• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)

      2019-08-01 01:48:57孔賀慶張楠岳曉冬童向榮于天佑
      計(jì)算機(jī)應(yīng)用 2019年5期
      關(guān)鍵詞:粗糙集

      孔賀慶 張楠 岳曉冬 童向榮 于天佑

      摘 要:現(xiàn)有的屬性約簡(jiǎn)方法大部分關(guān)注決策系統(tǒng)中的所有決策類,而在實(shí)際決策過程中決策者往往僅關(guān)注決策系統(tǒng)中的一種或幾種決策類。針對(duì)上述問題,提出基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)的理論框架。首先,給出不完備決策系統(tǒng)單特定決策類正域約簡(jiǎn)的概念;第二,將單特定決策類正域約簡(jiǎn)推廣到多特定決策類,構(gòu)造了相應(yīng)的差別矩陣及區(qū)分函數(shù);第三,分析并證明了相關(guān)定理,提出基于差別矩陣的不完備決策系統(tǒng)多特定決策類正域約簡(jiǎn)算法(PRMDM);最后,選取4組UCI數(shù)據(jù)集進(jìn)行實(shí)驗(yàn)。在數(shù)據(jù)集Teachingassistantevaluation、House、Connectionistbench和Cardiotocography上,基于差別矩陣的不完備決策系正域約簡(jiǎn)算法(PRDM)的平均約簡(jiǎn)長(zhǎng)度分別為4.00、13.00、9.00和20.00,PRMDM算法(多特定決策類中決策類數(shù)目為2)的平均約簡(jiǎn)長(zhǎng)度分別為3.00、8.00、8.00和18.00。實(shí)驗(yàn)結(jié)果驗(yàn)證了PRMDM算法的有效性。

      關(guān)鍵詞:粗糙集;不完備決策系統(tǒng);多特定決策類;正域約簡(jiǎn);差別矩陣

      中圖分類號(hào):TP181

      文獻(xiàn)標(biāo)志碼:A

      英文標(biāo)題

      Abstract: The existing attribute reduction algorithms mostly focus on all decision classes in decision systems, but in actual decision process, decision makers may only focus on one or several decision classes in the decision systems. To solve this problem, a theoretical framework of positive region preservation reduction based on multispecific decision classes in incomplete decision systems was proposed. Firstly, the positive region preservation reduction for single specific decision class in incomplete decision systems was defined. Secondly, the positive region preservation reduction for single specific decision class was extended to multispecific decision classes, and the corresponding discernibility matrix and function were constructed. Thirdly, with related theorems analyzed and proved, an algorithm of Positive region preservation Reduction for Multispecific decision classes reduction based on Discernibility Matrix in incomplete decision systems (PRMDM) was proposed. Finally, four UCI datasets were selected for experiments. On Teachingassistantevaluation, House, Connectionistbench and Cardiotocography dataset, the average reduction length of Positive region preservation Reduction based on Discernibility Matrix in incomplete decision systems (PRDM) algorithm is 4.00, 13.00, 9.00 and 20.00 respectively while that of the PRMDM algorithm (with decision classes in the multispecific decision classes is 2) is 3.00, 8.00, 8.00 and 18.00 respectively. The validity of PRMDM algorithm is verified by experimental results.

      英文關(guān)鍵詞Key words: rough set; incomplete decision system; multispecific decision classes; positive region preservation reduction; discernibility matrix

      0 引言

      1982年由波蘭科學(xué)家Pawlak提出的粗糙集理論[1-6]是一種重要的知識(shí)推理工具,作為一種求取集合近似的方法,該理論現(xiàn)已應(yīng)用于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、模式識(shí)別、智能信息處理等領(lǐng)域。屬性約簡(jiǎn)[7-13]是粗糙集理論的重要研究?jī)?nèi)容之一,屬性約簡(jiǎn)通過刪除冗余屬性得到保持原決策系統(tǒng)某種分類信息不變的最小屬性子集。

      在決策系統(tǒng)中,若決策系統(tǒng)中條件屬性值存在缺失,則稱該決策系統(tǒng)為不完備決策系統(tǒng)。在現(xiàn)實(shí)生活中,存在一定數(shù)量的不完備信息。目前,相關(guān)學(xué)者對(duì)不完備決策系統(tǒng)下的屬性約簡(jiǎn)進(jìn)行了大量的研究,并將經(jīng)典Pawlak粗糙集模型進(jìn)行推廣,取得了一系列成果: 1998年,Kryszkiewicz[14]在不完備決策系統(tǒng)下引入廣義決策保持約簡(jiǎn),介紹了相關(guān)決策規(guī)則的提取,并提出了基于差別矩陣[15]的廣義決策保持約簡(jiǎn)方法; 2002年,Liang等[16]基于粗糙熵提出不完備決策系統(tǒng)的知識(shí)約簡(jiǎn)的啟發(fā)式算法。2003年,周獻(xiàn)中等[17]100-104在不完備決策系統(tǒng)下提出分配約簡(jiǎn); 2005年,黃兵等[17]52-56提出不完備決策系統(tǒng)的上下近似約簡(jiǎn),并給出求解所有決策類約簡(jiǎn)的差別矩陣方法; 2010年,Qian等[18]基于極大相容塊在不協(xié)調(diào)不完備決策系統(tǒng)下提出上下近似約簡(jiǎn)的概念,并構(gòu)造了相應(yīng)的差別矩陣;2014年,Shu等[19]在不完備決策系統(tǒng)下提出通過評(píng)估候選屬性重要度快速求取屬性約簡(jiǎn)的方法;2015年,Qian等[20]提出動(dòng)態(tài)不完備決策系統(tǒng)下基于緊湊差別矩陣的特征選擇方法。

      在屬性約簡(jiǎn)中,正域約簡(jiǎn)針對(duì)所有決策屬性的決策類,約簡(jiǎn)結(jié)果保證了整個(gè)決策系統(tǒng)約簡(jiǎn)前后正域不變。在實(shí)際應(yīng)用中,決策者往往僅關(guān)注于決策系統(tǒng)中的一種或幾種決策類。例如,在醫(yī)療診斷中,多種癥狀構(gòu)成條件屬性集,不同類型的疾病構(gòu)成不同的決策值,醫(yī)生通常建議根據(jù)不同類型的疾病尋找不同的發(fā)病原因。2005年,Chen等[21]提出決策系統(tǒng)中局部約簡(jiǎn)的概念,與定義決策系統(tǒng)所有決策類的約簡(jiǎn)不同,局部約簡(jiǎn)只定義部分決策類的約簡(jiǎn); 2017年,Yao等[22]在完備決策系統(tǒng)下定義了特定決策類的正域約簡(jiǎn),提出特定決策類正域約簡(jiǎn)的判定定理,并討論了特定決策類正域約簡(jiǎn)與所有決策類正域約簡(jiǎn)的關(guān)系; 2017年,Liu等[23]在完備系統(tǒng)下提出第l決策類約簡(jiǎn)和β約簡(jiǎn)的概念,并給出了基于差別矩陣的約簡(jiǎn)算法。

      基于上述研究,文獻(xiàn)[17]對(duì)不完備決策系統(tǒng)的所有決策類的約簡(jiǎn)進(jìn)行了討論,文獻(xiàn)[22-23]在完備決策系統(tǒng)下對(duì)單特定決策類的正域約簡(jiǎn)進(jìn)行了研究。由于在實(shí)際應(yīng)用中存在大量的不完備數(shù)據(jù),且決策者往往傾向于關(guān)注部分決策類,現(xiàn)有的不完備決策系統(tǒng)的正域約簡(jiǎn)方法針對(duì)上述情況討論較少。另外,基于差別矩陣的約簡(jiǎn)方法可以求取所有約簡(jiǎn),用戶可以根據(jù)個(gè)人偏好選擇具有自身偏好的約簡(jiǎn),并且通過所有約簡(jiǎn)可以求取最短約簡(jiǎn)。為此,本文提出了基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)的理論框架,當(dāng)選取的多特定決策類中決策類數(shù)目為1時(shí),基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)退化為不完備決策系統(tǒng)單特定決策類的正域約簡(jiǎn);當(dāng)選取的多特定決策類為決策系統(tǒng)中所有決策類時(shí),基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)退化為不完備決策系統(tǒng)所有決策類的正域約簡(jiǎn)。首先,本文介紹了不完備決策系統(tǒng)的相關(guān)概念;然后,定義了不完備決策系統(tǒng)的多特定決策類的正域約簡(jiǎn),構(gòu)造了相應(yīng)的差別矩陣及區(qū)分函數(shù),提出了基于差別矩陣的不完備決策系統(tǒng)多特定決策類正域約簡(jiǎn)算法(Positive region preservation Reduction for Multispecific decision classes reduction based on Discernibility Matrix in incomplete decision systems, PRMDM);最后,實(shí)驗(yàn)驗(yàn)證了PRMDM算法的有效性。

      由于實(shí)驗(yàn)采用標(biāo)準(zhǔn)UCI數(shù)據(jù)集,預(yù)處理后數(shù)據(jù)集中的決策系統(tǒng)是完備決策系統(tǒng),所以需要將完備決策系統(tǒng)轉(zhuǎn)換為不完備決策系統(tǒng)。本文采用文獻(xiàn)[19]中的方式對(duì)數(shù)據(jù)集進(jìn)行處理,具體處理方式為:數(shù)據(jù)集中除決策屬性外,每一列隨機(jī)缺失10%的屬性值,缺失值在決策系統(tǒng)中用表示。處理后的數(shù)據(jù)集詳見https://github.com/KInfinite/datasets。

      3.1 約簡(jiǎn)結(jié)果對(duì)比

      選取4組UCI數(shù)據(jù)集進(jìn)行約簡(jiǎn)結(jié)果對(duì)比,約簡(jiǎn)結(jié)果如表3所示。其中,表3中“所有決策類約簡(jiǎn)”對(duì)應(yīng)PRDM算法的約簡(jiǎn)結(jié)果,“單特定決策類約簡(jiǎn)”對(duì)應(yīng)多特定決策類中決策數(shù)目為1時(shí)PRMDM算法的約簡(jiǎn)結(jié)果,“多特定決策類約簡(jiǎn)”對(duì)應(yīng)多特定決策類中決策類數(shù)目為2 時(shí)PRMDM算法的約簡(jiǎn)結(jié)果。表4列出了約簡(jiǎn)數(shù)目及平均約簡(jiǎn)長(zhǎng)度,其中,表4中“所有決策類約簡(jiǎn)”和“特定決策類約簡(jiǎn)”分別對(duì)應(yīng)PRDM算法和PRMDM算法的約簡(jiǎn)數(shù)目和平均約簡(jiǎn)長(zhǎng)度。

      由表4可知,對(duì)于數(shù)據(jù)集Teachingassistantevaluation、House、Connectionistbench和Cardiotocography,當(dāng)所選多特定決策類中決策類數(shù)為1或2時(shí),PRMDM算法的平均約簡(jiǎn)長(zhǎng)度小于PRDM算法的平均約簡(jiǎn)長(zhǎng)度。

      3.2 約簡(jiǎn)效率對(duì)比

      本節(jié)選取4組UCI數(shù)據(jù)集分別按照對(duì)象個(gè)數(shù)遞增和屬性個(gè)數(shù)遞增的方式進(jìn)行約簡(jiǎn)效率對(duì)比。約簡(jiǎn)效率如圖1和圖2所示,其中,圖1和圖2中“所有決策類”的約簡(jiǎn)耗時(shí)曲線對(duì)應(yīng)PRDM算法的約簡(jiǎn)耗時(shí),圖1和圖2中“決策類1”“決策類2”和“決策類:1,2”的約簡(jiǎn)耗時(shí)曲線對(duì)應(yīng)PRMDM算法的約簡(jiǎn)耗時(shí)。在數(shù)據(jù)集按照對(duì)象個(gè)數(shù)遞增的方式進(jìn)行約簡(jiǎn)效率對(duì)比的實(shí)驗(yàn)中,對(duì)于每個(gè)數(shù)據(jù)集,將數(shù)據(jù)集分成10等份,第1份構(gòu)成1號(hào)數(shù)據(jù)集,第1份和第2份構(gòu)成2號(hào)數(shù)據(jù)集,以此類推,10號(hào)數(shù)據(jù)集即為完整的數(shù)據(jù)集。

      圖1是各數(shù)據(jù)集隨對(duì)象數(shù)目增加約簡(jiǎn)耗時(shí)的變化曲線,隨著對(duì)象數(shù)目的增加,約簡(jiǎn)耗時(shí)逐漸增加。圖2是各數(shù)據(jù)集隨屬性數(shù)目增加約簡(jiǎn)耗時(shí)的變化曲線,隨著屬性數(shù)目的增加,約簡(jiǎn)耗時(shí)逐漸增加。由于在屬性數(shù)目較少時(shí),區(qū)分函數(shù)相對(duì)簡(jiǎn)單,求解區(qū)分函數(shù)所需的時(shí)間較少,所以在屬性增加的前期階段約簡(jiǎn)耗時(shí)無明顯增加,在屬性增加的后期階段,由于區(qū)分函數(shù)相對(duì)復(fù)雜,求解區(qū)分函數(shù)所需的時(shí)間逐漸增加,所以約簡(jiǎn)耗時(shí)不斷增加。

      雖然PRDM算法及PRMDM算法的時(shí)間復(fù)雜度均為O(|C||U|2),但通過圖1和圖2可以發(fā)現(xiàn),當(dāng)選取的多特定決策類中決策類的數(shù)目遠(yuǎn)少于決策系統(tǒng)中所有決策類的數(shù)目時(shí),PRMDM算法在約簡(jiǎn)效率上高于PRDM算法。例如,數(shù)據(jù)集Connectionistbench和Cardiotocography中的所有決策類的數(shù)目分別為11和10,對(duì)于每個(gè)數(shù)據(jù)集,當(dāng)選取的多特定決策類中決策類的數(shù)目分別為1和2時(shí),PRMDM算法在約簡(jiǎn)效率上高于PRDM算法,這是由于當(dāng)選取的多特定決策類中決策類的數(shù)目遠(yuǎn)少于決策系統(tǒng)中所有決策類的數(shù)目時(shí),多特定決策類正域約簡(jiǎn)的差別矩陣中非空差別屬性集的數(shù)目小于所有決策類正域約簡(jiǎn)的差別矩陣中非空差別屬性集的數(shù)目,所以PRMDM算法在構(gòu)造差別矩陣的耗時(shí)上少于PRDM算法。另外,由于多特定決策類正域約簡(jiǎn)的差別矩陣中非空差別屬性集的數(shù)目小于所有決策類正域約簡(jiǎn)的差別矩陣中非空差別屬性集的數(shù)目,所以多特定決策類正域約簡(jiǎn)的區(qū)分函數(shù)中合取項(xiàng)的數(shù)目小于所有決策類正域約簡(jiǎn)的區(qū)分函數(shù)中合取項(xiàng)的數(shù)目,從而PRMDM算法在將區(qū)分函數(shù)轉(zhuǎn)化為極小析取范式的耗時(shí)上少于PRDM算法。需要注意的是,只有當(dāng)選取的多特定決策類中決策類的數(shù)目遠(yuǎn)少于決策系統(tǒng)中所有決策類的數(shù)目時(shí),PRMDM算法在約簡(jiǎn)效率上才能高于PRDM算法;當(dāng)PRMDM算法中選取的多特定決策類為決策系統(tǒng)中的所有決策類時(shí),PRMDM算法退化為PRDM算法,此時(shí)PRMDM算法相比PRDM算法在約簡(jiǎn)效率上并無提升。

      4 結(jié)語(yǔ)

      本文提出了基于多特定決策類的不完備決策系統(tǒng)正域約簡(jiǎn)的理論框架,定義了不完備決策系統(tǒng)單特定決策類正域約簡(jiǎn),構(gòu)造了相應(yīng)的差別矩陣及區(qū)分函數(shù),提出了基于差別矩陣的不完備決策系統(tǒng)多特定決策類正域約簡(jiǎn)算法。本文選取4組UCI數(shù)據(jù)集進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果驗(yàn)證了本文所提算法的有效性。由于本文提出的算法是基于差別矩陣的約簡(jiǎn)算法,為提高算法的約簡(jiǎn)效率,下一步將研究差別矩陣的優(yōu)化問題。

      參考文獻(xiàn) (References)

      [1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341-356.

      [2] 王國(guó)胤,姚一豫,于洪.粗糙集理論與應(yīng)用研究綜述[J].計(jì)算機(jī)學(xué)報(bào),2009,32(7):1229-1246.(WANG G Y, YAO Y Y, YU H. A survey on rough set theory and applications [J]. Chinese Journal of Computers, 2009, 32(7): 1229-1246.)

      [3] 于洪,王國(guó)胤,姚一豫.決策粗糙集理論研究現(xiàn)狀與展望[J].計(jì)算機(jī)學(xué)報(bào),2015,38(8):1628-1639.(YU H, WANG G Y, YAO Y Y. Current research and future perspectives on decisiontheoretic rough sets [J]. Chinese Journal of Computers, 2015, 38(8): 1628-1639.)

      [4] LIANG D C, LIU D, PEDRYCZ W, et al. Triangular fuzzy decisiontheoretic rough sets [J]. International Journal of Approximate Reasoning, 2013, 54(8): 1087-1106.

      [5] ZHANG Q H, ZHANG P, WANG G Y. Research on approximation set of rough set based on fuzzy similarity [J]. Journal of Intelligent and Fuzzy Systems, 2017, 32(3): 2549-2562.

      [6] QIN K Y, YANG J L, PEI Z. Generalized rough sets based on reflexive and transitive relations [J]. Information Sciences, 2008, 178(21): 4138-4141.

      [7] MIAO D Q, ZHAO Y, YAO Y Y, et al. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model [J]. Information Sciences, 2009, 179(24): 4140-4150.

      [8] WANG F, LIANG J Y, QIAN Y H. Attribute reduction: a dimension incremental strategy [J]. KnowledgeBased Systems, 2013, 39: 95-108.

      [9] WU W Z, Q Y H, LI T J, et al. On rule acquisition in incomplete multiscale decision tables [J]. Information Sciences, 2017, 378: 282-302.

      [10] CHEN H M, LI T R, CAI Y, et al. Parallel attribute reduction in dominancebased neighborhood rough set [J]. Information Sciences, 2016, 373: 351-368.

      [11] LIU D, LI T R, ZHANG J B. Incremental updating approximations in probabilistic rough sets under the variation of attributes[J]. KnowledgeBased Systems, 2015, 73: 81-96.

      [12] MIN F, ZHANG Z H, DONG J. Ant colony optimization with partialcomplete searching for attribute reduction [J]. Journal of Computational Science, 2018, 25: 170-182.

      [13] ZHU W, WANG F Y. Reduction and axiomization of covering generalized rough sets[J]. Information Sciences, 2003, 152(2): 217-230.

      [14] KRYSZKIEWICZ M. Rough set approach to incomplete information systems [J]. Information Sciences, 1998, 112(1/2/3/4): 39-49.

      [15] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems [M]// SLOWINSKI R. Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory. Dordrecht: Kluwer Academic Publishers, 1992: 331-362.

      [16] LIANG J Y, XU Z B. The algorithm on knowledge reduction in incomplete information systems [J]. International Journal of Uncertainty, Fuzziness and KnowledgeBased Systems, 2002, 10(1): 95-103.

      [17] 周獻(xiàn)中,黃兵,李華雄,等.不完備信息系統(tǒng)知識(shí)獲取的粗糙集理論與方法[M].南京:南京大學(xué)出版社,2010:52-104.(ZHOU X Z, HUANG B, LI H X, et al. Rough Set Theory and Method of Knowledge Acquisition in Incomplete Information Systems [M]. Nanjing: Nanjing University Press, 2010: 52-104.)

      [18] QIAN Y H, LIANG J Y, LI D Y, et al. Approximation reduction in inconsistent incomplete decision tables [J]. KnowledgeBased Systems, 2010, 23(5): 427-433.

      [19] SHU W H, QIAN W B. A fast approach to attribute reduction from perspective of attribute measures in incomplete decision systems[J]. KnowledgeBased Systems, 2014, 72: 60-71.

      [20] QIAN W B, SHU W H, XIE Y H, et al. Feature selection using compact discernibility matrixbased approach in dynamic incomplete decision system [J]. Journal of Information Science and Engineering, 2015, 31(2): 509-527.

      [21] CHEN D G, TSANG E C C. On the local reduction of information system [C]// Proceedings of the 2005 International Conference on Advances in Machine Learning and Cybernetics. Heidelberg: SpringerVerlag, 2006: 588-594.

      [22] YAO Y Y, ZHANG X Y. Classspecific attribute reducts in rough set theory [J]. Information Sciences, 2017, 418/419: 601-618.

      [23] LIU G L, HUA Z, ZOU J Y. Local attribute reductions for decision tables[J]. Information Sciences, 2017, 422: 204-217.

      猜你喜歡
      粗糙集
      粗糙集與包絡(luò)分析下艦船運(yùn)行數(shù)據(jù)聚類算法
      局部多粒度覆蓋粗糙集
      基于Pawlak粗糙集模型的集合運(yùn)算關(guān)系
      基于二進(jìn)制鏈表的粗糙集屬性約簡(jiǎn)
      基于粗糙集的不完備信息系統(tǒng)增量式屬性約簡(jiǎn)
      優(yōu)勢(shì)直覺模糊粗糙集決策方法及其應(yīng)用
      基于鍵樹的粗糙集屬性約簡(jiǎn)算法
      悲觀的多覆蓋模糊粗糙集
      多?;植诩再|(zhì)的幾個(gè)充分條件
      雙論域粗糙集在故障診斷中的應(yīng)用
      思茅市| 嘉鱼县| 七台河市| 繁昌县| 南岸区| 临潭县| 铅山县| 旺苍县| 哈密市| 西青区| 开平市| 鸡泽县| 巴彦淖尔市| 丰城市| 禹城市| 栾城县| 故城县| 赤峰市| 香河县| 隆林| 隆德县| 莎车县| 嘉义县| 新和县| 新干县| 辽阳县| 托里县| 成都市| 郑州市| 上饶市| 崇礼县| 广丰县| 稻城县| 莲花县| 错那县| 临沭县| 永宁县| 竹溪县| 界首市| 宝兴县| 突泉县|