張峻川, 張 力, 李蘇迪, 石武良
(吉林大學(xué)植物科學(xué)學(xué)院植物遺傳改良工程實(shí)驗(yàn)室,吉林 長春 130062)
植物體內(nèi)存在多種植物激素誘導(dǎo)的信號(hào)通路,通過對(duì)這些信號(hào)通路的調(diào)控,植物可以響應(yīng)外界信號(hào),將細(xì)胞生理與自然環(huán)境的變化保持一致.類胡蘿卜素誘導(dǎo)的植物激素脫落酸(abscisic acid, ABA)就是一種重要的非生物逆境信號(hào)[1].植物激素ABA調(diào)控著許多重要的生理生化進(jìn)程[2].非生物逆境因子誘發(fā)ABA的合成,使植物適應(yīng)外界環(huán)境的改變[3].近些年來的研究證明,植物體內(nèi)的多種E3泛素連接酶受到ABA的誘導(dǎo),表明ABA調(diào)控的逆境信號(hào)轉(zhuǎn)導(dǎo)途徑和依賴泛素化的蛋白降解途徑存在交叉互作[4].在擬南芥基因組中,大約存在著1 400多個(gè)編碼E3泛素連接酶的基因[5],RING(really interesting new gene)就是其中重要的家族[6].擬南芥中大約有469個(gè)存在RING結(jié)構(gòu)域的E3連接酶,構(gòu)成了擬南芥中第三大基因家族[7].據(jù)先前報(bào)道,RING型E3泛素化連接酶AIP2可以通過與ABA響應(yīng)蛋白ABI3互作影響ABA信號(hào)轉(zhuǎn)導(dǎo)的下游通路[8],表明RING家族的成員可能參與了ABA信號(hào)轉(zhuǎn)導(dǎo).
擬南芥基因組中編碼著兩個(gè)RING1同源基因:AtRING1A和AtRING1B[9].AtRING1A是多梳抑制復(fù)合物1(polycomb repressive complex1, PRC1)的核心成分,能結(jié)合兩個(gè)鋅原子行使E3泛素連接酶的作用[8].PRC1和PRC2屬于多梳家族(polycomb group, PcG)的組分,在ABA依賴的對(duì)外界逆境響應(yīng)中起重要作用[10].PcG蛋白介導(dǎo)著后代發(fā)育調(diào)節(jié)因子的遺傳沉默,PRC1和PRC2都參與其中[11-12].最近的研究證實(shí),PcG調(diào)控的沉默途徑中,組蛋白H2A在119位賴氨酸被單泛素化.在這個(gè)過程中,RING1A/B行駛著E3泛素連接酶的作用[13].
通過大規(guī)模ABA篩選突變體,發(fā)現(xiàn)ring1a突變體存在ABA敏感表型.然而,擬南芥基因AtRING1A是否與ABA信號(hào)轉(zhuǎn)導(dǎo)有關(guān)尚未清楚.通過研究和分析ring1a-11突變體(CS347748)以及RING1A過表達(dá)植株在ABA處理下相關(guān)基因的表達(dá)以及植株表型,證實(shí)了AtRING1A和擬南芥ABA響應(yīng)通路有密切關(guān)系.
1.1.1野生型擬南芥及ring1a突變體的鑒定擬南芥野生型(Columbia-4, Col4)以及T-DNA插入突變體ring1a-11 (CS347748)從ArabidopsisBiological Resource Center (ABRC)中查詢并購買.
種子在4 ℃的條件下春化處理2 d,然后放置在0.8%蔗糖,1/2 MS培養(yǎng)基上,于22~24 ℃,60%相對(duì)濕度的長日照(16 h光照,8 h黑暗,光強(qiáng)100 μmol·m-2·s-1)的條件下培養(yǎng).
ring1a-11突變體由RT-PCR的方法檢測,使用的引物見表1(1-2).
表1 引物序列Table 1 Primers sequences
1.1.2轉(zhuǎn)基因過表達(dá)植株AtRING1A的獲得和檢測用PCR的方法將AtRING1A編碼序列從擬南芥全轉(zhuǎn)錄組cDNA中克隆出來,引物見表1(1-2).
將PCR產(chǎn)物用EcoRⅠ和HindⅢ雙酶切,得到991 bp的產(chǎn)物,將產(chǎn)物插入連接到含有雙35S啟動(dòng)子和NOS終止子的植物表達(dá)載體pEGAD-3XHA-LUC中.將連接產(chǎn)物轉(zhuǎn)入大腸桿菌感受態(tài)DH5α中,經(jīng)過0.1%卡那霉素(Kanamycin)的LB培養(yǎng)基篩選,挑取單克隆進(jìn)行基因測序.
將測序正確的菌株擴(kuò)繁提取質(zhì)粒,將重組質(zhì)粒轉(zhuǎn)入農(nóng)桿菌中(agl0).選取花期的野生型擬南芥,通過沾花侵染的方法將農(nóng)桿菌侵染擬南芥Col4.
經(jīng)過Basta?篩選后,將T0代植株移出,在相同條件下生長4周,取1~2片葉片,液氮中研磨,加入4×sample buffer,100 ℃熱水浴10 min,經(jīng)過10% SDS PAGE凝膠電泳,將蛋白轉(zhuǎn)入硝酸纖維素膜膜上.用一抗(1∶500 anti-Luciferase)和二抗(驢抗鼠,Donkey anti-mouse)孵育后于Bio-Imaging Systems中曝光拍照,檢測轉(zhuǎn)基因植株.
將上述野生型擬南芥,ring1a突變體,RING1A過表達(dá)植株的種子浸入1%次氯酸鈉中消毒10 min,用滅菌超純水漂洗三遍后接種到含ABA(0.3,0.5,0.8 μmol·L-1)的1/2 MS培養(yǎng)基上,設(shè)置不含ABA的對(duì)照組.當(dāng)根完全穿透種皮時(shí),此種子被認(rèn)為是發(fā)芽的.將種子放置在培養(yǎng)基上后,8 d內(nèi)每天記錄發(fā)芽率.
利用植物總RNA提取試劑盒(TIANGEN Company, China)提取擬南芥全轉(zhuǎn)錄組RNA,并用反轉(zhuǎn)錄試劑盒(TIANGEN Company, China)反轉(zhuǎn)錄成cDNA.將每個(gè)樣品加入SYBA Green Master Mix染料進(jìn)行熒光定量PCR,并在Mx3005P系統(tǒng)中檢測.檢測后每組值通過2-ΔΔCt法進(jìn)行檢測,Actin2作為內(nèi)參來檢測各組數(shù)據(jù).熒光定量PCR所使用的引物見表1(3~10)每個(gè)樣本都設(shè)置至少3個(gè)技術(shù)重復(fù),每種植物樣本都設(shè)置至少3個(gè)生物重復(fù).
利用GATEWAY系統(tǒng)將AtRING1A連入載體pYFP, RING1A蛋白與YFP的C端相連.將重組質(zhì)粒轉(zhuǎn)入DH5α大腸桿菌感受態(tài)中,挑取單克隆提取質(zhì)粒.取生長4周長勢(shì)良好的野生型擬南芥植株,取若干葉片撕去下表皮,將葉肉細(xì)胞暴露在酶解液(每10 mL 0.15 g纖維素酶和0.04 g離析酶)中避光裂解2 h.用PEG-4000/Ca2+以及載體質(zhì)粒和提取的原生質(zhì)體避光孵育15 min,將質(zhì)粒轉(zhuǎn)入原生質(zhì)體中.后22 ℃避光培16 h,置熒光倒置顯微鏡中觀察原生質(zhì)體成像.
為了解RING1A在ABA信號(hào)轉(zhuǎn)導(dǎo)中的功能,從ABRC中購買獲得了RING1A基因的T-DNA插入突變體(CS347748).突變體的插入位點(diǎn)見(圖1A),通過PCR和RT-PCR分析進(jìn)一步證實(shí)了純合突變體.PCR結(jié)果顯示ring1a-11完全不存在RING1A轉(zhuǎn)錄產(chǎn)物(圖1C).
構(gòu)建了煙草花葉病毒(tobacco mosaic virus)35S啟動(dòng)子的控制下的RING1A的過表達(dá)植株(圖2).使用一抗(anti-Luciferases)和二抗(驢抗小鼠)孵育后,HA-LUC-RING1A蛋白在Western檢測下在轉(zhuǎn)基因苗中高度表達(dá),而WT和ring1a純合突變體均未表達(dá)(圖1B).
A.ring1a突變體的T-DNA插入位點(diǎn);B.用免疫印跡的方法鑒定RING1A過表達(dá)植株;C.通過反轉(zhuǎn)錄PCR鑒定ring1a突變體擬南芥.圖1 ring1a突變體及RING1A過表達(dá)植株的鑒定Fig.1 Identification of ring1a mutant and RING1A overexpression line
A.AtRING1A基因的克隆;B.RING1A過表達(dá)植株空載體(左)及植物表達(dá)載體(右).圖2 AtRING1A基因的克隆及植物表達(dá)載體的建立Fig.2 Cloning of AtRING1A and construction of plant expression vectors
圖3 AtRING1A基因在不同組織的表達(dá)分析Fig.3 Expression level on different tissues of AtRING1A
將生長3周的植物材料取不同的植物組織,提取出總RNA進(jìn)行熒光定量實(shí)時(shí)PCR測定,以檢測RING1A在植物各器官中的相對(duì)表達(dá)含量.結(jié)果顯示,AtRING1A在植物所有部位均有表達(dá),在種子,根和葉中表達(dá)量基本相同,莖中表達(dá)量最少,在花中表達(dá)量最高(圖3).這結(jié)果可能與ABA在植物種子中的積累密切相關(guān).
將WT、ring1a突變體,HA-LUC-AtRING1A過表達(dá)擬南芥的種子放置在含ABA(0,0.3,0.5,0.8 μmol·L-1)的1/2 MS培養(yǎng)基上培養(yǎng)8 d,結(jié)果顯示,在0.3 μmol·L-1ABA處理下,ring1a突變體種子第八天萌發(fā)率明顯差于野生型和過表達(dá)植株(圖4).在0.8 μmol·L-1ABA處理下,RING1A過表達(dá)植株種子在第8天的發(fā)芽率明顯高于野生型和突變體種子.這說明高濃度的ABA可以抑制種子萌發(fā),而過表達(dá)RING1A基因可以阻斷ABA對(duì)種子萌發(fā)的抑制作用.相反,將AtRING1A基因插入突變會(huì)使擬南芥呈現(xiàn)出ABA敏感的表型.
圖4 ABA處理下RING1A, ring1a, WT的萌發(fā)率Fig.4 Germination rate of RING1A, ring1a, WT under ABA treatment
在不同濃度ABA處理下,3種植物材料的萌發(fā)速度也有顯著不同.在0.3 μmol·L-1ABA處理下,野生型和過表達(dá)植株萌發(fā)速率相同,而ring1a突變體在第6天才完全萌發(fā);在0.5 μmol·L-1ABA處理下,過表達(dá)植株在第4天基本萌發(fā)完成,而過表達(dá)植株在第5天才基本上萌發(fā),ring1a突變體萌發(fā)速率明顯低于前兩種植物材料,而且于第8天仍未完全萌發(fā);0.8 μmol·L-1ABA的條件下,突變體和野生型在第8天均未完全萌發(fā),而過表達(dá)植株則在第6天基本萌發(fā)完全(圖5).
圖5 不同濃度的ABA處理下植株的發(fā)芽速率Fig.5 Germination rate under different concentrations of ABA treatment
應(yīng)激反應(yīng)基因的誘導(dǎo)表達(dá)是植物適應(yīng)外界的重要機(jī)制之一[14].為了更深入地了解RING1A在ABA反應(yīng)中的作用,我們通過實(shí)時(shí)PCR的方法測定了2個(gè)ABA響應(yīng)基因的表達(dá)情況.測試的基因包括RD29A和RD29B(圖6).結(jié)果顯示,在10 μmol·L-1ABA的處理下,所有基因都有相關(guān)的變化:2個(gè)基因在3種植物材料中均有上調(diào),而在RING1A過表達(dá)植株中,2個(gè)基因相對(duì)表達(dá)量的上調(diào)幅度明顯高于野生型和突變體.這表明RING1A可以影響逆境脅迫標(biāo)記基因RD29A、RD29B的表達(dá)量,說明RING1A參與了ABA信號(hào)轉(zhuǎn)導(dǎo)途徑.而在過表達(dá)植株中,RD29A,RD29B相對(duì)表達(dá)量都有顯著上升,這說明RING1A可能作為一個(gè)負(fù)調(diào)控因子參與了ABA信號(hào)轉(zhuǎn)導(dǎo)途徑.
圖6 10 μmol·L-1 ABA處理下RING1A誘導(dǎo)ABA響應(yīng)基因的表達(dá)Fig.6 Expression of ABA response gene stimulated by RING1A under 10 μmol·L-1 ABA treatment
為了檢測RING1A的亞細(xì)胞位置,我們將RING1A和YFP的C端相連,構(gòu)建了YFP-RING1A融合蛋白表達(dá)載體.然后將所得構(gòu)建體通過PEG-4000/Ca2+誘導(dǎo)轉(zhuǎn)入擬南芥原生質(zhì)體中,同時(shí),用pYPF空載體轉(zhuǎn)入原生質(zhì)體中作為對(duì)照.用DAPI染料染色,細(xì)胞核會(huì)在熒光顯微鏡下顯影.通過不同波長的熒光觀察,結(jié)果顯示顯示:YFP-RING1A融合蛋白僅在核中定位,表明RING1A可能在細(xì)胞核中起作用(圖7).ABA信號(hào)轉(zhuǎn)導(dǎo)途徑中存在多個(gè)轉(zhuǎn)錄因子,它們定位在核中促進(jìn)相關(guān)基因的表達(dá).RING1A可能與這些轉(zhuǎn)錄因子存在聯(lián)系并以此調(diào)控ABA信號(hào)轉(zhuǎn)導(dǎo)途徑.
圖7 RING1A的亞細(xì)胞定位Fig.7 Subcellular localization of RING1A
第一行為空載體亞細(xì)胞定位,第二行為RING1A融合表達(dá)YFP的亞細(xì)胞定位.DAPI為細(xì)胞核染料;YFP列為YFP熒光蛋白的圖像;RFP列為葉綠體熒光圖像;Bright列為白光下原生質(zhì)體的圖像;Merge為各圖像重疊.
在擬南芥基因組中,超過1 400多個(gè)基因被預(yù)測編碼著不同的E3泛素化連接酶[5].最近的研究顯示,一些擬南芥RING E3連接酶參與各種細(xì)胞過程,如脫落酸信號(hào)傳導(dǎo),生長素信號(hào)傳導(dǎo),油菜素類固醇反應(yīng),種子發(fā)芽,幼苗發(fā)育,適應(yīng)性氮限制途徑和糖響應(yīng)[15-17].此外,RING蛋白家族在對(duì)環(huán)境刺激的反應(yīng)中起關(guān)鍵作用,如參與光形態(tài)建成,防御信號(hào)的傳導(dǎo),衰老,耐寒,干旱,鹽和滲透脅迫的耐受機(jī)制等[18-20].這里,我們確定了編碼泛素E3連接酶的RING1A基因(AT5G44280)的表征,證明了RING1A參與了ABA信號(hào)轉(zhuǎn)導(dǎo).RING1A在植物各部分均有表達(dá),在花中表達(dá)量最高.在種子中期成熟階段,ABA在花中積累到最大水平[21].大部分ABA在營養(yǎng)組織中合成,然后轉(zhuǎn)運(yùn)到各個(gè)部位,轉(zhuǎn)運(yùn)到花中的ABA有助于調(diào)控種子發(fā)育.ABA可以誘導(dǎo)種子敗育,減少種子產(chǎn)量,并且推遲胚胎生長[22],這可以解釋AtRING1A在花的高度表達(dá).在種子的萌發(fā)過程中,ABA先在種子中積累,種子處于休眠狀態(tài).而RING1A對(duì)ABA的抵抗作用可能促使種子打破休眠而發(fā)芽.
在植物體中,至少有兩個(gè)信號(hào)調(diào)節(jié)系統(tǒng)涉及應(yīng)激反應(yīng)基因表達(dá),即ABA依賴和獨(dú)立于ABA的信號(hào)轉(zhuǎn)導(dǎo)途徑.擬南芥R D29A基因表達(dá)可以被干旱,高鹽度,低溫和脫落酸信號(hào)轉(zhuǎn)導(dǎo)途徑所誘導(dǎo),具有120 bp啟動(dòng)子區(qū)域,包含DRE,RE/CRT-核心基序(A/GCCGAC)和ABA反應(yīng)元件(ABRE)序列[23].這兩個(gè)獨(dú)立的順式作用元件,一個(gè)響應(yīng)滲透勢(shì)的變化,獨(dú)立于ABA,另一個(gè)受ABA信號(hào)轉(zhuǎn)導(dǎo)途徑調(diào)控.相比之下,RD29B啟動(dòng)子不含滲透勢(shì)調(diào)控的啟動(dòng)子區(qū)域[24].我們通過對(duì)ABA響應(yīng)基因RD29A和RD29B的實(shí)時(shí)定量PCR,分析了ABA信號(hào)轉(zhuǎn)導(dǎo)途徑中RING1A的調(diào)節(jié)功能.我們的研究表明,RING1A過表達(dá)植株中ABA誘導(dǎo)的應(yīng)激反應(yīng)基因RD29A、RD29B的相對(duì)表達(dá)量的變化比在WT和ring1a突變體植物中更顯著.這個(gè)可以說明RING1A可以在ABA處理的信號(hào)下,誘導(dǎo)ABA響應(yīng)基因的表達(dá).
綜上所述,AtRING1A與擬南芥ABA信號(hào)通路密切相關(guān),RING1A很有可能作為一種負(fù)調(diào)控因子調(diào)控ABA信號(hào)通路,抑制ABA對(duì)植物的作用,提高植物對(duì)ABA的抗性.作為一種E3泛素連接酶,AtRING1A很有可能能與ABA信號(hào)通路中的某個(gè)蛋白相結(jié)合使其泛素化而降解,以此來調(diào)控ABA信號(hào)通路,這有待于進(jìn)一步的研究和發(fā)現(xiàn).
[1] WEINER J J, PETERSON F C, VOLKMAN B F, et al. Structural and functional insights into core ABA signaling[J]. Curr Opin Plant Biol, 2010,13(5):495-502.
[2] LIU X, ZHU Y, ZHAI H, et al. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance ofArabidopsisin abscisic acid-dependent manner[J]. Biochem Biophys Res Commun, 2012,422(4):710-715.
[3] XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002,14:S165-S183.
[4] CHO S K, RYU M Y, SEO D H, et al. TheArabidopsisring E3 ubiquitin ligase atairp2 plays combinatory roles with atairp1 in abscisic acid-mediated drought stress responses[J]. Plant Physiol, 2011,157(4):2 240-2 257.
[5] VIERSTRA R D. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009,10(6):385-397.
[6] TYERS M, JORGENSEN P. Proteolysis and the cell cycle: with this ring I do thee destroy[J]. Current Opinion in Genetics & Development, 2000,10(1):54-64.
[7] STONE S L, HAUKSDOTTIR H, TROY A, et al. Functional analysis of the ring-type ubiquitin ligase family ofArabidopsis[J]. Plant Physiol, 2005,137(1):13-30.
[8] CHEN D H, MOLITOR A, LIU C L, et al. The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth[J]. Cell Res, 2010,20(12):1 332-1 344.
[9] QIN F, SAKUMA Y, TRAN L S P, et al.ArabidopsisDreb2A-interacting proteins function as ring E3 ligases and negatively regulate plant drought stress-responsive gene expression[J]. Plant Cell, 2008,20(6):1 693-1 707.
[10] KAPAZOGLOU A, TONDELLI A, PAPAEFTHIMIOU D, et al. Epigenetic chromatin modifiers in barley: Ⅳ. The study of barley polycomb group (PcG) genes during seed development and in response to external ABA[J]. Bmc Plant Biology, 2010:10.
[11] CZERMIN B, MELFI R, MCCABE D, et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites[J]. Cell, 2002,111(2):185-196.
[12] KUZMICHEV A, NISHIOKA K, ERDUMENT-BROMAGE H, et al. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein[J]. Genes Dev, 2002,16(22):2 893-2 905.
[13] DE NAPOLES M, MERMOUD J E, WAKAO R, et al. Polycomb group proteins ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation[J]. Developmental Cell, 2004,7(5):663-676.
[14] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007,58(2):221-227.
[15] SANTNER A, ESTELLE M. Recent advances and emerging trends in plant hormone signalling[J]. Nature, 2009,459(7250):1 071-1 078.
[16] STONE S L, WILLIAMS L A, FARMAER L M, et al. Keep on going, a ring E3 ligase essential forArabidopsisgrowth and development, is involved in abscisic acid signaling[J]. Plant Cell, 2006,18(12):3 415-3 428.
[17] HUANG Y D, LI C Y, PATTISON D L, et al. Sugar-insensitive3, a ring E3 ligase, is a new player in plant sugar response[J]. Plant Physiol, 2010,152(4):1 889-1 900.
[18] CRAIG A, EWAN R, MESMAR J, et al. E3 ubiquitin ligases and plant innate immunity[J]. J Exp Bot, 2009,60(4):1 123-1 132.
[19] YAN J Q, WANG J, LI Q T, et al. AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance inArabidopsis[J]. Plant Physiol, 2003,132(2):861-869.
[20] SMIRNOVA O, STEPANENKO I, SHUMNYI V. The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis[J]. Biology Bulletin Reviews, 2011,1(4):314-324.
[21] KANNO Y, JIKUMARU Y, HANADA A, et al. Comprehensive hormone profiling in developingArabidopsisseeds: Examination of the site of ABA biosynthesis, ABA transport and hormone interactions[J]. Plant and Cell Physiology, 2010,51(12):1 988-2 001.
[22] FREY A, GODIN B, BONNET M, et al. Maternal synthesis of abscisic acid controls seed development and yield inNicotianaplumbaginifolia[J]. Planta, 2004,218(6):958-964.
[23] NARUSAKA Y, NAKASHIMA K, SHINWARI Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression ofArabidopsisrd29A gene in response to dehydration and high-salinity stresses[J]. The Plant Journal, 2003,34(2):137-148.
[24] YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Characterization of the expression of a desiccation-responsive rd29 gene ofArabidopsisthalianaand analysis of its promoter in transgenic plants[J]. Molecular and General Genetics MGG, 1993,236(2):331-340.