• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于冪次趨近律滑模觀測器的無刷直流電機(jī)無位置傳感器控制系統(tǒng)研究

      2019-06-26 02:19:00周貝貝蘇少平徐會風(fēng)唐忠文
      微電機(jī) 2019年5期
      關(guān)鍵詞:反電動勢相電流直流電機(jī)

      周貝貝,蘇少平 ,徐會風(fēng),唐忠文

      (西安交通大學(xué) 電氣工程學(xué)院,西安 710000)

      0 引 言

      無刷直流電機(jī)由于結(jié)構(gòu)簡單、功率密度大等優(yōu)點(diǎn),獲得了廣泛的應(yīng)用。在無刷直流電機(jī)的控制中,通常采用位置傳感器來檢測轉(zhuǎn)子的位置。但是由于位置傳感器的安裝不準(zhǔn)確,會直接影響電機(jī)的準(zhǔn)確換相;同時(shí),位置傳感器的使用增加了控制系統(tǒng)的成本[1]。為了取代位置傳感器,無位置傳感器控制技術(shù)成了近些年來研究的重點(diǎn)。

      目前,無位置傳感器方式下的轉(zhuǎn)子位置檢測主要有反電動勢法、磁鏈法、電感法、人工智能法等。

      反電動勢法是目前研究比較成熟的轉(zhuǎn)子位置信號檢測方法。這種方法原理簡單,容易實(shí)現(xiàn),但是電機(jī)的反電動勢大小和電機(jī)轉(zhuǎn)速成正比,所以在電機(jī)低速或零速時(shí)無法檢測到反電動勢[2]。電感法是首先在電機(jī)的相繞組中施加方波電壓脈沖的同時(shí)檢測繞組所產(chǎn)生的電流幅值大小,通過比較測量的電流大小就可以得到電感大小不同,再根據(jù)電感和轉(zhuǎn)子位置關(guān)系進(jìn)一步判斷轉(zhuǎn)子的具體位置[3]。但是無刷直流電機(jī)的轉(zhuǎn)子在不同位置時(shí)電感差異較小,需要高精度的電流檢測裝置不斷地檢測電機(jī)電流。滑模觀測器法的優(yōu)點(diǎn)是可以借助觀測模型得到不容易得到的變量,同時(shí)在一定程度上解決了系統(tǒng)參數(shù)變化、擾動帶來的影響[4]。但是傳統(tǒng)滑模觀測器容易導(dǎo)致系統(tǒng)的抖振現(xiàn)象。

      本文研究了滑模觀測器的設(shè)計(jì)原理,提出一種利用冪次趨近律來代替等速趨近律的滑模觀測器來消除抖振。通過分析選取合適的指數(shù)α,并基于此構(gòu)建了基于冪次趨近律的滑模觀測器。利用李雅普諾夫穩(wěn)定性判據(jù)推導(dǎo)出觀測器的增益取值范圍。仿真和實(shí)驗(yàn)表明,基于冪次趨近律的滑模觀測器有效消除了抖振,有較強(qiáng)的魯棒性和穩(wěn)定性。

      1 無刷直流電機(jī)數(shù)學(xué)模型

      圖1為三相Y接形式的表貼式BLDCM等效電路,假設(shè)三相繞組對稱。圖中,T1~T6為功率器件。無刷直流電機(jī)的電壓方程為[5]

      (1)

      式中,ua,ub,uc分別為三相定子端電壓;R為定子電阻,L為定子等效電感;ea,eb,ec分別為三相繞組反電動勢;ia,ib,ic分別為三相定子電流。

      根據(jù)式(1)得到無刷直流電機(jī)線電壓模型:

      (2)

      其中:eab=ea-eb,ebc=eb-ec為電機(jī)的線反電動勢;uab=ua-ub,ubc=ub-uc為線電壓;iab=ia-ib,ibc=ib-ic為相電流差。

      (3)

      由于采樣周期很短,可認(rèn)為轉(zhuǎn)子轉(zhuǎn)速不變,線反電動勢的導(dǎo)數(shù)為0[6],則式(2)可寫成式(3)的形式。

      2 滑模觀測器的設(shè)計(jì)

      2.1 冪次趨近律的提出

      對理想的變結(jié)構(gòu)系統(tǒng),即繼電式變結(jié)構(gòu)系統(tǒng),滑動模態(tài)是降維光滑運(yùn)動,且漸進(jìn)地趨向原點(diǎn),不會出現(xiàn)抖振。但具體實(shí)現(xiàn)理想變結(jié)構(gòu)系統(tǒng)時(shí),離散的開關(guān)特性會導(dǎo)致系統(tǒng)抖振。因此采用不同的趨近律,通過調(diào)整趨近律的參數(shù)達(dá)到削弱抖振的目的[7]。

      (1)等速趨近律:

      (4)

      當(dāng)K值取的比較大時(shí),到達(dá)切換面的速度大,導(dǎo)致系統(tǒng)有比較嚴(yán)重的抖振現(xiàn)象。當(dāng)K較小時(shí),趨近速度小,雖然能夠減小抖振,但到達(dá)切換面所用時(shí)間變長。

      (2)冪次趨近律

      (5)

      采用冪次趨近律,可保證系統(tǒng)有限時(shí)間光滑到達(dá)切換面。分析如下:

      當(dāng)S>0(α>0,K>0),對式(5)積分,可得:

      (6)

      顯然,當(dāng)α<1時(shí),有

      (7)

      從式(7)可得,S從S0在有限時(shí)間內(nèi)到達(dá)S=0并且?guī)挒?,從而消除了抖振。當(dāng)α>1,S→0時(shí),t→∞,不能在有限時(shí)間內(nèi)到達(dá)切換面,不滿足變結(jié)構(gòu)的可達(dá)性[8]。

      2.2 冪次趨近律滑模觀測器的設(shè)計(jì)

      選擇滑模面

      (8)

      取冪次趨近律:

      (9)

      設(shè)狀態(tài)變量x=[iabibceabebc]T,輸入為V=[uabubc]T,則可建立如下滑模觀測器:

      (10)

      式中,γ1=R/L,γ2=1/L,k1、k2、k1h1、k2h2為滑模觀測器的增益。

      將式(10)減去式(3),可得觀測器的誤差方程為

      (11)

      (12)

      對式(12)求導(dǎo),并將式(11)代入,得

      (13)

      由于

      (14)

      γ2|e1||e3|+k1|e1|1+α+γ2|e2||e4|+k2|e2|1+α<0

      (15)

      由式(15)可得,當(dāng)

      (16)

      當(dāng)系統(tǒng)處于滑模面上時(shí),有如下關(guān)系:

      (17)

      根據(jù)式(11)和式(17)得

      (18)

      取Lyapunov方程如下:

      (19)

      對式(19)求導(dǎo),并將式(18)代入得:

      (20)

      (21)

      2.3 位置估算

      根據(jù)滑模觀測器觀測得到的線反電動勢可以得到虛擬霍爾信號,然后將虛擬霍爾信號按表1解碼為相對應(yīng)的線反電動勢。其中,當(dāng)線反電動勢大于0時(shí)為1,小于0時(shí)為-1。再根據(jù)線反電動勢的正負(fù)就可以判斷導(dǎo)通功率管。圖2為經(jīng)解碼后由線反電動勢得到的導(dǎo)通功率管邏輯換相仿真圖。

      表1 虛擬霍爾信號與線反電動勢的關(guān)系

      圖2 邏輯換相仿真圖

      2.4 轉(zhuǎn)速估算

      轉(zhuǎn)速計(jì)算主要實(shí)現(xiàn)無位置傳感器控制系統(tǒng)的轉(zhuǎn)子轉(zhuǎn)速計(jì)算,電機(jī)的轉(zhuǎn)速和反電動勢的關(guān)系為n=60*f/p,式中p為電機(jī)的極對數(shù)。因此只要知道電機(jī)的線反電動勢變化頻率就可以知道電機(jī)轉(zhuǎn)速大小。仿真模型如圖3所示。

      圖3 轉(zhuǎn)速估算模塊

      3 仿真研究

      為了驗(yàn)證提出方法的有效性,利用Matlab/Simulink建立仿真模型,仿真中的電機(jī)參數(shù)為額定電壓160V,額定電流5A,定子電阻0.173Ω,定子電感2mH,額定轉(zhuǎn)速2000r/min,極對數(shù)為3。圖4為基于冪次趨近律滑模觀測器的無刷直流電機(jī)無位置傳感器仿真圖。

      圖4 無刷直流電機(jī)無位置傳感器仿真圖

      圖5為空載時(shí)不同α值下觀測得到的線反電動勢值仿真結(jié)果。仿真時(shí)間為0.1s。

      可以看出,隨著α取值的增大,觀測得到的線反電動勢比較平滑,基本沒有抖振現(xiàn)象,觀測精度高。

      圖5 不同α取值下估算線反電勢波形

      圖6和圖7分別為傳統(tǒng)滑模觀測器和基于冪次趨近律的滑模觀測器無刷直流電機(jī)觀測的線反電動勢波形和相電流波形。其中α=8/10,設(shè)定仿真時(shí)間為0.3s,在0.15s時(shí)施加4Nm的負(fù)載轉(zhuǎn)矩。

      圖6 傳統(tǒng)滑模觀測器線反電勢曲線和相電流曲線

      圖7 冪次趨近律滑模觀測器線反電勢曲線和相電流曲線

      可以看出,采用傳統(tǒng)滑模觀測器時(shí),無論在加載前后,觀測得到的線反電動勢都有比較嚴(yán)重的抖振現(xiàn)象,從而帶來估計(jì)的換相信號與實(shí)際的霍爾信號有較大的偏差。而采用冪次趨近律的滑模觀測器觀測的線反電動勢比較平滑,幾乎消除了抖振。同時(shí),采用本文提出的基于冪次趨近律的滑模觀測器得到的電流波形比較平穩(wěn),說明穩(wěn)態(tài)性能比傳統(tǒng)滑模觀測器要好。

      4 實(shí)驗(yàn)驗(yàn)證

      為了進(jìn)一步驗(yàn)證本文所提出的方法的有效性,搭建了基于dSPACE的半實(shí)物仿真平臺,主要包括dSPACE主控板、變頻器、電壓電流采樣電路等。

      圖8和圖9為在額定轉(zhuǎn)速下,分別采用兩種控制方法得到的轉(zhuǎn)速波形和線反電動勢波形。

      圖8 傳統(tǒng)滑模觀測器空載轉(zhuǎn)速曲線和線反電勢曲線

      圖9 冪次趨近律滑模觀測器空載轉(zhuǎn)速曲線和線反動勢曲線

      由以上兩組圖分析可得,采用傳統(tǒng)滑模觀測器估算出的轉(zhuǎn)速波形有比較大的波動現(xiàn)象,并且由三段式起動切入無位置算法時(shí)有比較大的轉(zhuǎn)速跳變。但是基于冪次趨近律的滑模觀測器估算出的轉(zhuǎn)速切入無位置算法時(shí)轉(zhuǎn)速跳變較小,并且轉(zhuǎn)速波形比較平滑。同時(shí),采用本文提出的滑模觀測器能夠獲得較好的線反電動勢估計(jì)值,明顯比傳統(tǒng)的滑模觀測器具有更好的觀測效果,幾乎消除了抖振。

      圖10 傳統(tǒng)滑模觀測器加載時(shí)線反電勢曲線和相電流曲線

      圖11 冪次趨近律滑模觀測器線反電勢和相電流曲線

      圖10(a)、圖11(a)分別為傳統(tǒng)滑模觀測器和基于冪次趨近律的滑模觀測器在切入負(fù)載后觀測得到的線反電動勢波形。可以看出,加入負(fù)載后,傳統(tǒng)滑模觀測器得到的線反電動勢波形畸變比較嚴(yán)重;而采用冪次趨近律的滑模觀測器在加入負(fù)載后觀測得到的線反電動勢波形較好,在換相點(diǎn)處波形平滑,因此比傳統(tǒng)滑模觀測器具有更高的穩(wěn)態(tài)精度。

      圖10(b)和圖11(b)為采用兩種控制算法時(shí),加入負(fù)載后得到的相電流波形??梢钥闯?,基于冪次趨近律的滑模觀測器無位置控制系統(tǒng)得到的相電流比較平滑,運(yùn)行穩(wěn)定;而傳統(tǒng)滑模觀測器下的無位置控制系統(tǒng)的相電流有明顯的波動現(xiàn)象。

      5 結(jié) 論

      針對傳統(tǒng)滑模觀測器的抖振問題,本文提出一種利用冪次趨近律來代替等速趨近律的滑模觀測器,并討論了冪次趨近律指數(shù)α的取值對系統(tǒng)的影響。通過仿真和實(shí)驗(yàn),本文得出以下結(jié)論:

      (1)指數(shù)α(0<α<1)取值越大,系統(tǒng)的穩(wěn)定性越好,觀測得到的線反電動勢就越平滑。

      (2)基于冪次趨近律的滑模觀測器削弱了傳統(tǒng)滑模觀測器的抖振現(xiàn)象,保證了換相信號的正確性。

      (3)將本文提出的控制策略應(yīng)用到無刷直流電機(jī)無傳感器算法中,具有更好的穩(wěn)態(tài)精度和控制性能。

      猜你喜歡
      反電動勢相電流直流電機(jī)
      單相三軸法與單軸三相法的等價(jià)性
      基于模糊PID的無刷直流電機(jī)速度控制系統(tǒng)的設(shè)計(jì)與仿真
      地鐵牽引逆變器輸出電流傳感器測試策略優(yōu)化分析
      輪轂電機(jī)控制器相電流重構(gòu)方法
      電子與封裝(2021年7期)2021-07-29 10:58:48
      基于改進(jìn)滑模觀測器的BLDCM無傳感器控制
      溫度對永磁同步電機(jī)反電動勢值的影響
      汽車電器(2019年2期)2019-03-22 03:35:16
      基于FPGA的雙繞組無刷直流電機(jī)軟件設(shè)計(jì)
      電子制作(2017年1期)2017-05-17 03:54:12
      基于模糊神經(jīng)網(wǎng)絡(luò)PID的無刷直流電機(jī)控制系統(tǒng)研究
      一種改進(jìn)的無刷直流電機(jī)控制方法
      異步電機(jī)SVM-DTC系統(tǒng)中的相電流檢測研究
      诸城市| 布拖县| 平果县| 吉隆县| 浦江县| 安化县| 兰溪市| 荔波县| 庆城县| 玉田县| 天峻县| 安溪县| 云梦县| 定结县| 冕宁县| 蓬溪县| 永昌县| 高青县| 辛集市| 桐梓县| 星子县| 南木林县| 芦溪县| 永和县| 壤塘县| 新余市| 玉环县| 丰顺县| 汝阳县| 偃师市| 仲巴县| 鸡泽县| 哈密市| 五华县| 修文县| 皋兰县| 屯留县| 丽江市| 栾城县| 泊头市| 法库县|