王雪潔 馮京海
(中國農業(yè)科學院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學國家重點實驗室,北京 100193)
家禽的腸道包括十二指腸、空腸、回腸、盲腸和直腸,是營養(yǎng)物質消化、吸收的主要位點。家禽的腸道約占體重的1.5%,但其長度約是體長的6倍。腸道內腔環(huán)形皺襞以及腸絨毛使小腸表面積擴大了20~30倍,有效地增強了小腸的吸收功能[1]。同時腸道也是家禽能量消耗的主要組織,飼料中6.0%~8.0%的能量由家禽腸道消耗[2]。另外,家禽腸道中棲息著大量微生物,其中包括大量由飼料和飲水進入的病源微生物,因此腸道上皮組織也是家禽抵御病源菌的重要屏障[3]。維持腸道正常的結構和功能對于家禽的生長和健康十分關鍵。熱應激影響家禽的健康和產長性能,研究發(fā)現(xiàn)熱應激導致肉雞生長性能顯著下降[4],以及禽類解偶聯(lián)蛋白mRNA表達量下降[5]。同時熱應激還影響肉仔雞免疫器官的發(fā)育,損傷小腸形態(tài)結構[6],改變盲腸菌群多樣性[7]。熱應激是影響家禽腸道結構和功能的一個重要因素。熱應激影響家禽腸道的形態(tài)以及腸黏膜的完整性。熱應激影響腸道的結構可能與多種因素有關,例如熱應激引起的采食量下降、腸道血流量減少等。本文針對熱應激影響家禽腸道結構的研究進行總結,并從采食量、血流量、微生物等方面探討熱應激影響家禽腸道的機制,以期加深對于熱應激影響家禽腸道健康的認識。
環(huán)境高溫影響家禽的腸道絨毛高度。Deng等[8]發(fā)現(xiàn),34 ℃熱應激12 d可導致蛋雞回腸和盲腸絨毛高度縮短。Song等[9]觀察到33 ℃每天應激10 h,連續(xù)應激20 d,肉雞的空腸絨毛高度縮短。張少帥等[6]發(fā)現(xiàn),31 ℃應激14 d顯著降低了空腸和回腸的絨毛高度。其他研究也在肉雞[10-11]和豬[12-14]上獲得相似發(fā)現(xiàn)。然而Quinteriro-Filho等[15]發(fā)現(xiàn),31 ℃應激10 h對肉雞空腸絨毛高度沒有顯著影響。Burkholder等[16]發(fā)現(xiàn),30 ℃應激24 h對肉雞回腸和盲腸的絨毛高度無顯著影響。這可能是由于環(huán)境溫度較低或應激持續(xù)時間較短所致。Hao等[17]發(fā)現(xiàn),36 ℃應激5 h對肉雞空腸絨毛高度沒有顯著影響,但應激10 h后絨毛高度與隱窩深度的比值顯著降低。另外,不同腸段對于高溫的敏感性可能存在差異。30 ℃應激14 d顯著降低了肉雞空腸遠端絨毛高度,但不影響近端絨毛高度[18]。
環(huán)境高溫影響家禽腸道隱窩深度的報道不一。Song等[9]觀察到高溫導致肉雞的空腸隱窩深度加深。Quinteriro-Filho等[15]發(fā)現(xiàn),高溫對肉雞空腸隱窩深度沒有顯著影響。而Burkholder等[16]發(fā)現(xiàn),高溫引起肉雞回腸和盲腸的隱窩深度變淺。Al-Fataftah等[10]同樣發(fā)現(xiàn),高溫導致肉雞腸道隱窩深度下降。另外在豬上也同樣發(fā)現(xiàn),高溫導致腸道隱窩變淺[12-13]。高溫對家禽腸道隱窩深度的不同影響可能與熱應激的強度和持續(xù)時間有關。Pearce等[14]證明,隨熱應激時間延長,豬腸道隱窩深度先加深,然后逐漸變淺。
腸道絨毛的高度受到成熟上皮細胞凋亡脫落、幼稚上皮細胞遷移以及隱窩干細胞增殖的共同影響。環(huán)境高溫降低家禽腸道絨毛高度可能與促進成熟上皮細胞的凋亡有關。Yu等[13]在電子顯微鏡下觀察到,高溫造成豬空腸絨毛頂端損傷,上皮細胞脫落,導致絨毛高度縮短。Yu等[19]的體外試驗也發(fā)現(xiàn),提高培養(yǎng)溫度可導致腸上皮細胞(IEC-6)的凋亡增加。腸道隱窩深度可能與隱窩內干細胞的增殖活性有關。Yamauchi等[20]發(fā)現(xiàn),腸道隱窩干細胞的增殖可能對高溫更加敏感。熱應激初期家禽可能通過代償性的促進隱窩內干細胞的增殖活性,以恢復絨毛頂端上皮細胞的脫落。隨著家禽逐漸適應熱應激,隱窩深度可能恢復,而熱應激進一步持續(xù)可能由于營養(yǎng)攝入減少等原因導致干細胞增殖抑制,隱窩變淺。
環(huán)境高溫影響家禽腸道的絨毛高度和隱窩深度,不僅抑制腸道影響營養(yǎng)物質的消化、吸收[21],還會影響腸道黏膜的完整性,增加病原微生物感染的幾率。黃淑成等[22]研究報道,38 ℃應激10 h后肉雞血漿中內毒素的含量呈極顯著的升高。Pearce等[14]也發(fā)現(xiàn),35 ℃高溫下豬血漿中內毒素的含量顯著升高。Hall等[23]和Lim等[24]在小鼠上也有相似發(fā)現(xiàn)。內毒素進入體內后刺激免疫系統(tǒng),導致血液中白細胞介素-1(IL-1)、腫瘤壞死因子(TNF)-α等細胞因子的含量升高[25-26]。Deng等[8]發(fā)現(xiàn),34 ℃下蛋雞血漿中TNF-α、IL-1的含量顯著升高。Bouchama等[27]在人上也有相似發(fā)現(xiàn)。內毒素是來源于革蘭氏陰性菌細胞壁脂多糖的大分子復合物,其相對分子質量約為1×106~20×106,正常情況下只有微量的脂多糖通過腸道上皮細胞間的緊密連接或受體介導的胞吞跨細胞膜轉運進入動物體內[26],因此高溫導致家禽血液中內毒素和細胞因子含量的升高,間接表明腸道的完整性受損。Song等[9]利用尤斯灌流室(Ussing chamber)直接證實,33 ℃熱暴露20 d導致肉雞空腸黏膜通透性顯著增加,表現(xiàn)為跨上皮電阻值(TER)下降,大分子物質的滲透性增強。在小鼠和豬上也有相似發(fā)現(xiàn)[14,28-29]。Dokladny等[30]體外研究發(fā)現(xiàn),提高培養(yǎng)溫度導致Caco-2細胞之間的緊密連接受損。Yu等[13]通過電子顯微鏡也觀察到,熱應激導致豬空腸細胞緊密連接形態(tài)發(fā)生改變。上述研究結果均表明高溫降低了腸道黏膜的完整性。
高溫降低腸道黏膜的完整性可能與肥大細胞有關。Deng等[8]發(fā)現(xiàn),高溫增加了蛋雞腸道上皮組織中肥大細胞的數(shù)量。肥大細胞釋放的生物活性物質如類胰蛋白酶和組胺等可以增強上皮組織的通透性[31-32]。高溫影響?zhàn)つさ耐暾钥赡芘c緊密連接蛋白的表達和分布有關。Ikari等[33]體外研究發(fā)現(xiàn),高溫抑制緊密連接蛋白ZO-1蛋白的表達,并且誘導ZO-1蛋白由細胞膜向細胞質轉移。Dokladny等[30]也發(fā)現(xiàn),提高培養(yǎng)溫度降低了ZO-1蛋白的表達。但Dokladny等[34]發(fā)現(xiàn),高溫上調了Occludin蛋白的表達,推測可能與腸道上皮代償性的保護反應有關。Pearce等[14]發(fā)現(xiàn)高溫影響豬腸道ZO-1、Occludin、Claudin 3等緊密連接蛋白mRNA的表達,表現(xiàn)為先降低后升高的趨勢,進一步證實了這一推測。另外,環(huán)境高溫提高家禽血液中IL-1、TNF-α等細胞因子的含量[8],影響肌球蛋白輕鏈激酶的表達[14],進一步引起肌球蛋白輕鏈磷酸化,調控肌動蛋白細胞骨架的收縮,導致緊密連接打開,增加小腸滲透性[35-38],這可能也是高溫損傷腸道黏膜完整性的機制之一。
高溫影響腸上皮黏膜的完整性,增加了病原菌感染的幾率。Burkholder等[16]觀察到,30 ℃熱暴露24 h會增加肉雞腸道中沙門氏菌的附著。Quinteiro-Filho等[39-40]發(fā)現(xiàn)熱應激提高沙門氏菌在肉雞盲腸和嗉囊上的定植,以及移位進入肉雞的脾臟、肝臟和骨髓中,表明高溫降低了肉雞對沙門氏菌感染的抵抗。另外,由于上皮完整性的受損,內毒素進入家禽的循環(huán)系統(tǒng),進一步激活局部和系統(tǒng)免疫,使能量和營養(yǎng)物質由生長轉向產生急性期蛋白和其他免疫調控因子,從而抑制畜禽生長[41-42],這可能是高溫影響家禽健康和生長的關鍵原因。
環(huán)境高溫對于腸道結構的影響可能與高溫降低采食量有關。張彩霞等[43]發(fā)現(xiàn),限飼70%顯著降低了肉雞十二指腸絨毛高度。但劉路路等[44]發(fā)現(xiàn),同樣限飼70%并沒有顯著影響黃羽肉雞十二指腸、空腸和回腸的絨毛高度和隱窩深度,這可能因為黃羽肉雞生長速度較慢,對于短時間限飼不敏感。Yamauchi等[45]發(fā)現(xiàn),饑餓應激會導致蛋雞十二指腸和空腸絨毛高度降低。Nuez等[46]發(fā)現(xiàn),60%限飼顯著降低了仔豬小腸絨毛高度和隱窩深度。Ferraris等[47]總結了限飼或營養(yǎng)不足對于腸道的影響,認為限飼嚴重影響腸道黏膜的結構和轉運功能,增加腸道對于大分子的滲透性,導致腸道絨毛的萎縮。Garriga等[18]研究了高溫對肉雞腸道結構和功能的影響,同時利用采食量配對的方法研究采食量降低的效應。研究發(fā)現(xiàn),采食配對組同樣降低了肉雞空腸遠端的絨毛高度。Pearce等[14]在豬上的研究也發(fā)現(xiàn)了相似結果,且采食配對組脂多糖的滲透率有升高趨勢。這些研究結果表明,熱應激對于腸道結構的影響部分是由于采食量下降引起的。
環(huán)境高溫對于腸道結構的影響可能與動物體溫升高有關。體外研究發(fā)現(xiàn),提高培養(yǎng)溫度顯著抑制上皮細胞IEC-6的增殖,誘導上皮細胞的凋亡[19],影響Caco-2細胞之間的緊密連接[27]。熱應激導致豬[13]和大鼠[19]的直腸溫度升高。推測直腸溫度升高可能影響腸道上皮細胞的增殖和緊密連接,誘導上皮細胞凋亡,從而影響家禽腸道結構。另外,Bouchama等[27]觀察到中暑病人直腸溫度升高,血液中TNF、IL-1和內毒素含量均顯著升高,而體溫下降后TNF、IL-1和內毒素的含量也隨之下降,這一發(fā)現(xiàn)間接表明體溫升高可能與腸道結構變化有關。
高溫環(huán)境下,動物為了增加散熱,提高體表的血流量,導致腸道等組織的血流量下降[48-49]。血流量長時間減少可能引起腸道上皮細胞缺氧[23]、ATP耗竭、乳酸積聚、細胞功能紊亂,最終導致上皮細胞壞死和脫落,降低腸道絨毛高度,損害腸道上皮的完整性[38,48]。
環(huán)境高溫對于腸道的影響可能與腸道微生物有關。彭騫騫等[7]采用16S rDNA PCR-變性梯度凝膠電泳(DGGE)技術,發(fā)現(xiàn)31 ℃持續(xù)高溫影響肉雞盲腸菌群的結構和多樣性。隨熱應激持續(xù)時間延長,對蛋雞十二指腸、空腸和回腸優(yōu)勢細菌菌群組成的影響越顯著,同時腸道絨毛高度和隱窩深度下降也越明顯[50]。熱應激減少肉雞腸道中腸桿菌科的數(shù)量,增加鏈球菌屬和葡萄球菌屬的數(shù)量[51],增加沙門氏菌等病原菌在腸道中的定植[16,39-40]。腸道中的病原菌可以刺激腸道免疫細胞和上皮細胞分泌炎性細胞因子如TNF、IL-1等,進一步引起肌球蛋白輕鏈磷酸化,導致小腸上皮緊密連接打開,增加小腸滲透性[35-36]。Song等[9]研究發(fā)現(xiàn),高溫降低了腸道中乳酸桿菌和雙歧桿菌的數(shù)量,增加大腸桿菌和梭菌的數(shù)量,而高溫環(huán)境下飼喂益生菌,增加了肉雞腸道中乳酸菌和雙歧桿菌數(shù)量,同時也提高了肉雞腸道絨毛高度,促進緊密連接蛋白的表達,表明高溫對肉雞腸道結構和功能的影響可能與腸道微生物組成變化有關。目前有關高溫影響腸道微生物組成的研究相對較少,對于高溫通過微生物影響腸道結構和功能的機制還不清楚。
綜上所述,熱應激影響家禽腸道的結構,降低腸黏膜的完整性,抑制腸道免疫功能。熱應激對家禽腸道的影響可能和采食量降低、體溫升高、腸道血流量減少以及腸道微生物改變有關。熱應激影響家禽腸道的結構和功能,進一步影響家禽的生長和健康。
參考文獻:
[1] 徐昌芬,陳永珍,王曉冬.組織胚胎學[M].南京:東南大學出版社,2006:91-92.
[2] SPRATT R S,MCBRIDE B W,BAYLEY H,et al.Energy metabolism of broiler breeder hens.2.Contribution of tissues to total heat production in fed and fasted hens[J].Poultry Science,1990,69(8):1348-1356.
[3] SANSONETTI P.War and peace at mucosal surfaces[J].Nature Reviews Immunology,2004,4(12):954-964.
[4] 胡春紅,張敏紅,馮京海,等.偏熱刺激對肉雞休息行為、生理及生產性能的影響[J].動物營養(yǎng)學報,2015,27(7):2070-2076.
[5] 甄龍,石玉祥,張敏紅,等.持續(xù)偏熱環(huán)境對肉雞生長性能、糖脂代謝及解偶聯(lián)蛋白mRNA表達的影響[J].動物營養(yǎng)學報,2015,27(7):2060-2069.
[6] 張少帥,甄龍,馮京海,等.持續(xù)偏熱處理對肉仔雞免疫器官指數(shù)、小腸形態(tài)結構和黏膜免疫指標的影響[J].動物營養(yǎng)學報,2015,27(12):3887-3894.
[7] 彭騫騫,王雪敏,張敏紅,等.持續(xù)偏熱環(huán)境對肉雞盲腸菌群多樣性的影響[J].中國農業(yè)科學,2016,49(1):186-194.
[8] DENG W,DONG X F,TONG J M,et al.The probioticBacilluslicheniformisameliorates heat stress-induced impairment of egg production,gut morphology,and intestinal mucosal immunity in laying hens[J].Poultry Science,2012,91(3):575-582.
[9] SONG J,XIAO K,KE Y L,et al.Effect of a probiotic mixture on intestinal microflora,morphology,and barrier integrity of broilers subjected to heat stress[J].Poultry Science,2014,93(3):581-588.
[10] AL-FATAFTAH A R,ABDELQADER A.Effects of dietaryBacillussubtilison heat-stressed broilersperformance,intestinal morphology and microfloracomposition[J].Animal Feed Science and Technology,2014,198:279-285
[11] MITCHELL M A,CARLISLE A J.The effect of chronic exposure to elevated environmental temperature on intestinal morphology and nutrient absorption in the domestic fowl (Gullusdomesticus)[J].Comparative Biochemistry and Physiology Part A:Physiology,1992,101(1):137-142.
[12] LIU F,YIN J,DU M,et al.Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling[J].Journal of Animal Science,2009,87(6):1941-1949.
[13] YU J,YIN P,LIU F H,et al.Effect of heat stress on the porcine small intestine:a morphological and gene expression study[J].Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,2010,156(1):119-128.
[14] PEARCE S C,MANI V,WEBER T E,et al.Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs[J].Journal of Animal Science,2013,91(11):5183-5193.
[15] QUINTERIRO-FILHO W M,RIBEIRO A,FERRAZ-DE-PAULA V,et al.Heat s stress impairs performance parameters,induces intestinal injury,and decreases macrophage activity in broiler chickens[J].Poultry Science,2010,89(9):1905-1914.
[16] BURKHOLDER K M,THOMPSON K L,EINSTEIN M E,et al.Influence of stressors on normal intestinal microbiota,intestinal morphology,and susceptibility toSalmonellaenteritidis colonization in broilers[J].Poultry Science,2008,87(9):1734-1741.
[17] HAO Y,GU X H,WANG X L.Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers:1.Intestinal structure and digestive function[J].Poultry Science,2012,91(4):781-789.
[18] GARRIGA C,HUNTER R R,AMAT C,et al.Heat stress increases apical glucose transport in the chicken jejunum[J].American Journal of Physiology Regulatory Integrative and Comparative Physiology,2006,290(1):R195-R201.
[19] YU J,YIN P,YIN J D,et al.Involvement of ERK1/2 signalling and growth-related molecules’expression in response to heat stress-induced damage in rat jejunum and IEC-6 cells[J].International Journal of Hyperthermia,2010,26(6):538-555.
[20] YAMAUCHI K E,YAMAMOTO K,ISHIKI Y.Morphological alterations of the intestinal villi and absorptive epithelial cells in each intestinal part in fasted chickens[J].Japanese Poultry Science,1995,32(4):241-251.
[21] XU Z R,HU C H,XIA M S,et al.Effects of dietary fructooligosaccharide on digestive enzyme activities,intestinal microflora and morphology of male broilers[J].Poultry Science,2003,82(6):1030-1036.
[22] 黃淑成,張義博,黃永宣,等.熱應激對肉雞血清內毒素含量和肝臟中TLR4 mRNA表達的影響[J].中國獸醫(yī)雜志,2015,51(12):27-29,32.
[23] HALL D M,BUETTNER G R,OBERLEY L W,et al.Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia[J].American Journal of Physiology Heart and Circulatory Physiology,2001,280(2):H509-H521.
[24] LIM C L,WILSON G,BROWN L,et al.Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress[J].American Journal of Physiology Regulatory Integrative and Comparative Physiology,2007,292(1):R186-R194.
[25] DUBOSE D A,BALCIUS J,MOREHOUSE D.Heat stress and/or endotoxin effects on cytokine expression by human whole blood[J].Shock,2002,17(3):217-221.
[26] MANI V,WEBER T E,BAUMGARD L H,et al.Growth and development symposium:endotoxin,inflammation and intestinal function in livestock[J].Journal of Animal Science,2012,90(5):1452-1465.
[27] BOUCHAMA A,PARHAR R S,EL-TAZIGI A,et al.Endotoxemia and release of tumor necrosis factor and interleukin 1 alpha in acute heatstroke[J].Journal of Applied Physiology,1991,70(6):2640-2644.
[28] LAMBERT G P,GISOLFI C V,BERG D J,et al.Selected contribution:hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress[J].Journal of Applied Physiology,2002,92(4):1750-1761.
[29] PEARCE S C,MANI V,BODDICKER R L,et al.Heat stress reduces barrier function and alters intestinal metabolism in growing pigs[J].Journal of Animal Science,2012,90(4S):257-259.
[30] DOKLADNY K,MOSELEY P L,MA T Y.Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability[J].American Journal of Physiology Gastrointestinal of Liver Physiology,2006,290(2):G204-G212.
[31] SANTOS J,BENJAMIN M,YANG P C,et al.Chronic stress impairs rat growth and jejunal epithelial barrier function:role of mast cell[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2000,278(6):G847-G854.
[32] S?DERHOLM J D,PERDUE M H.Stress and the gastrointestinal tract Ⅱ.Stress and intestinal barrier function[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2001,280(1):G7-G13.
[33] IKARI A,NAKANO M,SUKETA Y,et al.Reorganization of ZO-1 by sodium-dependent glucose transporter activation after heat stress in LLC-PK1 cells[J].Journal of Cellular Physiology,2005,203(3):471-478.
[34] DOKLADNY K,YE D M,KENNEDY J C,et al.Cellular and molecular mechanisms of heat stress-induced up-regulation of occludin protein expression:regulatory role of heat shock factor-1[J].The American Journal Pathology,2008,172(3):659-670.
[35] TURNER J R,RILL B K,CARLSON S L,et al.Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation[J].American Journal of Physiology Cell Physiology,1997,273(4):C1378-C1385.
[36] MORIEZ R,SALVADOR-CARTIER C,THEODOROU V,et al.Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats[J].The American Journal of Pathology,2005,167(4):1071-1079.
[37] YANG P C,HE S H,ZHENG P Y.Investigation into the signal transduction pathway via which heat stress impairs intestinal epithelial barrier function[J].Journal of Gastroenterology and Heptaology,2007,22(11):1823-1831.
[38] LAMBERT G P.Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects[J].Journal of Animal Science,2009,87(14S):E101-E108.
[39] QUINTEIRO-FILHO W M,CALEFIA A S,CRUZA D S G,et al.Heat stress decreases expression of the cytokines,avian defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected withSalmonellaenteritidis[J].Veterinary Immunology and Immunopathology,2017,186:19-28.
[40] QUINTEIRO-FILHO W M,GOMES A V S,PINHEIRO M L,et al.Heat stressimpairs performance and induces intestinal inflammation in broiler chickens infected withSalmonellaenteritidis[J].Avian Pathology,2012,41(5):421-427.
[41] JOHNSON R W.Inhibition of growth by pro-inflammatory cytokines:an integrated view[J].Journal of Animal Science,1997,75(5):1244-1255.
[42] SPURLOCK M E.Regulation of metabolism and growth during immune challenge:an overview of cytokine function[J].Journal of Animal Science,1997,75(7):1773-1783.
[43] 張彩霞,陳文,黃艷群,等.限飼對哈巴德肉雞腸道結構的影響[J].江西農業(yè)大學學報,2010,32(4):677-682.
[44] 劉路路,祁東風,閆冰雪,等.能量限制對三黃雞補償生長及腸道結構的影響[J].動物營養(yǎng)學報,2016,28(1):92-101.
[45] YAMAUCHI K,KAMISOYAMA H,ISSHIKI Y.Effects of fasting and refeeding on structures of the intestinal villu and epithelial cell in White Leghorn hens[J].British Poultry Science,1996,37(5):909-921.
[47] FERRARIS R P,CAREY H V.Intestinal transport during fasting and malnutrition[J].Annual Review of Nutrition,2000,20(1):195-219.
[48] ROWELL L B.Human cardiovascular adjustments to exercise and thermal stress[J].Physiology Reviews,1974,54(1):75-159.
[49] 余進.豬和大鼠小腸黏膜熱應激損傷修復機制的研究[D].碩士學位論文.北京:北京農學院,2010.
[50] 李永洙,陳常秀,金澤林,等.熱應激環(huán)境下育成雞腸道菌群多樣性及黏膜結構的相關性分析[J].中國農業(yè)大學學報,2016,21(1):71-80.
[51] SUZUKI K,HARASAWA R,YOSHITAKE Y,et al.Effects of crowding and heat stress on intestinal flora,body weight gain,and feed efficiency of growing rats and chicks[J].The Japanese Journal of Veterinary Science,1983,45(3):331-338.