Toll like receptor (TLR) 5 gene[J].ActaAgriculturaeScandinavica(SectionA-AnimalScience), 2011, 61(4):161-167. [92] YANG X Q, LI H T, GUAN Q Z, et al. Genetic diversity of Toll-like receptor 5 among pig populations[J].GeneticsandMolecularBiology, 2013, 36(1):37-42. [93] 李文華,王瑩,陳偉,等. Toll 樣受體2 (TLR2) 參與豬鏈球菌誘導的自噬作用[J]. 中國獸醫(yī)學報,2013,33(2): 222-226. LI W H, WANG Y, CHEN W, et al. Toll-like receptor 2 is involved in autophagy induced by streptococcus suis type 2[J].ChineseJournalofVeterinaryScience, 2013, 33(2):222-226. (in Chinese with English abstract) [94] 朱靜,胡丹,劉麗娜,等. 莢膜唾液酸對豬鏈球菌激活巨噬細胞TLR2-AKT-NF-κB信號通路影響的研究[J]. 微生物學通報,2013,40(6):1058-1067. ZHU J, HU D, LIU L N, et al. Research on the role of capsular sialic acid inStreptococcussuisactivate macrophage TLR2-AKT-NF-κB signaling pathway[J].MicrobiologyChina, 2013, 40(6):1058-1067. (in Chinese with English abstract) [95] FU R H, LIU S P, HUANG S J, et al. Aberrant alternative splicing events in Parkinson’s disease[J].CellTransplantation:TheRegenerativeMedicineJournal, 2013, 22(4):653-661.2.4 TLRs與熱應激的關(guān)系
3 展望