Zhengwu PENG, Cuihong ZHOU, Shanshan XUE, Jie BAI, Shoufen YU, Xiaosa LI, Huaning WANG,Qingrong TAN*
抑郁癥年發(fā)病率高達(dá)5-15%,已成為目前最常見(jiàn)的精神疾病之一。雖然目前最主要的策略仍然是抗抑郁藥物治療,然而令人遺憾的是,抗抑郁藥并非對(duì)所有患者都有療效[1]。因此直接針對(duì)腦活動(dòng)的神經(jīng)生物學(xué)干預(yù),包括rTMS和經(jīng)顱直接電刺激(tDCS)(表-1),已經(jīng)成為精神疾病治療中很有應(yīng)用前景的手段[2]。尤其是rTMS,已經(jīng)成為對(duì)抗抑郁藥耐藥的青少年抑郁癥患者的有效方法。本綜述的目的是探討rTMS在抑郁癥治療方面的進(jìn)展,從而更好地了解其治療機(jī)制。
重復(fù)經(jīng)顱磁刺激(rTMS)是一種多用途的治療方法,當(dāng)電流進(jìn)入刺激線圈時(shí)產(chǎn)生短暫的電容放電并產(chǎn)生磁場(chǎng),然后該磁場(chǎng)可以誘發(fā)線圈下大腦皮層神經(jīng)元膜電位的去極化,從而影響神經(jīng)回路的活動(dòng),來(lái)達(dá)到非侵入性調(diào)節(jié)腦中的神經(jīng)活動(dòng)的作用。TMS的生物效應(yīng)與多種參數(shù)相關(guān),包括總脈沖數(shù)、磁刺激的刺激頻率和強(qiáng)度、每串刺激之間的間隔時(shí)間和大腦皮層上的目標(biāo)區(qū)域。不同的刺激類型和組和方式及大腦目標(biāo)區(qū)域差異都會(huì)產(chǎn)生不同的生物學(xué)效應(yīng),同樣很多特定的刺激模式能夠?qū)ι窠?jīng)活動(dòng)產(chǎn)生長(zhǎng)時(shí)程的影響,甚至能夠在治療后仍然有效[3]。
rTMS是TMS的一種類型,可以作為心理社會(huì)疾病和神經(jīng)康復(fù)的潛在治療策略。研究發(fā)現(xiàn)高頻刺激(HF)(>5 Hz)能夠誘發(fā)大腦興奮性效應(yīng),而低頻刺激(LF)(<1 Hz)則能夠誘發(fā)大腦抑制性效應(yīng)。一般認(rèn)為,rTMS長(zhǎng)時(shí)程神經(jīng)效應(yīng)的機(jī)制是rTMS對(duì)突觸可塑性的改變,尤其是對(duì)興奮性突觸傳遞中長(zhǎng)時(shí)程增強(qiáng)/長(zhǎng)時(shí)程抑制(LTP/LTD)的影響[4]。實(shí)際上,藥理學(xué)和動(dòng)物實(shí)驗(yàn)都發(fā)現(xiàn)rTMS能夠影響突觸可塑性產(chǎn)生和維持階段的神經(jīng)活動(dòng),包括NMDA受體的基因和蛋白的表達(dá)[5,6]。此外,基于刺激皮層區(qū)域內(nèi)神經(jīng)纖維的固有特性和幾何特征,磁刺激誘導(dǎo)的電流不僅能調(diào)節(jié)局部中間神經(jīng)環(huán)路的活動(dòng),還能影響逆向或順向投射到遠(yuǎn)處腦區(qū)的神經(jīng)纖維。近來(lái)的研究提出了rTMS最終效果的另一種可能機(jī)制,除了興奮性突觸傳遞中LTP/LTD類的突觸可塑性改變外(如依賴于突觸后鈣離子內(nèi)流的數(shù)量和速率的興奮性神經(jīng)傳遞整合效應(yīng)[7]),也伴隨著對(duì)抑制性中間神經(jīng)元活動(dòng)和膜電位的調(diào)控以及兩種效應(yīng)的平衡調(diào)節(jié)[8]。更為重要的是,rTMS能夠激活皮層環(huán)路并與刺激誘發(fā)的自發(fā)振蕩節(jié)律相互作用。根據(jù)刺激模式與皮層振蕩之間的鎖相同步,這種作用可能誘發(fā)活動(dòng)依賴性的調(diào)控[9]。此外,依據(jù)累積刺激的結(jié)果或后繼效應(yīng)的持續(xù)時(shí)間,rTMS弱于LTP/LTD誘導(dǎo)的標(biāo)準(zhǔn)程序,而且rTMS使用的空間尺度也完全不同(即在單神經(jīng)元水平和rTMS的整個(gè)皮層尺度)。
表1. rTMS和tDCS優(yōu)缺點(diǎn)[2]
美國(guó)美國(guó)食品藥物管理局(FDA)在2008年已經(jīng)批準(zhǔn)將rTMS用于治療耐藥的重癥抑郁患者。目前已經(jīng)明確rTMS具有抗抑郁效應(yīng),且具有良好的耐受性和輕微的副作用。表-2為rTMS在人類和動(dòng)物中的生物效應(yīng)。然而,rTMS的抗抑郁效果尚未在治療抗性(TRD)的抑郁患者中得到證明[10]。
近來(lái)在臨床上已經(jīng)試驗(yàn)了3種rTMS的治療策略:對(duì)左背外側(cè)前額葉皮質(zhì)(DLPFC)進(jìn)行低頻刺激(LF-rTMS),對(duì)右背外側(cè)前額葉皮質(zhì)進(jìn)行高頻刺激(HF-rTMS),或者聯(lián)合上述兩種刺激方案。對(duì)抑郁癥患者左側(cè)DLPFC的HF-rTMS刺激(L-DLPFC)療效已經(jīng)明確,在歐洲指南中列為A級(jí)推薦。實(shí)際上,一項(xiàng)包括29項(xiàng)隨機(jī)對(duì)照試驗(yàn)的薈萃分析結(jié)果表明,在接受HF-rTMS的患者中,分別具有18.6%的治愈率和29.3%的反應(yīng)率(采用假性-rTMS對(duì)照的患者則分別為5%和10.4%)[11]。相比之下,對(duì)右側(cè)DLPFC采用LF-rTMS的療效只能定為可能有效(B級(jí)推薦)。然而,其他一些研究表明每種方法的療效接近[12]。
在rTMS中采用不同的刺激參數(shù)會(huì)產(chǎn)生完全不同的抗抑郁效果。多項(xiàng)研究發(fā)現(xiàn)當(dāng)采用高強(qiáng)度脈沖、更多的刺激次數(shù)或者延長(zhǎng)治療時(shí)間等方式,都可以獲得更好的療效。一篇綜述也表明通常需要聯(lián)合使用多種參數(shù)才能使rTMS發(fā)揮較好的療效,包括每階段>1000個(gè)脈沖、刺激強(qiáng)度>100%的運(yùn)動(dòng)閾值以及每階段>10個(gè)rTMS。[13]然而,仍需進(jìn)一步的研究以確定最佳參數(shù)。
雖然rTMS可能成為電休克療法(ECT)的另一種替代對(duì)抑郁癥患者進(jìn)行治療,但仍有不少研究在對(duì)其療效和接受程度進(jìn)行評(píng)估時(shí)發(fā)現(xiàn)了一些矛盾之處。比如上述的薈萃分析就表明rTMS的療效與刺激參數(shù)密切相關(guān)。該薈萃分析中近十年的其他研究也報(bào)道在重癥抑郁患者的治療中,ECT比rTMS更為有效。而在非精神病性抑郁癥的治療中,ECT與rTMS的療效一致,但對(duì)于具有精神病癥狀的患者,ECT則更為有效。然而,對(duì)于長(zhǎng)期或中長(zhǎng)期的rTMS療效仍然缺乏有效的證據(jù)說(shuō)明[14]。
研究表明多種因素,如軀體語(yǔ)言和活動(dòng)中運(yùn)動(dòng)遲緩的改善、面部表情的改善以及音量的提高,都與rTMS的抗抑郁療效和臨床預(yù)后相關(guān)[15,16]。雖然這些癥狀改變的機(jī)制尚不清楚,但已有研究提示神經(jīng)遞質(zhì)系統(tǒng)的激活與此相關(guān)。下面本文將綜述抑郁癥中重要神經(jīng)遞質(zhì)的作用,并探討rTMS對(duì)這些神經(jīng)遞質(zhì)的影響。
五羥色胺(5-HT)是一種重要的興奮性神經(jīng)遞質(zhì),主要參與下丘腦-垂體-腎上腺系統(tǒng)的調(diào)節(jié)。目前普遍研究認(rèn)為五羥色胺在抑郁癥中起著重要的作用。研究發(fā)現(xiàn)在重癥抑郁患者(MDD)的前額葉皮層和海馬中,5-HT1A受體的mRNA表達(dá)明顯下降,抑郁動(dòng)物模型海馬中也有類似的結(jié)果。因此,增加五羥色胺遞質(zhì)濃度被認(rèn)為是目前抗抑郁藥和rTMS療效的可能機(jī)制。多項(xiàng)證據(jù)表明MDD患者左側(cè)DLPFC的狀態(tài)依賴性改變和代謝情況能夠被rTMS所逆轉(zhuǎn)[17]。從電生理學(xué)角度分析,對(duì)DLPFC椎體神經(jīng)元的刺激可能影響海馬5-HT2A受體的功能。另一項(xiàng)研究發(fā)現(xiàn)HF-rTMS治療對(duì)五羥色胺系統(tǒng)的改變與雙側(cè)DLPFC的5-HT2A受體結(jié)合指數(shù)成正相關(guān),但卻與右側(cè)海馬5-HT2A受體的攝取值成負(fù)相關(guān)[18]。此外,進(jìn)行慢性rTMS治療的患者腦中控制前額葉皮層5-HT濃度的5-HT1A和5-HT1B自身受體的敏感性減弱。
表2. rTMS生物效應(yīng)
很多臨床前研究和臨床試驗(yàn),包括多項(xiàng)薈萃分析,都表明多巴胺在MDD和其他類型的抑郁癥病理生理學(xué)中都起著重要的作用。多巴胺系統(tǒng)中轉(zhuǎn)運(yùn)體和外周受體表達(dá)的改變可能是治療反應(yīng)的潛在預(yù)測(cè)因素,并可以作為抑郁癥診斷的生物標(biāo)志物。對(duì)于rTMS的抗抑郁效應(yīng),人和動(dòng)物實(shí)驗(yàn)都發(fā)現(xiàn)前額葉rTMS刺激能夠誘發(fā)中腦紋狀體、中腦邊緣區(qū)和紋狀體腦區(qū)的多巴胺釋放。急性rTMS刺激誘發(fā)的紋狀體多巴胺改變與使用D-苯丙胺(一種能夠增加突觸多巴胺水平的物質(zhì))產(chǎn)生的效應(yīng)相似[19,20]。
這些研究結(jié)果與早期報(bào)道的類似結(jié)果都提示rTMS能夠影響多巴胺的濃度,從而改善MDD。未來(lái)聯(lián)合正電子發(fā)射斷層顯像(PET)、多巴胺高親和力配體和rTMS的實(shí)驗(yàn)可能為抑郁癥中皮層神經(jīng)環(huán)路和功能性連接的研究提供更多重要的信息[21]。
-氨基丁酸(GABA)是腦中主要的抑制性神經(jīng)遞質(zhì),越來(lái)越多的研究發(fā)現(xiàn)GABA參與抑郁癥的病理生理過(guò)程。尤其是MDD患者腦中代表GABA功能的標(biāo)志物減少,而且腦源性神經(jīng)營(yíng)養(yǎng)因子(BDNF)水平也降低[22]。因此,GABA可能作為抗抑郁治療的一個(gè)潛在的目標(biāo)。GABA對(duì)椎體細(xì)胞樹(shù)突輸入信息抑制的減弱可能是MDD研究中經(jīng)常報(bào)道的前扣帶回膝下區(qū)(sACC)和杏仁核的活動(dòng)增強(qiáng)的一種微回路水平表型[23]。rTMS對(duì)海馬誘發(fā)電位的慢性效應(yīng)研究也表明rTMS伴隨著海馬局部抑制性回路的改變。雖然目前有研究提出MDD中可能存在谷氨酸/GABA比例的失調(diào),但目前的研究?jī)H在健康人群中探討過(guò)rTMS對(duì)谷氨酸/GABA系統(tǒng)的影響[24]。另一項(xiàng)研究表明不同的rTMS刺激,包括LF、間隔刺激和聯(lián)系theta刺激都可能影響皮層抑制性中間神經(jīng)元中活動(dòng)依賴性的蛋白表達(dá),比如GABA轉(zhuǎn)運(yùn)體1、谷氨酸脫羧酶(GAD)65和67.
雖然對(duì)蛋白表達(dá)的作用相似,但由于時(shí)程和數(shù)量的差異,不同頻率的rTMS刺激對(duì)不同神經(jīng)元亞型仍有不同的影響。單個(gè)HF-rTMS刺激程序能夠增加前額葉皮層(PFC)谷氨酸/谷氨酰胺水平,提示該作用可能通過(guò)刺激前額葉皮層谷氨酸能神經(jīng)元來(lái)實(shí)現(xiàn)[25]。在抑制性作用方面,主動(dòng)性rTMS會(huì)增強(qiáng)皮層抑制[26];然而,在上述研究中,僅刺激了左側(cè)運(yùn)動(dòng)皮層。對(duì)MDD患者采用rTMS刺激還涉及其他的神經(jīng)遞質(zhì)。比如在rTMS治療后,左側(cè)ACC的N-乙酰天門冬氨酸濃度增多,而且與TRD患者認(rèn)知功能的改善相關(guān)。此外,MDD也會(huì)影響去甲腎上腺素和乙酰膽堿的濃度,而且這些神經(jīng)遞質(zhì)也受到rTMS的調(diào)節(jié)[27]。
迄今為止,很少有研究發(fā)表rTMS抗抑郁效應(yīng)的介導(dǎo)機(jī)制以及神經(jīng)回路和大腦網(wǎng)絡(luò)的機(jī)制方面的結(jié)果。多項(xiàng)報(bào)道提示在左側(cè)DLPFC采用HF-rTMS刺激能夠?qū)DD患者產(chǎn)生療效。其中一項(xiàng)報(bào)道表明rTMS的療效可能是通過(guò)對(duì)前額葉紋狀體神經(jīng)投射中的功能連接的調(diào)控來(lái)實(shí)現(xiàn)[28]。此外,對(duì)TRD患者DLPFC的rTMS刺激能誘發(fā)遠(yuǎn)程顳葉灌注,這與DLPFC和默認(rèn)模式網(wǎng)絡(luò)(DMN)間功能連接的改變相一致,在內(nèi)測(cè)顳葉邊緣區(qū)尤為如此[29]。另一項(xiàng)研究提示對(duì)rTMS的反應(yīng)可能依賴于不同的抑郁癥亞型,這些具有特征函數(shù)的亞型能夠?qū)Ρ持袀?cè)rTMS產(chǎn)生反應(yīng),但不具有特征函數(shù)的亞型及異常側(cè)向連接到腹內(nèi)側(cè)前額葉皮質(zhì)的亞型對(duì)背中側(cè)rTMS無(wú)反應(yīng)[30]。從右背外側(cè)前額葉皮層投射到左楔前葉和左頂下小葉的連接也與個(gè)體的早期生活應(yīng)激狀態(tài)呈負(fù)相關(guān)。這些結(jié)果表明具有早期生活應(yīng)激的患者中執(zhí)行網(wǎng)絡(luò)和默認(rèn)模式網(wǎng)絡(luò)間的解離比無(wú)早期應(yīng)激的個(gè)體更為常見(jiàn),因此可以在將來(lái)采用rTMS研究早期應(yīng)激相關(guān)條件從而揭示神經(jīng)影像學(xué)的可能結(jié)果[31]。最后,有研究已經(jīng)表明,抗抑郁治療后發(fā)生的連接性變化可能與治療給藥機(jī)制部分相關(guān)。對(duì)于未來(lái)研究中如何探討抗抑郁治療對(duì)大腦神經(jīng)連接的影響方面,有綜述對(duì)其進(jìn)行了一系列的建議[32]。
rTMS治療的機(jī)制可能包括海馬發(fā)生和可塑性范式[33]。在動(dòng)物實(shí)驗(yàn)中已經(jīng)證明rTMS能夠誘導(dǎo)可塑性改變,包括LTP和LTD。一般認(rèn)為rTMS誘導(dǎo)的LTP/LTD與脈沖頻率相關(guān)。比如研究發(fā)現(xiàn)1Hz的rTMS持續(xù)10分鐘能夠誘發(fā)LTD,而5Hz的rTMS能夠誘發(fā)類似LTP的現(xiàn)象。LTP或LTD是否能夠誘導(dǎo)成功可能取決于內(nèi)鈣水平和突觸后膜鈣離子內(nèi)流情況[34]。
突觸可塑性再塑是突觸可塑性的高級(jí)形式,其中長(zhǎng)時(shí)程增強(qiáng)(LTP)或長(zhǎng)時(shí)程抑制(LTD)受到前刺激活動(dòng)的調(diào)節(jié)。人類運(yùn)動(dòng)皮層的突觸可塑性再塑也能夠通過(guò)rTMS進(jìn)行研究。研究表明突觸可塑性再塑包括NMDA受體激活的調(diào)節(jié)(通過(guò)G-單筆偶聯(lián)受體)和突觸后細(xì)胞內(nèi)鈣離子濃度的升高過(guò)程[35]。一般來(lái)說(shuō),LF-rTMS能夠降低運(yùn)動(dòng)皮層的興奮性,而HF-rTMS則能夠增加其興奮性[36]。近來(lái)的研究發(fā)現(xiàn)長(zhǎng)時(shí)程(20-40s)連續(xù)theta串rTMS刺激(50Hz)能夠顯著降低運(yùn)動(dòng)皮層的興奮性,而短時(shí)程(200ms)連續(xù)theta串刺激則能誘發(fā)運(yùn)動(dòng)皮層持續(xù)的興奮性降低,而且這種方案比LF-rTMS更為有效。此外,rTMS能夠在不誘發(fā)神經(jīng)元放電現(xiàn)象的同時(shí)影響神經(jīng)活動(dòng)過(guò)程,包括興奮性閾值的改變、突觸效率和自發(fā)活動(dòng)的改變[37]。除了能夠調(diào)節(jié)興奮性突觸LTP/LTD外,rTMS還能夠同步調(diào)節(jié)膜電位和抑制性神經(jīng)元的興奮性。重要的是,rTMS誘發(fā)的電場(chǎng)不僅能夠影響皮層興奮性,還能影響白質(zhì)結(jié)構(gòu)的興奮性。最新的研究進(jìn)展還發(fā)現(xiàn)星形膠質(zhì)細(xì)胞能夠調(diào)節(jié)神經(jīng)回路[38]并對(duì)神經(jīng)活動(dòng)產(chǎn)生反應(yīng)[39]。此外,鈣信號(hào)也與星形膠質(zhì)細(xì)胞-神經(jīng)元突觸水平的通訊相關(guān)[40]。目前,rTMS是調(diào)控星形膠質(zhì)細(xì)胞控制神經(jīng)連接和對(duì)損傷產(chǎn)生反應(yīng)的主要候選方案[41]。多項(xiàng)研究都報(bào)道高頻rTMS(3 mT,50Hz)不僅能夠誘發(fā)白細(xì)胞介素-6的釋放,還能夠增強(qiáng)細(xì)胞增殖和星形細(xì)胞瘤細(xì)胞系的內(nèi)鈣水平。此外,1Hz的rTMS刺激也能夠顯著提高星形膠質(zhì)細(xì)胞胞漿和核內(nèi)的鈣離子濃度,而且在劃痕實(shí)驗(yàn)中發(fā)現(xiàn)增加的鈣離子對(duì)星形膠質(zhì)細(xì)胞遷移和增殖無(wú)影響[42]。其他研究也提示海馬神經(jīng)發(fā)生可能參與rTMS的抗抑郁效應(yīng)。比如Ueyama等人發(fā)現(xiàn)采用25Hz的rTMS治療2周能夠增加大鼠海馬齒狀回細(xì)胞增生[43]。然而,目前仍需進(jìn)一步確定這些新生的細(xì)胞具有抗抑郁的功能。
rTMS能夠影響多個(gè)細(xì)胞信號(hào)通路本文將主要探討B(tài)DNF和內(nèi)源性大麻素系統(tǒng)。。BDNF是細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)1/2的上游環(huán)節(jié),主要參與中樞神經(jīng)系統(tǒng)(CNS)特殊腦區(qū)的神經(jīng)元存活與分化,并且能夠調(diào)節(jié)突觸可塑性和神經(jīng)連接[44]。有證據(jù)表明BDNF能夠挽救缺血損傷、低血糖或興奮性毒性所致的細(xì)胞死亡。此外,BDNF由于具有神經(jīng)保護(hù)作用、抗炎作用和抗抑郁效應(yīng)而引起研究者的興趣[45]。在CNS使用BDNF能夠增加5HT1A受體基因的表達(dá),并在動(dòng)物模型產(chǎn)生抗抑郁效應(yīng)。此外,BDNF敲除小鼠表現(xiàn)出神經(jīng)功能缺陷和抑郁樣行為,這表明BDNF可能在抑郁癥發(fā)病中起著重要的作用。
以往的研究發(fā)現(xiàn)rTMS能夠誘導(dǎo)聽(tīng)皮層的LTP和LTD樣改變[46]。臨床研究也發(fā)現(xiàn)對(duì)前額葉的rTMS刺激能夠誘導(dǎo)抑郁癥患者神經(jīng)營(yíng)養(yǎng)因子的表達(dá)。而且對(duì)于耐藥的重癥抑郁患者,進(jìn)行10個(gè)療程的HF-rTMS治療后,血漿BDNF水平明顯增加,而且患者抑郁評(píng)分與rTMS治療后血漿BDNF增高的水平具有相關(guān)的趨勢(shì)[47]。與此相反的是,Lang等人的研究報(bào)道[48]MDD患者BDNF血清濃度在HF-rTMS治療后并無(wú)改變,表明外周神經(jīng)營(yíng)養(yǎng)因子的改變與臨床癥狀無(wú)關(guān)。類似的,Gedge等人[49]也發(fā)現(xiàn)耐藥的MDD患者外周BDNF水平在HF-rTMS治療后無(wú)改變。然而,我們實(shí)驗(yàn)室研究了rTMS治療抑郁的機(jī)制,結(jié)果發(fā)現(xiàn)rTMS能夠通過(guò)增加海馬細(xì)胞增生和BDNF和p-ERK1/2蛋白水平來(lái)改善慢性不可預(yù)見(jiàn)性應(yīng)激的大鼠抑郁模型[50]。另一項(xiàng)研究也發(fā)現(xiàn)rTMS能夠促進(jìn)海馬神經(jīng)干細(xì)胞(NSCs)的增生,并增加大鼠抑郁模型中海馬和海馬NSCs中磷酸化ERK1/2和BDNF的表達(dá)[51]。
近來(lái)的基因和藥理學(xué)研究還發(fā)現(xiàn)內(nèi)源性大麻素系統(tǒng)也參與抑郁癥的病理生理機(jī)制。比如,采用慢性不可預(yù)見(jiàn)性應(yīng)激的抑郁模型的研究發(fā)現(xiàn)在多個(gè)與情感障礙相關(guān)的腦區(qū)中內(nèi)源性大麻素和CB1受體結(jié)合位點(diǎn)都有所增加[52]。此外,動(dòng)物模型中能夠誘導(dǎo)的抗抑郁樣作用的抗抑郁藥、大麻素重?cái)z取或代謝抑制劑以及CB1受體激動(dòng)劑都能夠上調(diào)內(nèi)源性大麻素和CB1受體的表達(dá)。我們實(shí)驗(yàn)室的研究也發(fā)現(xiàn)在大鼠輕度不可預(yù)見(jiàn)性的應(yīng)激抑郁模型中,海馬CB1受體、BDNF和B-細(xì)胞淋巴瘤2(Bcl-2)/Bax蛋白的表達(dá)以及細(xì)胞增生都有所降低。然而采用rTMS治療后則能夠增加細(xì)胞增生并上調(diào)海馬CB1受體和BDNF以及Bcl-2/Bax的表達(dá),這些發(fā)現(xiàn)與抑郁樣行為的改善相關(guān)[53]。
最后,rTMS還可能影響其他因子。比如慢性rTMS能夠促進(jìn)BK通道功能、增加Homer1a的表達(dá)以及減少抑郁樣小鼠模型中興奮的扣帶回椎體細(xì)胞的數(shù)量,從而改善抑郁樣表型[54]。
目前尚無(wú)確鑿的證據(jù)支持使用rTMS作為抑郁癥的替代療法。但在開(kāi)放隨機(jī)對(duì)照實(shí)驗(yàn)中卻經(jīng)??梢垣@得陽(yáng)性的結(jié)果,然而目前對(duì)個(gè)體優(yōu)化的治療參數(shù),比如位置、強(qiáng)度、頻率和刺激時(shí)程仍不清楚。同時(shí),假性對(duì)照研究也偶爾會(huì)改善患者癥狀,一些研究還報(bào)道患者對(duì)rTMS和假性rTMS治療的反應(yīng)類似。因此,在設(shè)計(jì)合適的臨床試驗(yàn)之前需要首選弄清這些問(wèn)題。最后,我們必須認(rèn)識(shí)到盡管對(duì)rTMS神經(jīng)生物學(xué)機(jī)制的研究已經(jīng)取得了令人興奮的進(jìn)展,但臨床上是否能夠采用rTMS治療仍取決于對(duì)其安全性、持久性和患者生活質(zhì)量改善的評(píng)估結(jié)果。
資金來(lái)源
國(guó)家自然科學(xué)基金(81401109, 81401019,81371478, 81571309, 81671343和81630032)。
利益沖突
所有作者都聲明在本研究中沒(méi)有利益沖突。
作者貢獻(xiàn)
Zhengwu Penguins:背景寫(xiě)作、rTMS基本原理、結(jié)論寫(xiě)作以及全文整合。
Cuihong Zhou:rTMS促進(jìn)海馬神經(jīng)發(fā)生和突觸可塑性研究、論文格式化。
Shanshan Xue:rTMS調(diào)控神經(jīng)遞質(zhì)研究。
Jie Bai:rTMS調(diào)控神經(jīng)回路和神經(jīng)網(wǎng)絡(luò)。
Shoufen Yu:rTMS通過(guò)調(diào)節(jié)不同的分子通路改善抑郁癥。
Xiaosa Li:跨顱磁刺激的抗抑郁效應(yīng)。
Huaning Wang:修回寫(xiě)作和格式化。
Qingrong Tan:提供大綱、指南和修回論文。
1. Lee G, Bae H. Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression. Biomed Res Int. 2017; 2017:6596241.doi: http://dx.doi.org/10.1155/2017/6596241
2. Valiengo LC, Bensenor IM, Lotufo PA, Fraguas R, Jr.Brunoni AR. Transcranial direct current stimulation and repetitive transcranial magnetic stimulation in consultationliaison psychiatry. Braz J Med Biol Res. 2013; 46(10): 815-823.doi: http://dx.doi.org/10.1590/1414-431X20133115
3. Reithler J, Peters JC, Sack AT. Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol. 2011; 94(2): 149-165.doi:http://dx.doi.org/10.1016/j.pneurobio.2011.04.004
4. Ma J, Zhang Z, Kang L, Geng D, Wang Y, Wang M, Cui H. Repetitive transcranial magnetic stimulation (rTMS)influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol.2014; 58: 256-268.doi: http://dx.doi.org/10.1016/j.exger.2014.08.011
5. Lefaucheur JP. Neurophysiology of cortical stimulation.Int Rev Neurobiol. 2012; 107: 57-85.doi: http://dx.doi.org/10.1016/B978-0-12-404706-8.00005-X
6. Cheeran B, Koch G, Stagg CJ, Baig F, Teo J. Transcranial magnetic stimulation: from neurophysiology to pharmacology, molecular biology and genomics.Neuroscientist. 2010; 16(3): 210-221.doi: http://dx.doi.org/10.1177/1073858409349901
7. Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL.The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol.2011; 122(5): 1011-1018.doi: http://dx.doi.org/10.1016/j.clinph.2010.08.016
8. Muller PA, Dhamne SC, Vahabzadeh-Hagh AM, Pascual-Leone A, Jensen FE, Rotenberg A. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PloS One.2014; 9(3): e91065.doi: http://dx.doi.org/10.1371/journal.pone.0091065
9. Alagapan S, Schmidt SL, Lefebvre J, Hadar E, Shin HW,Frhlich F. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent.PLoS Biol. 2016; 14(3): e1002424.doi: http://dx.doi.org/10.1371/journal.pbio.1002424
10. Serafini G, Pompili M, Belvederi Murri M, Respino M, Ghio L, Girardi P, et al. The effects of repetitive transcranial magnetic stimulation on cognitive performance in treatment-resistant depression. A systematic review.Neuropsychobiology. 2015; 71(3): 125-139.doi: http://dx.doi.org/10.1159/000381351
11. Berlim MT, Van Den Eynde F, Tovar-Perdomo S, Daskalakis ZJ. Response, remission and drop-out rates following highfrequency repetitive transcranial magnetic stimulation(rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and shamcontrolled trials. Psychol Med. 2014; 44(2): 225-239.doi:http://dx.doi.org/10.1017/S0033291713000512
12. Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, et al. Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomised controlled trials. Psychiatry Res. 2013; 210(3): 1260-1264.doi: http://dx.doi.org/10.1016/j.psychres.2013.09.007
13. Dumas R, Padovani R, Richieri R, Lancon C [Repetitive transcranial magnetic stimulation in major depression:response factor]. L’Encephale. 2012; 38(4): 360-368. French.doi: http://dx.doi.org/10.1016/j.encep.2011.08.004
14. Xie J, Chen J, Wei Q. Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a meta-analysis of stimulus parameter effects.Neurological Res. 2013; 35(10): 1084-1091. doi: http://dx.doi.org/10.1179/1743132813Y.0000000245
15. Cheng C M, Juan CH, Chen MH, Chang CF, Lu HJ, Su TP,et al. Different forms of prefrontal theta burst stimulation for executive function of medication- resistant depression:Evidence from a randomized sham-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2016; 66: 35-40.doi: http://dx.doi.org/10.1016/j.pnpbp.2015.11.009
16. Thomas-Ollivier V, Foyer E, Bulteau S, Pichot A, Valriviere P, Sauvaget A, et al. Cognitive component of psychomotor retardation in unipolar and bipolar depression: Is verbal fluency a relevant marker? Impact of repetitive transcranial stimulation. Psychiatry Clin Neurosci. 2017; 71(9): 612-623.doi: http://dx.doi.org/10.1111/pcn.12529
17. Baeken C, Vanderhasselt MA, Remue J, Herremans S,Vanderbruggen N, Zeeuws D, et al. Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. J Affect Disord. 2013; 151(2): 625-631.doi: http://dx.doi.org/10.1016/j.jad.2013.07.008
18. De Raedt R, Vanderhasselt MA, Baeken C. Neurostimulation as an intervention for treatment resistant depression: From research on mechanisms towards targeted neurocognitive strategies. Clin Psychol Rev. 2015; 41: 61-69. doi: http://dx.doi.org/10.1016/j.cpr.2014.10.006
19. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Zwanzger P, et al. Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression:preliminary results of a dynamic [123I] IBZM SPECT study.J Psychiatr Res. 2006; 40(4): 307-314. doi: http://dx.doi.org/10.1016/j.jpsychires.2005.09.001
20. Pogarell O, Koch W, Popperl G, Tatsch K, Jakob F, Mulert C, et al. Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiatry Res.2007; 156(3): 251-255. doi: http://dx.doi.org/10.1016/j.pscychresns.2007.05.002
21. Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev.2016; 64: 101-133. doi: http://dx.doi.org/10.1016/j.neubiorev.2016.02.011
22. Ren Z, Sahir N, Murakami S, Luellen BA, Earnheart JC,Lal R, et al. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressivelike phenotype of GABAA receptor-deficient mice.Neuropharmacology. 2015; 88: 171-179.doi: http://dx.doi.org/10.1016/j.neuropharm.2014.07.019
23. Tripp A, Oh H, Guilloux JP, Martinowich K, Lewis DA,Sibille E. Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder. Am J Psychiatry. 2012; 169(11): 1194-1202. doi: http://dx.doi.org/10.1176/appi.ajp.2012.12020248
24. Guglietti CL, Daskalakis ZJ, Radhu N, Fitzgerald PB,Ritvo P. Meditation-related increases in GABAB modulated cortical inhibition. Brain stimul. 2013; 6(3): 397-402. doi:http://dx.doi.org/10.1016/j.brs.2012.08.005
25. Baeken C, Lefaucheur JP, Van Schuerbeek P. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from (1)H MR spectroscopy. Clin Neurophysiol. 2017; 128(9): 1664-1672.doi: http://dx.doi.org/10.1016/j.clinph.2017.06.243
26. Hoppenrath K, Hartig W, Funke K. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion. Front Neural Circuits. 2016; 10:22. doi: http://dx.doi.org/10.3389/fncir.2016.00022
27. Pehrson AL, Hillhouse TM, Haddjeri N, Rovera R, Porter JH, Mork A, et al. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. J Pharmacol Exp Ther. 2016; 358(3): 472-482. doi:http://dx.doi.org/10.1124/jpet.116.233924
28. Kang JI, Lee H, Jhung K, Kim KR, An SK, Yoon KJ, et al.Frontostriatal Connectivity Changes in Major Depressive Disorder After Repetitive Transcranial Magnetic Stimulation:A Randomized Sham-Controlled Study. J Clin Psychiatry.2016; 77(9): e1137-e1143. doi: http://dx.doi.org/10.4088/JCP.15m10110
29. Richieri R, Jouvenoz D, Verger A, Fiat P, Boyer L, Lancon C, et al. Changes in dorsolateral prefrontal connectivity after rTMS in treatment-resistant depression: a brain perfusion SPECT study. Eur J Nucl Med Mol Imaging. 2017; doi:http://dx.doi.org/10.1007/s00259-017-3640-5
30. Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S, Mcandrews MP, et al. Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression. Biol Psychiatry.2014; 76(3): 176-185. doi: http://dx.doi.org/10.1016/j.biopsych.2013.10.026
31. Philip NS, Valentine TR, Sweet LH, Tyrka AR, Price LH,Carpenter LL. Early life stress impacts dorsolateral prefrontal cortex functional connectivity in healthy adults: informing future studies of antidepressant treatments. J Psychiatr Res. 2014; 52: 63-69. doi: http://dx.doi.org/10.1016/j.jpsychires.2014.01.014
32. Gudayol-Ferre E, Pero-Cebollero M, Gonzalez-Garrido AA,Guardia-Olmos J. Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review. Front Hum Neurosci. 2015; 9: 582. doi:http://dx.doi.org/10.3389/fnhum.2015.00582
33. Taylor SF, Bhati MT, Dubin MJ, Hawkins JM, Lisanby SH,Morales O, et al. A naturalistic, multi-site study of repetitive transcranial magnetic stimulation therapy for depression.J Affect Disord. 2017; 208: 284-290. doi: http://dx.doi.org/10.1016/j.jad.2016.08.049
34. Tan T, Xie J, Tong Z, Liu T, Chen X, Tian X. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res. 2013; 1520:23-35. doi: http://dx.doi.org/10.1016/j.brainres.2013.04.053
35. Yang K, Trepanier C, Sidhu B, Xie YF, Li H, Lei G, et al. Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. EMBO J. 2012; 31(4): 805-816. doi: http://dx.doi.org/10.1038/emboj.2011.453
36. Zhang L, Xing G, Shuai S, Guo Z, Chen H, Mcclure MA,et al. Low-Frequency Repetitive Transcranial Magnetic Stimulation for Stroke-Induced Upper Limb Motor Deficit: A Meta-Analysis. Neural Plasticity. 2017; 2017: 2758097. doi:http://dx.doi.org/10.1155/2017/2758097
37. Nordmann G, Azorina V, Langguth B, Schecklmann M. A systematic review of non-motor rTMS induced motor cortex plasticity. Front Hum Neurosci. 2015; 9: 416. doi: http://dx.doi.org/10.3389/fnhum.2015.00416
38. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A,Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504(7480): 394-400. doi: http://dx.doi.org/10.1038/nature12776
39. Ding F, O’donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, et al. alpha1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium. 2013; 54(6): 387-394. doi: http://dx.doi.org/10.1016/j.ceca.2013.09.001
40. Gomez-Gonzalo M, Martin-Fernandez M, Martinez-Murillo R, Mederos S, Hernandez-Vivanco A, Jamison S, et al.Neuron-astrocyte signaling is preserved in the aging brain.Glia. 2017; 65(4): 569-580. doi: http://dx.doi.org/10.1002/glia.23112
41. Clarke D, Penrose MA, Harvey AR, Rodger J, Bates KA.Low intensity rTMS has sex-dependent effects on the local response of glia following a penetrating cortical stab injury. Exp Neurol. 2017; 295: 233-242. doi: http://dx.doi.org/10.1016/j.expneurol.2017.06.019
42. Clarke D, Penrose MA, Penstone T, Fuller-Carter PI, Hool LC, Harvey AR, et al. Frequency-specific effects of repetitive magnetic stimulation on primary astrocyte cultures. Restor Neurol Neurosci. 2017; 35(6): 557-569. doi: http://dx.doi.org/10.3233/RNN-160708
43. Tang A, Thickbroom G, Rodger J. Repetitive Transcranial Magnetic Stimulation of the Brain: Mechanisms from Animal and Experimental Models. Neuroscientist. 2015; doi:http://dx.doi.org/10.1177/1073858415618897
44. Johnson RA, Rhodes JS, Jeffrey SL, Garland T, Jr. Mitchell GS. Hippocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running. Neuroscience. 2003; 121(1): 1-7
45. Kim JH. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid beta-induced apoptosis in neuroblastoma cells. Exp Ther Med. 2014; 8(6):1891-1895. doi: http://dx.doi.org/10.3892/etm.2014.2033
46. Wang H, Wang X, Scheich H. LTD and LTP induced by transcranial magnetic stimulation in auditory cortex.Neuroreport. 1996; 7(2): 521-525
47. Schaller G, Sperling W, Richter-Schmidinger T, Muhle C,Heberlein A, Maihofner C, et al. Serial repetitive transcranial magnetic stimulation (rTMS) decreases BDNF serum levels in healthy male volunteers. J Neural Transm (Vienna). 2014;121(3): 307-313. doi: http://dx.doi.org/10.1007/s00702-013-1102-1
48. Lang UE, Bajbouj M, Gallinat J, Hellweg R. Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation. Psychopharmacology.2006; 187(1): 56-59. doi: http://dx.doi.org/10.1007/s00213-006-0399-y
49. Gedge L, Beaudoin A, Lazowski L, Du Toit R, Jokic R,Milev R. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression. Front Psychiatry. 2012; 3: 12. doi: http://dx.doi.org/10.3389/fpsyt.2012.00012
50. Feng SF, Shi TY, Fan Yang, Wang WN, Chen YC, Tan QR.Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res. 2012; 232(1): 245-251. doi: http://dx.doi.org/10.1016/j.bbr.2012.04.019
51. Chen YH, Zhang RG, Xue F, Wang HN, Chen YC, Hu GT, et al. Quetiapine and repetitive transcranial magnetic stimulation ameliorate depression-like behaviors and upregulate the proliferation of hippocampal-derived neural stem cells in a rat model of depression: The involvement of the BDNF/ERK signal pathway. Pharmacol Biochem Behav. 2015; 136: 39-46. doi: http://dx.doi.org/10.1016/j.pbb.2015.07.005
52. Hill MN, Carrier EJ, Mclaughlin RJ, Morrish AC, Meier SE,Hillard CJ, et al. Regional alterations in the endocannabinoid system in an animal model of depression: effects of concurrent antidepressant treatment. J Neurochem. 2008;106(6): 2322-2336. doi: http://dx.doi.org/10.1111/j.1471-4159.2008.05567.x
53. Wang HN, Wang L, Zhang RG, Chen YC, Liu L, Gao F,et al. Anti-depressive mechanism of repetitive transcranial magnetic stimulation in rat: the role of the endocannabinoid system. J Psychiatr Res. 2014; 51: 79-87
54. Sun P, Wang F, Wang L, Zhang Y, Yamamoto R, Sugai T, et al.Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: a transcranial magnetic stimulation study. J Neurosci. 2011; 31(45): 16464-16472.doi: http://dx.doi.org/10.1523/JNEUROSCI.1542-11.2011