• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Cu/Ni3Ti原位復合材料的顯微組織和力學性能

      2018-11-25 04:05:46毛虎楊宏亮張正姜江李永濤史曉斌
      有色金屬材料與工程 2018年4期
      關鍵詞:心部鑄錠壓痕

      毛虎 楊宏亮 張正 姜江 李永濤 史曉斌

      摘要:

      通過真空電弧熔煉法制備了Cu/Ni3Ti原位復合材料。采用X射線衍射儀、掃描電子顯微鏡、顯微硬度計和納米壓痕儀分別測試了Cu/Ni3Ti原位復合材料的相組成、微觀組織形貌、顯微硬度和彈性模量。結果顯示,Ni3Ti相在銅基體中呈針狀分布,且鑄錠邊緣與心部平均晶粒直徑分別約為1.74和249 μm。Cu/Ni3Ti原位復合材料在時效溫度為550 ℃時的強化效果最佳,此時銅基體與Ni3Ti相的顯微硬度最大值分別達到了174和209。在熱處理后,Ni3Ti相的最大硬度和彈性模量分別達到10.5 GPa和249.7 GPa,遠高于Cu基體,Ni3Ti相是一種理想的增強相。

      關鍵詞:

      原位復合材料; Ni3Ti相; 顯微硬度; 增強相

      中圖分類號: TG 166.2 文獻標志碼: A

      Microstructures and Mechanical Properties of

      Cu/Ni3Ti Composites

      MAO Hu YANG Hongliang ZHANG Zheng JIANG Jiang LI Yongtao SHI Xiaobin1

      (1.Anhui University of Technology, School of Materials Science & Engineering, Maanshan 243032, China;

      2.Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029, China)

      Abstract:

      Cu/Ni3Ti in-situ composite is prepared by vacuum arc melting.The phase composition,microstructure morphology,microhardness and elastic modulus of the composite are measured by using X-ray diffractometer,scanning electron microscope,microhardness tester and nanoindentation,respectively.The results show that Ni3Ti phase is acicular in the Cu matrix.The average grain sizes at the edge and center of the ingot are about 1.74 and 249 μm,respectively.The Cu/Ni3Ti in-situ composite have the highest strengthening effect after aging at 550 ℃.Meanwhile,the maximum microhardnesses of Cu matrix and Ni3Ti phase are up to 174 and 209,respectively.After heat treatment,the maximum hardness and elastic modulus of Ni3Ti phase measured by nanoindentation are 10.5 GPa and 249.7 GPa,respectively,which are much higher than those of Cu matrix.Therefore,Ni3Ti is an ideal strengthening phase.

      Keywords:

      in-situ composite; Ni3Ti phase; microhardness; strengthening phase

      銅及銅合金具有優(yōu)異的導電及導熱性,因而被廣泛應用于電子通信及國防工業(yè)等領域。隨著科學技術的快速發(fā)展,對銅合金強度的要求也越來越高,而純銅及傳統(tǒng)銅合金很難滿足其要求。目前,提高銅合金強度的方法主要有改善微觀組織和添加強化相兩種方法。為了使銅合金兼具高強度、高硬度和高導電性,學者們已經(jīng)做了大量的研究[1-9]。盧柯等[1]通過電沉積的方法獲得了納米孿晶銅,并將純銅的強度提高至1 GPa。這種方法在不降低純銅導電性的情況下,有效地提高了純銅的強度。添加增強相得到銅基復合材料也是較好的強化方法。通過添加不同的增強相來提高金屬基合金的性能[10-12],如添加TiC[13-16],TiB2[17-19],納米Al2O3顆粒[20],碳納米管[21-22]及TiB[23-24]等使得合金的硬度、彈性模量、導電性等均有不同程度的提高。Cu/C,Cu/TiO2和超細晶Cu/Al2O3復合材料的導電率均高于80%IACS[25-27]。除此之外,添加合金元素也可以提高銅合金的性能,如Cu-Mg合金在強度和導電性之間表現(xiàn)出極好的平衡[28-29],而Cu-5Ag合金[30]的導電率(78%IACS)顯著高于Cu-Ni-Si合金[31]。

      銅基原位復合材料是向銅基體中加入一定的合金元素,經(jīng)過特定工藝后原位生成增強相的一種復合材料[32]。相比離位復合法,原位反應合成的銅基復合材料具有諸多優(yōu)點[33-34],如增強相與基體的界面無污染,且具有良好的相容性和較高的結合強度,能夠保持較好的韌性與良好的高溫性能等。通過分析合金相圖,設計了Cu-12Ni-4Ti合金,并采用真空熔煉的方法獲得了Cu-12Ni-4Ti合金鑄錠。采用顯微硬度計研究了Cu基復合材料不同時效溫度處理后的硬度變化情況。此外,應用納米壓痕技術研究了復合材料的彈性模量。

      1 試驗方法

      通過真空電弧熔煉質量分數(shù)為99.99%的純銅,純鎳和純鈦獲得了Cu-12Ni-4Ti合金鑄錠。鑄錠經(jīng)線切割,得到尺寸約10 mm×5 mm×2 mm的長方體樣品。切割后的樣品經(jīng)800 ℃固溶2 h后,分別在350,450,550和650 ℃時效20 h。然后將樣品進行磨拋,以保證樣品表面光亮并沒有劃痕。采用掃描電子顯微鏡(SEM,型號FEI Quanta 200)進行微觀組織觀察。采用X射線衍射儀(XRD,型號Bruker D8 Advance)進行物相分析。采用顯微硬度計(型號HV-1000Z自動轉塔顯微硬度計)進行顯微硬度測試,最大試驗力為100 gf,持續(xù)時間為10 s,每組樣品進行5次測量取平均值。采用納米壓痕儀(型號Nano Indenter G200)測試了Cu/Ni3Ti復合材料的彈性模量及硬度。

      2 結果與討論

      2.1 顯微組織成分分析

      圖1為復合材料的XRD圖譜及SEM照片。由圖1(a)所示的XRD圖譜可以發(fā)現(xiàn),復合材料中存在Cu和Ni3Ti兩相。圖1(b)為復合材料鑄錠心部的SEM照片,從圖中可明顯看到針狀第二相散亂分布于銅基體中,且具有非常清楚的界面。表1為圖1(b)中A,B兩點的能譜(EDS)分析。結合圖1(b)和表1可發(fā)現(xiàn),針狀第二相(A點)的Ni,Ti原子比接近3∶1。結合XRD分析,可確定第二相為Ni3Ti相;基體為Cu,其中固溶了少量Ni,無Ti。圖1(c)為鑄錠心部Ni3Ti相的長度統(tǒng)計,經(jīng)計算可知,鑄錠心部Ni3Ti相的平均長度約249 μm。

      表1 對應于圖1(b)中A,B點的EDS分析

      Tab.1 EDS analysis at the points A and B in Fig.1(b)

      圖2為鑄錠邊緣的顯微組織分析。圖2(a)為鑄錠的SEM照片,從圖中可以發(fā)現(xiàn)鑄錠中存在大量針狀Ni3Ti相。圖2(b)為鑄錠邊緣Ni3Ti相的長度統(tǒng)計,經(jīng)計算可知邊緣Ni3Ti相的平均長度約1.74 μm。從圖1(c)和圖2(b)所示的第二相長度分布可發(fā)現(xiàn)Ni3Ti相大小不一,且尺寸相差較大:鑄錠邊緣Ni3Ti相的長度分布為0.5~3.5 μm,且超過60%的晶粒的尺寸集中在1~2 μm;鑄錠心部Ni3Ti相的長度達到600 μm,長度分布為100~300 μm的Ni3Ti超過總數(shù)的50%。鑄錠邊緣和心部Ni3Ti相的長度相差較大,原因是液態(tài)金屬凝固過程中,邊緣部分冷卻速度較快,因此得到尺寸細小的Ni3Ti相;而鑄錠心部冷卻速度較慢,因此Ni3Ti相尺寸較大。

      圖1 Cu/Ni3Ti原位復合材料鑄錠心部的微觀組織分析

      Fig.1 Microstructure analysis of the center area of

      Cu/Ni3Ti in-situ composite ingot

      2.2 顯微硬度

      圖3為不同溫度時效20 h后Cu/Ni3Ti原位復合材料的顯微硬度變化曲線。從圖3中可明顯看出:一方面,銅基體和Ni3Ti相的硬度均在550 ℃時效處理后獲得最大值,且銅基體與Ni3Ti相顯微硬度最大值分別達到了174和209;另一方面,銅基體的顯微硬度要遠小于Ni3Ti相的顯微硬度,但高于通過放電等離子燒結(SPS)工藝制備的CuCr/CNTs復合材料的顯微硬度(95.8)[35]。

      圖2 Cu/Ni3Ti原位復合材料鑄錠邊緣的微觀組織分析

      Fig.2 Microstructure analysis of the edge area of

      Cu/Ni3Ti in-situ composite ingot

      圖3 Cu/Ni3Ti原位復合材料不同熱處理溫度下

      Cu基體與Ni3Ti相的顯微硬度變化曲線

      Fig.3 Microhardness of the Cu matrix and

      Ni3Ti phase in Cu/Ni3Ti in-situ composite

      heat treated at different temperatures

      2.3 彈性模量

      在恒溫24 ℃條件下,未經(jīng)過熱處理的Cu/Ni3Ti復合材料的彈性模量通過納米壓痕試驗來表征,結果如圖4所示。圖4(a)為未經(jīng)過熱處理的復合材料的載荷-位移曲線,可以發(fā)現(xiàn),在相同載荷下,Ni3Ti相的位移要遠小于銅基體。圖4(b)和(c)分別為Ni3Ti相與銅基體的彈性模量和硬度隨位移的變化曲線,可以發(fā)現(xiàn),未處理狀態(tài)時的銅基體的最大彈性模量和硬度分別為153.5 GPa和2.1 GPa,Ni3Ti相的最大彈性模量和硬度分別為224 GPa和7.7 GPa。由上述數(shù)據(jù)可知,Ni3Ti相最大彈性模量約是銅基體的1.4倍,硬度約是銅基體的4倍,是理想的增強相。

      圖4 熱處理前Cu/Ni3Ti原位復合材料的納米壓痕測試結果

      Fig.4 Nanoindentation results of Cu/Ni3Ti in-situ composite before heat treatment

      圖5為Cu/Ni3Ti原位復合材料在800 ℃固溶和550 ℃時效后的納米壓痕測試結果。圖5(a)和(b)為固溶與時效后的載荷-位移曲線。圖5(c)和(d)分別為銅基體與Ni3Ti相的彈性模量、硬度與位移的關系曲線。由圖5(c)可知,550 ℃時效處理后,Cu基體最大彈性模量和硬度分別為159.9 GPa和2.1 GPa;而800 ℃固溶后,銅基體最大彈性模量及硬度分別為154.8 GPa和2.0 GPa。相比熱處理前的Cu/Ni3Ti原位復合材料,800 ℃固溶和550 ℃時效后,復合材料中銅基體的硬度更高,且550 ℃時效處理后銅基體的硬度最高,與顯微硬度測試結果一致。圖5(d)中的Ni3Ti相也是在熱處理后獲得了更大的彈性模量和硬度,分別達到249.7 GPa和10.5 GPa。

      根據(jù)上述試驗結果可知,Cu/Ni3Ti原位復合材料在550 ℃時效處理后獲得了更高的硬度,原因是固溶強化及第二相強化共同作用的結果。當時效溫度較高時,固溶原子增多,固溶強化增強,但第二相含量減少,第二相彌散強化的效果削弱,反之亦然。而在550 ℃時效處理后,第二相和固溶原子均保持了較好的強化作用,此時的強化效果最佳。

      圖5 Cu/Ni3Ti原位復合材料800 ℃固溶與550 ℃時效后的納米壓痕測試結果

      Fig.5 Nanoindentation results of Cu/Ni3Ti in-situ composite after solid-solution at 800 ℃ and aging at 550 ℃

      3 結 論

      通過真空電弧熔煉得到Cu/Ni3Ti原位復合材料。通過顯微組織、顯微硬度及納米壓痕測試,得到如下結果。

      (1) XRD結果顯示,材料中含有Ni3Ti相及銅相;SEM分析得出,Ni3Ti相在銅基體中呈針狀,且鑄錠邊緣Ni3Ti相尺寸較小,平均長度約1.74 μm,而心部Ni3Ti相平均長度約249 μm。

      (2) 比較了不同溫度熱處理后的Cu/Ni3Ti原位復合材料的顯微硬度,發(fā)現(xiàn)550℃時效后獲得的硬度最大,銅基體與Ni3Ti相的顯微硬度最大值分別達到了174和209。

      (3) 納米壓痕測試得出,經(jīng)熱處理后的Cu/Ni3Ti原位復合材料中Ni3Ti相的最大彈性模量和硬度分別為249.7 GPa和10.5 GPa,而銅基體的最大彈性模量和硬度分別為159.9 GPa和2.1 GPa,Ni3Ti相的最大彈性模量和硬度分別約是銅基體的1.6倍和5.5倍,是較理想的增強相。

      參考文獻:

      [1] LU K,CHEN X,HUANG X,et al.Revealing the maximum strength in nanotwinned copper[J].Science,2009,323(5914):607-610.

      [2] MIURA H,NISHIYAMA N,INOUE A.Non-equilibrium copper-based crystalline alloy sheet having ultrahigh strength and good electrical conductivity[J].Journal of Alloys and Compounds,2011,509(S1):S361-S363.

      [3] LOPEZ F,REYES J,CAMPILLO B,et al.Rapid solidication of copper alloys with high strength and high conductivity[J].Journal of Materials Engineering and Performance,1997,6(5):611-614.

      [4] LU D P,WANG J,ZENG W J,et al.Study on high-strength and high-conductivity Cu-Fe-P alloys[J].Materials Science and Engineering A,2006,421(1/2):254-259.

      [5] HOSSEINI S A,MANESH H D.High-strength,high-conductivity ultra-fine grains commercial pure copper produced by ARB process[J].Materials & Design,2009,30(8):2911-2918.

      [6] WANG F L,LI Y P,WAKOH K,et al.Cu-Ti-C alloy with high strength and high electrical conductivity prepared by two-step ball-milling processes[J].Materials & Design,2014,61:70-74.

      [7] SHUAI J,XIONG L Q,ZHU L,et al.Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite[J].Composites Part A:Applied Science and Manufacturing,2016,88:148-155.

      [8] LUO H B,SUI Y W,QI J Q,et al.Copper Matrix composites enhanced by Silver/reduced Graphene Oxide hybrids[J].Materials Latters,2017,196:354-357.

      [9] TAZEGUL O,DYLMISHI V,CIMENOGLU H.Copper matrix composite coatings produced by cold spraying process for electrical applications[J].Archives of Civil and Mechanical Engineering,2016,16(3):344-350.

      [10] MA F C,LU S Y,LIU P,et al.Evolution of strength and fibers orientation of a short-fibers reinforced Ti-matrix composite after extrusion[J].Materials & Design,2017,126:297-304.

      [11] MA F C,WANG T R,LIU P,et al.Mechanical properties and strengthening effects of in situ(TiB+TiC)/Ti-1100 composite at elevated temperatures[J].Materials Science and Engineering A,2016,654:352-358.

      [12] MA F C,ZHENG B,LIU P,et al.Modeling of effects of thermomechanical processing on elevated-temperature mechanical properties of in situ(TiB+TiC)/Ti-1100 composite[J].Journal of Materials Science,2016,51(16):7502-7511.

      [13] FRAGE N,F(xiàn)ROUMIN N,RUBINOVICH L,et al.Inltrated TiC/Cu composites[C]∥15th International Plansee Seminar.Reutte:[s.n.],2001:202-216.

      [14] NEMATI N,KHOSROSHAHI R,EMAMY M,et al.Investigation of microstructure,hardness and wear properties of Al-4.5 wt.% Cu-TiC nanocomposites produced by mechanical milling[J].Materials & Design,2011,32(7):3718-3729.

      [15] BAGHERI G A.The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles[J].Journal of Alloys and Compounds,2016,676:120-126.

      [16] MA F C,SHI Z B,LIU P,et al.Strengthening effect of in situ TiC particles in Ti matrix composite at temperature range for hot working[J].Materials Characterization,2016,120:304-310.

      [17] BASU S N,HUBBARD K M,HIRVONEN J P,et al.Microstructure and stability of TiB2 and Cu multilayers[C]∥The Spring Meeting of the Materials Research Society.San Francisco,CA:Materials Research Society,1990:16-21.

      [18] WANG T M,ZOU C L,CHEN Z N,et al.In situ synthesis of TiB2 particulate reinforced copper matrix composite with a rotating magnetic field[J].Materials & Design,2015,65:280-288.

      [19] TU J P,WANG N Y,YANG Y Z,et al.Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing[J].Materials Letters,2002,52(6):448-452.

      [20] 陳渝,屠曉倩,王柳幸,等.納米Al2O3顆粒對Cu-Al2O3性能的影響[J].有色金屬材料與工程,2018,39(1):15-18.

      [21] TAO J M,CHEN X F,HONG P,et al.Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition[J].Journal of Alloys and Compounds,2017,717:232-239.

      [22] HUANG Z X,ZHENG Z,ZHAO S,et al.Copper matrix composites reinforced by aligned carbon nanotubes:Mechanical and tribological properties[J].Materials & Design,2017,133:570-578.

      [23] MA F C,PING L,WEI L,et al.The mechanical behavior dependence on the TiB whisker realignment during hot-working in titanium matrix composites[J].Sci Rep,2016,6:36126.

      [24] MA F C,LU S Y,LIU P,et al.Microstructure and mechanical properties variation of TiB/Ti matrix composite by thermo-mechanical processing in beta phase field[J].Journal of Alloys and Compounds,2017,695:1515-1522.

      [25] YAO G C,MEI Q S,LI J Y,et al.Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding[J].Materials & Design,2016,110:124-129.

      [26] HAN T L,LI J J,ZHAO N Q,et al.In-situ fabrication of nano-sized TiO2 reinforced Cu matrix composites with well-balanced mechanical properties and electrical conductivity[J].Powder Technology,2017,321:66-73.

      [27] ZHOU D S,ZENG W,ZHANG D L.A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity[J].Journal of Alloys and Compounds,2016,682:590-593.

      [28] MAKI K,ITO Y,MATSUNAGA H,et al.Solid-solution copper alloys with high strength and high electrical conductivity[J].Scripta Materialia,2013,68(10):777-780.

      [29] GORSSE S,OUVRARD B,GOUN M,et al.Microstructural design of new high conductivity-high strength Cu-based alloy[J].Journal of Alloys and Compounds,2015,633:42-47.

      [30] ZHANG B B,TAO N R,LU K.A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins[J].Scripta Materialia,2017,129:39-43.

      [31] LI D M,WANG Q,JIANG B B,et al.Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach[J].Progress in Natural Science:Materials International,2017,27(4):467-473.

      [32] 葛繼平.形變Cu-Fe原位復合材料[D].大連:大連交通大學,2004.

      [33] 丁丁.原位納米顆粒增強銅合金的制備及其強化機制研究[D].北京:北京科技大學,2015.

      [34] 劉克明.高強高導形變Cu基原位復合材料研究[D].長沙:中南大學,2012.

      [35] 付少利,劉平,陳小紅,等.SPS工藝對CuCr/CNTs復合材料組織性能的影響[J].有色金屬材料與工程,2017,38(2):78-84.

      猜你喜歡
      心部鑄錠壓痕
      軋制壓縮比對特厚板心部組織影響分析
      淺談Al-Ti-C與Al-Ti-B細化劑對7050合金鑄錠的影響
      鋁加工(2023年2期)2023-05-09 06:04:24
      抗壓痕透明粉在精車鋁輪轂上的應用研究
      上海涂料(2021年5期)2022-01-15 06:09:26
      大規(guī)格純鈦鑄錠脫氧現(xiàn)象及對策
      淺析鋯合金β淬火組織差異
      重言“憂”義字略辨
      Sc對7028鋁合金鑄態(tài)組織和性能影響研究
      薄壁齒套的心部硬度控制
      用連續(xù)球壓痕法評價鋼斷裂韌度
      C/SiC復合材料納米壓痕有限元仿真
      石首市| 崇信县| 云阳县| 西城区| 合川市| 洪洞县| 长兴县| 新巴尔虎左旗| 济源市| 绥宁县| 潜江市| 秭归县| 万荣县| 大港区| 松溪县| 通州区| 海阳市| 德兴市| 仁化县| 林州市| 友谊县| 青龙| 织金县| 楚雄市| 普定县| 美姑县| 平利县| 自治县| 驻马店市| 沙湾县| 娄底市| 无极县| 宁乡县| 威宁| 南乐县| 西乌珠穆沁旗| 新晃| 淮滨县| 周至县| 丰城市| 揭东县|